

Graphical Topology Info Structure for

Constrained Random Verification in

SoC/Subsystem Tests

Evean Qin, Richard Bell, David Chen
Advanced Micro Devices, Inc.

1 Commerce Valley Dr. East

Markham, ON Canada L3T 7X6

Abstract - Constrained random verification (CRV) has been widely adopted by the design verification industries.

Especially at the SoC or subsystem level, this methodology is used to replace the traditional directed tests for better

coverage in many testing areas [1]. However, because the system information used in the test environment is not

comprehensive enough, many scenarios still need to be tested by the directed tests, for example, the scenarios that require

disabling traffic through a specific datapath when testing power/clock gating in different IP combinations or a DUT with

missing/broken IP(s). With the growth of the number of IPs integrated in the system [2], the manual setup for these

directed testcases is becoming more and more a tedious challenge for the engineers. To help deploying constrained

random methodology to these scenarios, a more comprehensive data structure that contains the connectivity info and

provides an easy way to access is urged to be implemented in the test environment. This article is proposing a graphical

topology info structure, which can be used in the testbench for easily retrieving the system information, and hence, helps

the tests automatically setup constraints for stimulus generation to precisely avoid undesired traffic. Optionally, the

topology info can be extended to carry extra system info which can grant the tests accessibility for better DV component

control.

I. INTRODUCTION

At the SoC or subsystem level, most of tests can apply the constrained random methodology to generate valid

end-to-end traffic without paying too much attention to the IPs in the datapath [3]. However, without any

information from the connectivity in the entire system, when testing the power gating (PG) or clock gating (CG)

features for a certain set of IPs, the verification engineers still need to use a directed testing method and manually

setup the stimulus generation on a case by case basis. In order to reach the idle state where power/clock gating can

be triggered in the IP(s), the directed tests need to either stop all traffic going into the system or selectively disable

traffic going through the IP(s) under test [4]. Nowadays, when the number of IPs integrated in the system has been

quickly growing, this kind of directed testing method may introduce more and more coverage holes and become a

heavy-duty task to the engineers in their job. Therefore, there is a desire for a test environment that supports CRV in

these scenarios in order to improve the verification quality and efficiency.

 Furthermore, it is commonly hard to guarantee that all IPs are fully ready at the same time when delivering to the

SOC or subsystem. This means some IPs may be missing or broken at the moment when the SoC regression is

already up and running. With minimum information for the stimulus generator, the random testing approach will

freely generate traffic to all available datapaths, in which some may go through the missing or broken IP. As a

result, certain checkers and/or assertions may fire unexpectedly, or even worse, simulation may hang without any

verbose debug message. By knowing particular IPs are not ready, the verification engineers still need to spend time

on debugging the failing case, disabling checkers or selectively removing some stimulus in the tests with multiple

iterations. It is time-consuming with little reward because there are no real bugs. To avoid this situation, if the test

environment can leverage information about the missing/broken IPs when generating the stimulus, some pre-

emptive actions can be taken to prevent false-positive error reporting in the regression, and hence, will save

engineers’ time in this task and use it for real problems in the verification.

To solve these problems, a more comprehensive topology info is proposed for the testbench, which will provide

system connectivity info to the test environment for better constraining the traffic generation. Optionally, it can be

extended to contain extra information about the IPs and the interfaces in the system, so that users can easily access

and configure the DV components such as checkers or scoreboards according to the needs. This proposed topology

info consists of nodes representing the individual IPs and directional edges representing the connections between

two adjacent IPs. In this way, the entire info structure is formed as an edge-node graph in terms of G = (E, V), and

hence it is named a graphical topology info structure.

II. THE SYSTEM INFO AND THE PRECURSOR FILE

The topology info is essentially a database storing the system information. The primary requirement of this info

structure is to precisely reflect the connectivity relationship among IPs. Here is an example of the high-level design

diagram with connectivity among 12 IPs.

Figure 1. Example of a SoC architecture.

According to the system specification or the high-level design diagram, precursor files can be created to contain

information about the IPs and the connections with necessary interface attributes. They can be in any format for

convenient use, for example, a plain text file, a json file or the output file from a visual drawing tool such as yEd.

