
Graphical Topology Info Structure for
Constrained Random Verification in

SoC/Subsystem Tests

1

Evean Qin, Richard Bell, David Chen

Advanced Micro Devices, Inc.

Introduction
Random or not random, that is the question

2

• At SoC or subsystem level, constrained random approach has been

widely adopted in verification.

• Without sufficient system information in the test environment, some

test scenarios may not be constrained properly for randomization. So,

we are back to the traditional directed tests with manual setup.

• Examples:

• Power gating (PG) or clock gating (CG) tests where needed to stop

traffic going though selected IPs precisely, while other traffic is still

running normally.

PG/CG Tests for a Simple System

3

• In a simple system, manual setup for the directed tests hardly seems

to be a problem. For example, to cover all the PG/CG IP combinations

for a system with 4 IPs below, 7 scenarios need to be covered.

IP0

IP2

IP1

IP3

Scenario Combinations

Single IP IP0, IP1, IP2, IP3

2-IP Combo IP0+IP1, IP0+IP2, IP0+IP3,

IP1+IP2, IP1+IP3, IP2+IP3

3-IP Combo IP0+IP1+IP2, IP0+IP1+IP3,

IP0+IP2+IP3, IP1+IP2+IP3

4-IP Combo IP0+IP1+IP2+IP3

Traffic to Stop

IP0 <-> IP1 + IP2 + IP3

IP1 <-> IP2 + IP3 + IP0

IP2 <-> IP3 + IP0 + IP1

IP3 <-> IP0 + IP1 + IP2

…

7 scenarios

15 Combinations

4 IPs

PG/CG Tests for a Complex System

4

• When the number of IPs in a system keeps growing, the number of

required tests grows exponentially. For example, in a system with 12 IPs,

we have more than 4000 combinations and A LOT OF scenarios.

IP0 IP2

IP4

IP1

IP8

IP5 IP6

IP10IP9

IP3

IP7

IP11

f(n) = 2n – 1

Traffic to Stop

IP1 <-> IP4

IP1 <-> IP3

IP1 <-> IP11,

IP3 <-> IP10

IP4 <-> IP3 + IP1 + IP11

…

12 IPs Unknown Amount of Scenarios!

4095 Combinations

Solution Approach

5

• To achieve the coverage goal in a complex system, manual setup for

directed tests seems not feasible, and we need to consider using

random tests.

• To help deploying CRV to these scenarios, we need a

comprehensive data structure that contains the connectivity info of

the entire system.

• The data structure shall be simple to build and easy to access.

• The build flow shall be portable for different levels and different

verification environments.

• Optionally, the data structure shall be easy to visualize.

Graphical Topology Info Structure

6

• This proposed structure consists of nodes representing individual IPs

and directed edges representing connection between adjacent IPs.

In this way, it is formed as a directed graph.

Nodes

IP0

IP1 (Boundary)

IP2

…

IP11 (Boundary)

Edges

IP0_IP1

IP0_IP4

IP1_IP2

…

IP11_IP7

Graph

Representation

IP0 IP1 IP2 IP3

IP4 IP5 IP6 IP7

IP8 IP9 IP10 IP11

Note: Boundary IP means the IP connects to the BFM, which

serves as source and/or destination of the end-to-end traffic

Build Flow of the Info Structure

• Step1: Create Base Classes for Data Structure

• Use UVM for example, but it works with other languages such as

SystemC or C++.

• Use uvm_object as the base, so that the data structure can be built

anytime.

• Here is a list of UVM classes:

class datapath_info extends uvm_object;

class ip_info extends uvm_object;

class connection_info extends uvm_object;

class topology_info extends uvm_object;

Build Flow of the Info Structure

• Step2: Setup Topology Descriptive File

• The file can be written by engineer or created by drawing tools (e.g., yEd).

• The file can be in any format for convenience.

• Here is a Json file example:
“ip”:{

“IP0”: {

“is_boundary”: 1, …

}, …

}

“connection”: {

“ip2_ip3”: {

“protocol”: “AXI”,

“source”: “IP2”,

“destination”: “IP3”, …

}, …

}

Build Flow of the Info Structure

• Step3: Create Script to Convert the Descriptive File into Codes

• The script parses the descriptive file for the topology info and generates

UVM codes to construct the data structure.

• Plug in the generated codes into the test.

• Here is the code example:

class test_base extends uvm_test;

…

// Include generated construction codes

topology_info.add_ip(…);

…

topology_info.add_connection(…);

…

endfunction

…

Build Flow of the Info Structure

• Step4: Create/Update Virtual Sequence

• The virtual sequence utilizes the excluded datapath when generating

transactions.

• Here is the code example: virtual sequence iterates all sources and excludes

the destination from each excluded datapath.
class virtual_sequence extend uvm_sequence;

ip_info_array excluded_destination; //destinations from the

excluded datapath

…

function void set_excluded_destination(…);

// Body

virtual task body();

…

// Create traffic with randomization with the refined dest list

send_transaction(source, dest_list);

…

Build Flow of the Info Structure

• Step5: Create PG/CG Tests

• Create PG/CG tests extending from the test base.

