

1

Goal Driven Stimulus Solution
Get yourself out of the redundancy trap

Rohit Bansal, Samsung Semiconductor India R&D, Bangalore (rohit.bl@samsung.com)

Abstract - Functional coverage is a key metric for verification closure and constrained random simulations have become

the industry practice for achieving that goal; however it does not ensure with complete certainty meeting the coverage

goals, even after running multiple random seeds or increasing volume of data traffic. This paper proposes a novel

method for writing goal driven tests by use of smart constraint modelling, governed by feedback for reaching the

coverage goals with certainty. This approach has a number of benefits including: faster automated coverage closure,

saving regression resources and associated costs, random stability concerns for derivative projects. This paper discusses

practical examples of problems faced, the proposed solution and demonstrates application on live project which

resulted in significant savings.

I. Introduction

Functional coverage is a key sign off criteria for verification closure. Constrained Random simulation and

coverage collection today relies on large numbers of tests and merging coverage across those tests. Empirical data

pertaining to effort spent in coverage closure suggests significant verification cycle time and resource utilization in

terms of LSF usage, VIP and Simulator license requirement and human effort. The size and complexity of modern

IP and SOCs result in huge run times which can add critical amount to the resource budget if the redundancies that

come with random regressions are left uncared for. Coverage hole analysis and filling the gaps is usually time

consuming and laborious. Bugs found during this activity; usually kept in last stage, further impact the design cycle.

It has become a general practice to rank regression tests in order to be able to reproduce coverage results for

design derivatives with minimal effort. However, randomization results are highly sensitive to change in stimulus

generation code due to which test ranking works only for limited use cases and significant resources are needed

again where designs are scaled. Cumulated over various product versions, this becomes a sizable and often

repetitive effort. More efficient processes are needed to reach coverage goals faster with less engineering effort.

The proposed approach introduces the concept of efficient goal driven test case coding using smart constraint

modelling. The solution presented here shows how it can be made possible to avoid repetitions and generate

simulations with unique configurations and data. By using feedback from earlier randomization calls, the solution

space for constraint solver can be changed to exclude already randomized values. It is possible to model constraints

that span across various variables to target all possible variable combinations. Exploiting the MSIE flow supported

in all major simulators, the feedback from one run can be incorporated into subsequent re-runs. Simple scripts were

implemented for waiting on randomize call of previous run to complete for ensuring parallel runs during the time

consuming simulation phase.

Figure 1. Stimulus Generation Methodology

mailto:rohit.bl@samsung.com

2

The implementation of this method has been done keeping in mind various aspects - reusability, ease of addition

in existing verification environments, not to break multiple run parallelism in regression and cover practical

functional coverage cases like crosses, value ranges, etc. This paper discusses the implementation of this approach

in detail and the numerous benefits over existing test modelling.

II. Related Work

Feedback based coverage closure verification methodologies have started cropping up in recent times.

Inspirations for this thought and effort include papers on coverage closure methodologies proposed by various

authors some of which are mentioned below.

 Improving Constrained Random Testing by Achieving Simulation Verification Goals through

Objective Functions, Rewinding and Dynamic Seed Manipulation

(https://dvcon.org/sites/dvcon.org/files/files/2017/07_1.pdf)

 Coverage Closure – Is it a “Game of Dice” or “Top 10 Tests” or “Automated Closure”? (https://dvcon-

india.org/sites/dvcon-india.org/files/archive/2015/proceedings/111_Coverage_Closure.pdf)

These approaches achieve promising results over conventional practices. However these have shortfalls which

add challenges for their use in practice. The major limiting factors being their re-usability across variety of test

bench coding styles, ease of adoption. The solution discussed here tries to overcome these shortfalls through its

simple idea of using the simulation tool’s constraint solver smartly making it easier for adoption in real life across

various applications.