Then a user-defined helper script will parse and convert the precursor file(s) into the source codes of the topology

info structure. The reason to setup the intermediate files instead of directly creating the source codes of the dv

components is to decouple the source of information from its final products. In this way, with different builders in

the script, the information in the precursor file(s) can be reused in different languages, different methodologies or

different verification platforms. For example, the IP teams are using SystemVerilog/UVM in the test environment

while SoC team is using SystemC and the emulation team is using C++. Here is an example of a json file containing

IPs and connections information from a system diagram such as Fig. 1.

Figure 2. Example of system info json file.

For the verification flow, either the SoC/subsystem team creates the files and passes to IP teams from top-down,

or the IP teams can provide the files from bottom-up when delivering the designs for SoC integration.

III. GRAPHICAL TOPOLOGY INFO IN UVM

Technically, the topology info structure can be built in various DV methodologies such as C++, SystemC, or

UVM. Due to popularity, this section introduces the data structure for the topology info in UVM and shows how the

graph is built into the UVM test environment from the precursor file.

A. The Node: IP Info Class

An IP info class is the primary element in the graphical structure of the topology info. Each IP info shall

accurately represent the corresponding IP. If the IP is at the boundary of the system, which means its inputs and

outputs are considered as primary IO and connected to the external components such as a BFM or an iUVC, then it

should be marked as a boundary IP. The boundary IP is usually the source or the destination of a datapath, which

will be used in the source-destination pair representing a datapath later. To extend the features of the topology info,

the IP info class can also contain pointers to the IP’s mUVC and the iUVC of its interfaces. Here is an example of

the UVM codes for the IP info class:

Figure 3. Example of IP info class.

{

 “ip”:{

 “IP0”: {

 “name”: “IP0”,

 “is_boundary”: 1,

 …

 },

 “IP1”: {

 …

 },

 …

 }

 “connection”: {

 “ip0_ip1”: {

 “name”: “ip0_ip1”,

 “protocol”: “AXI”,

 “source”: “IP0”,

 “destination”: “IP1”,

 …

 },

 “ip1_bfmA”: {

 …

 },

 …

 }

}

class ip_info extends uvm_object;

 // Name of the IP

 string name;

 // Flag of boundary IP

 bit is_boundary;

 // Pointer to the mUVC

 ip_mUVC muvc;

 …

 // List of pointers to the iUVCs on different interfaces

 ip_iUVC iuvc[$];

 …

B. The Edge: Connection Info Class

A connection info class is another primary element in the graphical structure of the topology info. It represents the

connectivity between two adjacent IPs and includes necessary interface information if needed. Since the

connectivity is directional, this class contains the pointers of the source IP and the destination IP. On the other hand,

it can also contain the protocol of the interface, the pointer of the iUVC and even the channel of the connection.

Figure 4. Example of topology info class.

C. The Graph: Topology Info Class

The topology info is the container of all IP info classes and connection info classes. In this class, the nodes and the

edges have formed a graphical data structure for the design topology. To store the nodes and edges, various lookup

tables (hash map) can be constructed to help the lookup in different ways, for example, to look up the IP info by its

name or to look up the connection info by the source IP. Some helper functions are also implemented in this class

for interfacing with the users.

Figure 5. Example of topology info class.

In the UVM environment, the information from the topology info may be needed by other components in the

build phase, so all of the classes of this info structures are based on uvm_object. In this way, the topology info can

be created in different scopes or different UVM structures when it is needed.

D. Path Searching Function

The main function of this graphical topology info is to provide datapath information for the constraints in the

tests. When giving an IP, a searching function should return a list of datapaths including the source and destination.

Benefiting from the graphical topology of this data structure, there are various algorithms available for path

traversing and searching. Without the consideration in the runtime performance, the simplest and most

straightforward method for the datapath search is to exhaustively traverse all sources towards the possible

destinations and build a lookup table. The lookup table uses the source and destination as the row and the column

respectively. Each entry of the table contains all possible datapaths between the corresponding source and

destination. Due to the nature of the graphical topology info, the table contains precisely all the datapath info from

the system design under test. By looking up an IP in the table, the search function can retrieve a list of datapaths

which this IP is in, so that the test can use this list to help constraining the traffic generation accordingly. And also,

class connection_info extends uvm_object;

 string name; // Name of the connection

 string protocol; // Protocol of the connection

 string channel; // Channel of the connection

 ip_info source; // Pointer of the Source IP

 ip_info destination; // Pointer of the Destination IP

 connection_iuvc iuvc; // Pointer of the iUVC of the interface

 …

class topology_info extends uvm_object;

 string name;

 string type;

 ip_info ip_name_map[string];

 connection_info_array connection_source_map[ip_info];

 ip_info_array source_destination_map[ip_info][ip_info];