• Setup traffic according to the needs.

• Here is the code example:
class pg_test extend test_base;

…

pg_ip = topology_info.get_ip_combinations();

excluded_list = topology_info.get_datapath(pg_ip);

…

v_sequence.set_excluded_destination(excluded_list)

…

v_sequence.randomize();

v_sequence.start();

…

Example of a PG Test

12

• When investigating IP5, helper function just needs to search and return

all the datapaths with IP5 in the topology info structure.

IP0 IP2

IP4

IP1

IP8

IP5 IP6

IP10IP9

IP3

IP7

IP11

IP1 -> IP8
class pg_test extend test_base;

datapath_info exlist [$];

…

exlist = t_info.get_excld(…);

v_seq.set_source(all_src);

v_seq.set_dest(all_dest);

v_seq.set_excluded(exlist);

v_seq.randomize();

v_seq.start();

…

IP1 -> IP9

IP3 -> IP8

IP3 -> IP9

IP4 -> IP8

IP4 -> IP9

IP9 -> IP11

IP10 -> IP8

IP10 -> IP9
IP11 -> IP8

…

Excluded Datapath

Other Applications

13

• The topology info helps setting up tests to avoid traffic through the

missing IP or broken IP.

• The topology info can carry information/pointer to the IPs’ module

UVC or interface UVC, so that the tests can easily access them to

configure or control the checkers/scoreboards/monitors.

• This graphical topology info can be extended to embrace other

functionality to help testing in more areas such as QoS or

performance.

Limitations and Future Work

14

• End-to-End Transactions ONLY!

– SW programming, RAS or interrupts can also trigger transactions through IPs.

In this case, the source IP may not be at the boundary of the system.

• One Datapath ONLY from source to destination!

– Some systems may have multiple datapaths between two IPs depending on

the address ranges. To improve, the topology info needs to contain more

routing attributes in the IP and the connection.

• No Loop in Datapath

– Though the case with a loop in the datapath is very rare in most SoCs, the

path searching function in graphical topology info can also be improved to

handle this.

Summary

15

• SoC/subsystem tests can now easily leverage the constrained random approach

when generating traffic for the desired datapath.

• One constrained random test replaces hundreds or thousands of directed tests

or pre-generated tests. With a coverage-driven testing method, regression can

achieve the coverage convergence quickly with multiple runs.

• The topology info is reusable in different SoCs and scalable with different

number of IPs.

• The build flow can be deployed into different testing environment (i.e., emulation)

or with different methodologies (i.e., SystemC, C++).

• Engineering effort can be saved from the manual work in

creating directed tests or configuring the verification

environment for special needs and for better coverage.

THANK YOU

16

Q&A

Backup: Datapath Search Function

17

• The topology info is actually a graph, which can leverage different

available algorithms to search a datapath. Without any concern on the

runtime performance, the simplest way is to exhaustively traverse all

sources towards the possible destination and build a lookup table.

• For example, lookup table for IP1, IP3, IP4, and IP8.

Destination

Source

IP1 IP3 IP4 IP8

IP1 1 1, 6, 3 1, 0, 4 1, 5, 9, 8

IP3 3, 6, 2, 1 3 3, 6, 2, 1, 0, 4 3, 6, 2, 1, 5, 9, 8

IP4 4, 0, 1 4, 0, 1, 6, 3 4 4, 0, 1, 5, 9, 8

IP8 8, 5, 9, 1 8, 9, 5, 1, 2, 6, 3 8, 9, 5, 1, 0, 4 8

Destination

Source

IP1 IP3 IP4 IP8

IP1 1 1, 6, 3 1, 0, 4 1, 5, 9, 8

IP3 3, 6, 2, 1 3 3, 6, 2, 1, 0, 4 3, 6, 2, 1, 5, 9, 8

IP4 4, 0, 1 4, 0, 1, 6, 3 4 4, 0, 1, 5, 9, 8

IP8 8, 5, 9, 1 8, 9, 5, 1, 2, 6, 3 8, 9, 5, 1, 0, 4 8

Destination

Source

IP1 IP3 IP4 IP8

IP1 1 1, 6, 3 1, 0, 4 1, 5, 9, 8

IP3 3, 6, 2, 1 3 3, 6, 2, 1, 0, 4 3, 6, 2, 1, 5, 9, 8

IP4 4, 0, 1 4, 0, 1, 6, 3 4 4, 0, 1, 5, 9, 8

IP8 8, 5, 9, 1 8, 9, 5, 1, 2, 6, 3 8, 9, 5, 1, 0, 4 8

IP1 -> IP8

IP3 -> IP8

IP4 -> IP8

IP8 -> IP1

IP8 -> IP3

IP8 -> IP4

Disclaimer & Attribution

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without
notice. While every precaution has been taken in the preparation of this document, it may contain
technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to
update or otherwise correct this information. Advanced Micro Devices, Inc. makes no
representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD
hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between
the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

ATTRIBUTION

©2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and
combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in
this publication are for identification purposes only and may be trademarks of their respective
companies.

18