III. Implementation

The demonstration for constraint modelling is done using a simple test randomizing two sequences with the

first one targeting length and size for a packet; the second one targeting different values for some configuration

variable config_a. For simplicity purpose the test is coded with coverage model built inside the test and coverage

collected directly from sequence variables. This example will help in understanding how to apply this method for

guiding the constraint solver; first targeting individual variable coverage and then cross coverage, ranged bins, etc.

 Figure 2. Source Code of Base sequences used for example

Figure 2. Source Code of Example Test

https://dvcon.org/sites/dvcon.org/files/files/2017/07_1.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/111_Coverage_Closure.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/111_Coverage_Closure.pdf

3

A number of re-usable macros have been defined which enable easy utilisation of the solution being discussed.

Three user defined macros are used in last example. They help in constraint modeling and defining functions for

creating randomized database, updating and clearing the database. The same are discussed below.

Figure 3. uvm_optimization_utils macro

The above macro has two purpose. First it defines a constraint whose goal is to remove already randomized

values from the constraint solver space. This code is to be enabled for subsequent re-runs as the database queue

does not exist yet. Second it defines a write method for updating the database. The database consists of a list of files

per variable with the already generated values information in the form of queue. These files can be used when re-

running test along with define that enables first part of the macro.

Figure 4. ADD_ALREADY_RANDOMIZED macro

Figure 5. CLEAR_PARAMS_QUEUE_COV macro

The database clear can be controlled using feedback from coverage model . Clearing the database is important

so that the modeled constraints do not cause randomization failure when constraint solver space is exhausted for a

particular variable while other variables still have more coverage scope.

The above example is not modeled for cross of the variables but meeting individual coverage. The cross coverage

example is discussed ahead.

Figure 6. Source code for cross coverage example

CLEAR_PARAMS_QUEUE_COV (var_name, exp_cov_bins)

 If the DB queue size for var_name is equal to

expected coverage, the queue is cleared

uvm_optimization_utils (var_name, var_type, var_hier)

1. Define constraint - !var_hier inside q_var_name

2. Define write method which does file write operations to

create database queue and write generated values to

database queue

Code enabled after first run

DB Queue – var_name_db.sv

q_var_name [$];

ADD_ALREADY_RANDOMIZED (var_name, var_val)

 Calls the write method defined by above macro for

var_name and adds var_val to database

DB Queue – var_name_db.sv

q_var_name [$] = {1, 2, …};

4

The uvm_optimization_utils macro is broken into variable registration and constraint definition for the purpose

of targeting unique cross combination of variables. The REGISTER_OPTIMIZE_VAR macro is same as the utils

macro except the constraint modeling part is removed. The constraint is structured in a way as shown in above

example for flexibility of adding as many variables as the user wants to cross. The pre_randomize (not shown in

example) method needs to be changed to input total number of cross bins as queue clear function argument rather

than individual targets. All the other code from previous example can be re-used and is excluded in above test for

simplicity.

Figure 7. Cross combination example macros

It is very common to have coverage bins modelled as ranges rather than individual values. Having a method to

use that information to guide constraint solver is important for an efficient goal driven stimulus solution. This is

attained by introducing a new set of macros for registering such ranges and re-modelling the macros discussed thus

far to use that information. The register_optimization_ranges* macro help in registering planned coverage ranges

for different variables to per variable ranges database. The macros discussed earlier are modified so that if a value

is generated in that range, the whole range can be excluded from the constraint solver space. To achieve this, the

database queue is implemented as a queue of queues. The constraint definition is updated as per the new queue data

type. The write method is updated to check if the value being added to database falls under a registered range. If

true, the range is added to database, else the unique value.

Figure 8. Range registration macros

Figure 9. uvm_optimization_utils macro updated

The example discussed above targets use cases where test is regressed multiple times to achieve coverage goals

and a single run captures a particular configuration. In case the use case is to generate all possible traffic in same

test run with multiple randomize calls rather than regressing the test, the same flow can be slightly modified to

create local queue during variable registration and modify write function to update the local queue after each

randomization instead of file based operation. A practical use case model is to regress different configurations with

separate runs while the variety of data generated in the same run. Implementation for the same can be accomplished

by mixing the methods described above and is left up to the user to explore.