 …

 function void add_ip(ip_info ip);

 function void add_connection(connection_info conn);

 function ip_info get_ip(string ip_name);

 function ip_info_array get_ip_combinations();

 function ip_info_array get_adjacent_ip(ip_info ip);

 function ip_info_array get_dest_from_source(ip_info ip);

 function connection_info_array get_connection(ip_info ip);

 function datapath_info get_datapath(ip_info ip);

 …

it can provide the list of possible destinations by giving a source IP. Here is an example of the lookup table referring

to the SoC design in Fig. 1. In each entry, the numbers are the numbers from the IP names, and the order of the

numbers represents the order of the IPs in the datapath from the source to the destination.
TABLE I

LOOKUP TABLE OF DATAPATHS FROM SOURCE TO DESTINATION

 Dest

Src

IP1 IP3 IP4 IP8 IP9 IP10 IP11

IP1 1 1, 6, 3 1, 0, 4 1, 5, 9, 8 1, 5, 9 1, 6, 10 1, 6, 11

IP3 3, 6, 2, 1 3 3, 6, 2,

1, 0, 4

3, 6, 2,

1, 5, 9, 8

3, 6, 2,

1, 5, 9

3, 6, 10 3, 6, 11

IP4 4, 0, 1 4, 0, 1,

6, 3

4 4, 0, 1,

5, 9, 8

4, 0, 1,

5, 9

4, 0, 1,

2, 6, 10

4, 0, 1,

2, 6, 11

IP8 8, 5, 9, 1 8, 9, 5,

1, 2, 6, 3

8, 9, 5,

1, 0, 4

8 8, 9 8, 9, 5,

1, 2, 6,

10

8, 9, 5,

1, 2, 6,

11

IP9 9, 5, 1 9, 5, 1,

2, 6, 3

9, 5, 1,

0, 4

9, 8 9 9, 5, 1,

6, 10

9, 5, 1,

6, 11

IP10 10, 6, 2,

1

10, 6,3 10, 6, 2,

1, 0, 4

10, 6, 2,

1, 5, 9, 8

10, 6, 2,

1, 5, 9

10 10, 6, 11

IP11 11, 7, 3,

6, 2, 1

11, 7, 3 11, 7, 3,

6, 2, 1,

0, 4

11, 7, 3,

6, 2, 1,

5, 9, 8

11, 7, 3,

6, 2, 1,

5, 9

11, 7, 3,

6, 10

11

When investigating IP5, for example, the function just needs to search the entries containing IP5 in the table. To

better demonstrate the searching result, the entries containing IP5 are grayed out in TABLE I. Then the function

returns the source-destination pairs corresponding to each entry. Here is the list of the pairs found by the function.

• IP1 → IP8; IP1 → IP9;

• IP3 → IP8; IP3 → IP9;

• IP4 → IP8; IP4 → IP9;

• IP8 → IP1; IP8 → IP3; IP8 → IP4; IP8 → IP10; IP8 → IP11;

• IP9 → IP1; IP9 → IP3; IP9 → IP4; IP9 → IP10; IP9 → IP11;

• IP10 → IP8; IP10 → IP9;

• IP11 → IP8; IP11 → IP9;

To store the datapath list above, a datapath_info class can be created to contain the pointers to the source IP and

destination IP. Here is an example of the datapath_info class in UVM.

Figure 6. Example of datapath info class.

class datapath_info extends uvm_object;

 // Name of the datapath

 string name;

 // Pointer to the source IP

 ip_info source;

 // Pointer to the destination IP

 ip_info destination;

 …

 // Helper Functions if needed

 …

E. Construction and Build

The source codes of the UVM data structure including the IP info classes, connection info classes and topology

info classes can be generated from the precursor file(s). Depending on the format of the precursor file(s), a helper

script can be created to parse the precursor files and produce the corresponding SystemVerilog files. According to

the user’s needs, the script may generate partial source codes to plug into the test setup, or the entire topology info

class with everything built-in. In the following example shown in Fig. 7, a Perl script with the JSON plug-in library

is written to generate the source codes for the UVM environment.

Figure 7. Example for generation functions from the helper script in Perl.

The function in the script creates instances of IP info and connection info classes according to the Json file. The

instances are added into the topology info where they will be stored in different hash maps for later lookup. The IP

info needs to be built and added first, so that the connection info can retrieve the pointers to the source IP and

destination IP.

The script can be extended to generate the codes in different languages or methodologies for different usage. For

example, generate_cpp_class function can be written to generate C++ source codes.

use JSON;

…

sub generate_uvm_class {

 my json_data = read_json_file();

 my uvm_file = “example_constructor.sv”;

 open (my $uvm_fh, ‘>’, $uvm_file);

 print $uvm_fh “ip_info _ip_info;\n”;

 print $uvm_fh “connection_info _conn_info;\n”;

 # Generate IP info class

 foreach my $block (sort keys %{json_data}) {

 if ($block == “ip”) {

 foreach my $ip (sort keys %{$json_data->{$block}}) {

 # Create new ip info instance

 print $uvm_fh "_ip_info = new($json_data->{$block}->{$ip}-

>{name});\n";

 print $uvm_fh "_ip_info.is_boundary = $json_data->{$block}->{$ip}-

>{is_boundary};\n";

 # Add into topology info

 print $uvm_fh "topology_info.add_ip(_ip_info);\n";

 }

 }

 }

 # Generate connection info class

 foreach my $block (sort keys %{json_data}) {

 if ($block eq "connection") {

 foreach my $conn (sort keys %{$json_data->{$block}}) {

 # Create new connection info instance

 print $uvm_fh "_conn_info = new($json_data->{$block}->{$conn}-

>{name});\n";

 # Lookup ip in topology info and set the point for src/dest

 print $uvm_fh "_conn_info.source = topology_info.get_ip($json_data-

>{$block}->{$conn}->{source});\n";

 print $uvm_fh "_conn_info.destination =

topology_info.get_ip($json_data->{$block}->{$conn}->{destination});\n";

 # Add into topology info

 print $uvm_fh "topology_info.add_connection(_conn_info);\n";

 }

 }

 }

 close $uvm_fh;

}

In the test environment, topology info shall be built and registered into uvm_confg, so that it can be retrieved

easily in different scopes or sequences in the environment. Here is a code example of the build of an IP info class

and connecting it with other IPs.

Figure 8. Example of Building the Topology Info.

IV. USE CASE EXAMPLES

The graphical topology info is implemented in test and used for the followings three test cases.

A. Random Power/Clock Gating Test

When testing the power/clock gating feature from an IP, the traffic going through the IP needs to be stopped in

order to create an idle state for the gating. In a SoC/Subsystem testbench, generating traffic for a certain datapath

usually starts from the source such as an input port connected to a BFM or an iUVC, then targets the destination in

terms of a specific address or a range, for example, with an aperture, a node ID or a bus/device/function (BDF)

number. When trying to stop the traffic on a given datapath with the IP under test in it, the test needs to be aware of

the source-destination pair and avoid generating any transactions from the source targeting the destination. A

traditional way to accomplish this objective is to list all the possible combinations and manually set up directed tests

in which the traffic for a specific datapath will be avoided and others are kept. However, when the number of IPs

grows in the system, to achieve full coverage of all the possible gated IP combinations, the work of setting up the

directed testcases for DV engineers will become more and more repetitive and challenging. For example, in a system

with four IPs named IP1, IP2, IP3 and IP4. There will be 15 gating scenarios to cover. The breakdown is shown in

TABLE II.
TABLE II

IP COMBINATION BREAKDOWN

Scenario Number of

Possible

Combinations

List

Individual IP 4 IP1, IP2, IP3, IP4

2-IP Combo 6 IP1+IP2, IP1+IP3, IP1+IP4, IP2+IP3,

IP2+IP4, IP3+IP4

3-IP Combo 4 IP1+IP2+IP3, IP1+IP2+IP4, IP1+IP3+IP4,

IP2+IP3+IP4

4-IP Combo 1 IP1+IP2+IP3+IP4

Deriving from the sum of n-combinations for all n in the binomial theorem [5], when giving n IPs, the number of

total possible PG/CG cases can be calculated with the following equation:

class test_base extends uvm_test;

 topology_info topology_info;

 …

 function void build_phase(uvm_phase phase);

 // Build and register the topology info to config db in build phase

 topology_info = topology_info::type_id::create(“topology_info”);

 uvm_config_db#(topology_info)::set(null,”*”,”topology_info”,

topology_info);