An automated flow needs to be created to take advantage of the previously generated values in regressions

which enables different iterations to run in parallel without waiting for the previous test run to finish; else it will

result in huge regression run time penalty. Most modern regression tools have pre run and post run options. A

REGISTER_OPTIMIZATION_RANGES_BEGIN (var_name, var_type)

 var_type q_range_var_name[$][$] = {

ADD_OPTIMIZATION_RANGE (start_val, end_val)

 {start_val, end_val},

REGISTER_OPTIMIZATION_RANGES_END

 {}};

ADD_OPTIMIZE_CROSS_CONSTRAINT_BEGIN (constraint_name, var_name,

var_hier)

 constraint constraint_name {!(var_hier inside q_var_name

ADD_OPTIMIZE_CROSS_CONSTRAINT_FIELD (var_name, var_hier)

 && var_hier inside q_var_name

ADD_OPTIMIZE_CROSS_CONSTRAINT_END

);}

 REGISTER_OPTIMIZE_VAR (var_name,

var_type)

-> Define write method which does file

write operations to create database queue

and write generated values to database

queue

uvm_optimization_utils (var_name, var_type, var_hier)

1. Define constraint

foreach(q_var_name[i]) (!var_hier inside

q_var_name[i])

2. Define write method for writing the queue to a file

3. Define method to query range database

DB Queue - var_name_db.sv

q_var_name [$][$] = {{1},

{2,5}, …};
If (val inside some

range), return range;

Else return {val};

write (var_type val)

 -> Query_range_db (val,

ref var_type range[$])

 -> Update DB

ADD_ALREADY_RANDO

MIZED

5

blocking script is added to the pre run phase which waits for database creation and size of some variable’s queue

in the database to reach expected value. The basis for using this flow is that configure phase runs in the beginning

of any test case and the more time consuming run phase happens after that. In order to make better utilization of

LSF resources, pre run script is run on local machine and only the run script is submitted to LSF. Another

dependency is introduced such that pre run script of next iteration is executed only after previous iteration pre run

script exits. This prevent too many scripts running on local machine. Although the overall time for regression for

same number of runs will be more, the advantages come from being able to reduce the count significantly as

redundancy is removed along with negligible coverage analysis effort.

Figure 10. Regression flow

Another key aspect to be taken care of for a sound regression solution is being able to reproduce results for

analysis and failure debug. To achieve that, a local copy of already randomized database is kept with each test run.

The test re-run can use that copy instead of the global database to reproduce results.

IV. Results

The performance benefits were first studied after implementing the solution in an example test case and the

proposed solution was then used for improving the time to reach coverage goals for interconnect verification. The

example test case discussed above was used to cover a simple cross of three variables with 1000 possible

combinations. Using the traditional approach, the test was run more than 5000 times which resulted in less than

90% coverage. The discussed approach helped in reaching 100% coverage with 1000 reruns in one fourth time

given same number of LSF and simulator resources excluding the effort that is needed for improving coverage from

90 to 100% with existing methods.

The solution was then used on a live project for reducing time to coverage closure for an interconnect supporting

around 100 masters and 200 slaves. The goal was to test different transaction types, size of data, burst length

combinations for all master slave routes supported. Due to the reusability and simplicity of modelled constraints in

the aforementioned example, it took a few days to implement the method and reach the coverage goal against the

original plan of spending multiple week’s effort on achieving the same, given same number of regression and

human resources.