 …

 // Include the constructor of the graph

 `include “example_constructor.sv”;

 endfunction

 function void connect_phase(uvm_phase phase);

 …

 // Set the pointers of mUVC and iUVC in connect phase

 topology_info.get_ip(“IP0”).mUVC = ip0_muvc;

 topology.info.get_connection(“ip0_ip1_axi”).iUVC.push = axi_iuvc_0;

 …

 endfunction

 …

endclass

 f(n) = 2n – 1. (1)

According to (1), the number of PG/CG testcases increases exponentially with the linear increase of the number of

IPs. Referring to the system shown in Fig. 1, when there are 12 IPs in the system, there may be 4095 directed tests

need to be set up for full coverage on the combination of gated IPs.

To offload the work to the constrained random tests, the graphical topology info class can be setup in the

environment. The topology info can easily search for all the datapaths containing the given IP(s) and provide the

source-destination info for the constraints used in the random traffic generation.

First, the PG/CG test creates the gating scenario by randomly picking a combination of IPs to be gated. Then

through the topology info look up, it retrieves a list of excluded datapaths that contain the given IP. The excluded

datapath is in terms of the source-destination pairs used in the constraints for traffic generation. When generating the

stimulus, the traffic on all excluded datapaths will be properly avoided in the randomization.

Here is a UVM example of a random test using the graphical topology info.

1. Use a virtual sequence to host the constraint and spawn sequence with different source.

Figure 9. Example of power gating virtual sequence.

2. Create a test which extends from the test_base where the graphical topology info is built. The test gets

random IP combination(s) and lookup topology info for an excluded list of the datapaths.

// pg_virtual_sequence.sv

class pg_virtual_sequence extend uvm_sequence;

 ip_info source;

 ip_info_array dest_list;

 ip_info_array excluded_dest;

 …

 // Helper functions

 function void set_source(ip_info ip);

 source = ip;

 endfunction

 function void set_destination(ip_info_array ip_array);

 dest_list = ip_array;

 endfunction

 function void set_excluded_destination(ip_info_array ip_array);

 excluded_dest = ip_array;

 // Remove the destinations from the destination list

 refine_dest();

 endfunction

 // Body

 virtual task body();

 …

 // send_traffic method will randomize the targeting address from

the refined dest list and send transactions from the source IP

 if (dest_list.size() != 0)

 send_traffic(source, dest_list);

 endtask

 …

endclass

Figure 10. Example of a power gating test using graphical topology info.

3. Run the test.

In the example above, the test randomly selects one scenario and creates traffic with ten transactions from each

source. With the excluded list containing the IP(s) to be gated in the test, the virtual sequence can remove the IPs

from the destination list accordingly, so that the unwanted destination address will be excluded when the traffic is

generated from the source. In the test, fork-join is used for spawning traffic from all sources simultaneously. In this

way, we achieve the objective of this power/clock gating test, which is to stop traffic through the IP(s) under test and

keep other traffic running.

According to the testing requirements, the user can easily expand the test to exercise multiple scenarios at a time

and randomize the number of transactions from each source. When applying this setup to test the system shown in

Fig. 1, instead of running approximately four thousand directed tests in the regression, only one random test is

needed to be run multiple times towards the coverage goal. The test can also be plugged into a current power-aware

verification flow, with a coverage-driven methodology for the coverage targets with very little overhead. With the

tradeoff of some extra regression runs, it saves tremendous engineering time spent on the manual setup.

In conclusion, with the help of this graphical topology info, one constrained random test can replace hundreds or

thousands of directed tests or pre-generated tests, furthermore, it is reusable in different SoCs and scalable with

different numbers of IPs in the system.