Figure 11. Returns Observed

0

1

2

3

Man hours in days Machine
Utilization in

hours

Basic Example

Conventional approach Discussed approach

↓3x

0
5

10
15
20

Man hours in
days

Machine
Utilization in

hours

Interconnect DV

Conventional approach Discussed approach

↓5x ↓5x ↓10x

Run first iteration of Test1

 And so on, till regression count

Pre run script waits

for any variable’s

queue size in
database to reach

value as passed by

argument

Time

Pre: script.pl 1 Run second iteration of Test1

Pre: script.pl 2 Run second iteration Test1

Run first iteration of Test2 (separate database for Test2)

P

6

V. Limitations

This method has some limitations which can result into lower than expected results. For example, the regression

run time with limited count could be similar or more than that of bigger count due to synchronization overheads, if

the design size and coverage goal is small. In case of bigger designs with complex constraints and coverage models,

the additional set of constraints can increase constraint solving time and modelling effort resulting in overall

diminishing results.

The central idea is to generate unique combination of values which prevents its use for creating scenarios where

repeating and mixing similar packets is important. This makes it difficult to use for transition cover points. One

way to overcome this limitation could be to define same variable two times with similar set of constraints and

register cross combination of these variables. An additional constraint which limits value of newly added variable

to last value of actual variable can be added. This might be sufficient for some use cases, but the possibility of

discovering corner cases with more interesting transitions is not guaranteed.

It’s possible that the randomization calls occur late in simulation environment and cannot be modeled to happen

earlier due to some reasons. The synchronization process overhead between different iterations will limit the

advantages obtained from this method in such cases. Also there might be redundant randomization calls in test case

which might not necessarily lead to coverage hit. This can produce unexpected results. These limitations can

sometimes result in deployment of the method more challenging than intended.

VI. Conclusion

To summarize, the preliminary results prove the strength and promise that the approach holds over conventional

methods. This paper introduces a possible solution using existing tool and SV language features that can help avoid

redundant use of engineering resources resulting in faster automated coverage closure and significant cost savings.

The simplicity of the basic principal used in the solution makes it disposable for targeting completely or partially

coverage goals in a variety of SV-UVM based TB environments. Results and benefits from initial example and one

real application were discussed and compared against common practices.

VII. FUTURE SCOPE

To extend and improve the current work, it needs to be deployed for more complex use cases and results

analyzed. It would be interesting to see the kind of designs where it proves most useful and innovative ways in

which some of the limitations can be tackled. One key area to look into is to develop automations and a standard

process which can make adoption and evaluation of this method faster for different use cases. Although the

fundamental constraints modelled are re-usable, it requires manual effort in terms of modelling their use for specific

goals. Further research and effort needs to be expended for automating the modelling process as per desired

coverage. The gains observed in terms of time saved reduce sharply if the randomization call happens late in

simulation because of synchronization overhead. In case, moving randomization call earlier is not possible for some

reason, simulation checkpoint save before randomization and rerun from checkpoint approach can be adopted to

overcome this hindrance. Transition coverage support can be added and tested.

ACKNOWLEDGEMENT

I thank my employer SSIR for sponsoring my attendance at DVCON to share this paper. I would also like to

thank my team members who adopted the methodology, shared the results and gave me valuable feedback.

REFERENCES

[1] “IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language”, IEEE standard 1800-2012,

IEEE-SA Standards Board, New York, 2012.

[2] Chris Spear, System Verilog for Verification -A Guide to Learning the Testbench Language Features, New York: Springer, 2012.

[3] Eldon Nelson, Improving Constrained Random Testing by Achieving Simulation Verification Goals through Objective Functions,

Rewinding and Dynamic Seed Manipulation [Online]. Available: https://dvcon.org/sites/dvcon.org/files/files/2017/07_1.pdf

[4] Coverage Closure – Is it a “Game of Dice” or “Top 10 Tests” or “Automated Closure”? [Online]. Available: https://dvcon-

india.org/sites/dvcon-india.org/files/archive/2015/proceedings/111_Coverage_Closure.pdf

[5] Cadence, “Xcelium version 18.03” [Online]. Available: http://www.cadence.com

[6] Synopsys, “VCS version VN-2017.12” [Online]. Available: http://www.synopsys.com

https://dvcon.org/sites/dvcon.org/files/files/2017/07_1.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/111_Coverage_Closure.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/111_Coverage_Closure.pdf
http://www.cadence.com/
http://www.synopsys.com/