// pg_test.sv

class pg_test extend test_base;

 datapath_info excluded_datapaths[$];

 …

 virtual task build_phase(uvm_phase phase);

 pg_ip_set = topology_info.get_ip_combinations();

 foreach (pg_ip_set[i]) begin

 // Get the excluded datapath from each IP under test.

 excluded_datapaths.push_back(topology_info.get_datapath(pg_ip_set[i]));

 end

 foreach (all_sources[i]) begin

 automatic int var_i = i;

 fork

 begin

 ip_info_array excluded_destination;

 ip_info_array all_dest_list;

 // Get all the possible destinations from the source

 all_dest_list = topology_info.get_dest_from_source(all_sources[var_i]));

 // Get the excluded destinations from the datapaths

 foreach (excluded_datapaths[j]) begin

 // Only get the destination from the same source

 if (excluded_datapaths[j].source == all_sources[var_i])

 excluded_destination.push_back(excluded_datapaths[j].destination);

 end

 v_sequence.set_source(all_sources[var_i]);

 v_sequence.set_destination(all_dest_list);

 v_sequence.set_excluded_destination(excluded_destination);

 repeat(10) begin //send 10 transactions

 v_sequence.randomize();

 v_sequence.start();

 end

 end

 join_none

 end

 wait fork;

 …

 endtask

 …

endclass

B. Missing IP or Broken IP in DUT

When integrating multiple IPs into an SoC, it is difficult to guarantee that all IPs are ready and work properly at

the first place before SoC regression starts. Sending traffic through a missing IP such as an RTL shell or a broken IP

may result in some unexpected error reports, or even worse, hanging in the simulation. The engineers need to spend

tremendous time and energy to triage and debug the problem, though it is already known that the IP is missing or

broken.

After setting up the graphical topology info, the user just needs to provide the list of missing IPs and/or broken IPs

when configuring the tests before running, then tests will retrieve the excluded datapath and avoid generating traffic

through the given IPs. The list of the not-ready IPs can be generated by marking the IPs in the precursor files, or

setting them through the uvm_config_db. The above-mentioned virtual sequence and test can be reused with very

minor alternation for these testcases. In this way, it utilizes the known system information for the test to reduce the

engineering time in dealing the false positive error reports from the regressions.

C. Checker Control

Optionally, besides helping the constrained random test with the connectivity info, the topology info can be

expanded to carry more IP and interface information. For example, the pointers to the mUVC of the IP, iUVC of the

connection or the control signals of the assertions. When a certain checker or scoreboard needs to be configured or

disabled for a specific test, it is easy for the users to retrieve the corresponding DV components from the topology

info and apply the changes. With the accessibility through the topology info, the users can minimize the hardcoding

or guarding macros for the customized setup in some specific testing scenarios.

V. LIMITATION AND FUTURE WORK

This paper only discusses one of the dataflow scenarios in an SoC which sends end-to-end transactions.

Sometimes, SW programming, RAS or interrupts will also trigger transactions through IPs. In this case, the source

IP may not be explicitly at the boundary of the system. Potential improvements need to be implemented in the

topology info to deal with these cases.

On the other hand, the path searching function assumes that there is only one datapath from the source to the

destination. However, some systems may have multiple datapaths between two IPs depending on the targeting

address ranges. To handle this, the topology info needs to contain more attributes in the IP and the connection

including the routing information. The lookup table in the path searching function also needs be extended to use

each range in the IP as the destination. Furthermore, though the case with a loop in the datapath is very rare in most

SOCs, the path searching function in graphical topology info can also be improved to handle this corner case when it

is needed.

VI. SUMMARY

By implementing the graphical topology info containing all the necessary system information, the SoC/subsystem

tests can now easily leverage the constrained random approach to generate traffic to the desired datapath. In this

way, engineering effort can be saved from the manual work in creating directly tests or configuring the verification

environment for some special needs. The current applications are for power/clock gating tests and DUT with

missing/broken IPs. However, this graphical topology info can be easily extended to embrace other functionality to

help testing in more areas such as QoS or performance.

REFERENCES
[1] J. Chen, “Applying Constrained-Random Verification to Microprocessors”, EETimes, SoC Designline, Dec 10th 2007
[2] H. Foster, “The 2016 Wilson Research Group Function Verification Study”, Mentor Graphics Verification Horizons BLOG, Jan 3rd 2017

[3] E. Worthman, “It’s All IP In An SoC”, Semiconductor Engineering, IoT, Security & Automation, June 5th 2014

[4] M. Keating, D. Flynn, R. Aitken, A. Gibbons, K. Shi, “Architectural Issues for Power Gating”, The Engineer’s Portal to Green Design, vol
100909, originated from Chapter 6 in Low Power methodology Manual for System-on-Chip Design (New York: Springer 2007)

[5] R. Graham, D. Knuth, O. Patashnik, “Concrete Mathematics: A Foundation for Computer Science”, 2nd ed., Addison-Wesley, 1994

