
Generic Testbench/Portable Stimulus/Promotability

Revati Bothe
Jesvin Johnson

© Accellera Systems Initiative 1

Agenda
• Introduction

- Verification Environment - Reusability

• Generic Transactor testbench structure

- SCEMI based Transactors

- SCEMI pipes Communication

- Immutable functions

- Variable functions

- Test case Promotability

• Generic re-usable testbench

- Sondrel Image processing Subsystem verification architecture

- Re-use across different platforms & Testbenches

• API for re-use

• Portable Stimulus

• Summary

© Accellera Systems Initiative 2

Introduction
• With SoC complexity increasing many of the internal subsystems gets reused more often. This also opens
an option to reuse the verification environment. At times some of the verification efforts can also be shared
between various platform other than just Simulator. One may choose to emulate or have the design on an
FPGA.

• Having a unified testbench for all these various platforms will make it easier to maintain the verification
environment. UVM provides excellent capability of reusing the test sequence, providing greater flexibility such
as overriding various aspects of the testbench via the UVM factory and these approaches can scale well across
various levels of the design i.e. from IP to subsystem to system level.

• These verification components may not be reused well across multiple verification platform like and
emulator as these transactor can’t be realized or synthesized to these platforms.

© Accellera Systems Initiative 3

Introduction

• Accellera SCEMI standards addresses the above issue and provides the capability of having synthesizable
Bus Functional Models that can be reused on various platforms and can scale well between IP level
verification to system level verification.

• A SCEMI based transactors comprises of a BFM layer implemented in HDL which is synthesizable on
platforms like FPGA and emulator and API layer that provides necessary interface to the test writer and this
can be implemented in HDL or programming languages like C, C++ etc.

© Accellera Systems Initiative 4

Generic transactor testbench structure(1/4)

Figure 1: Generic transactor testbench structure

© Accellera Systems Initiative 5

Generic transactor testbench structure(2/4)

• Figure 1 depicts a typical generic testbench architecture testbench architecture illustrating the flow
of transactions from testcase (C/C++ / SV) to Scemi pipes and ultimately to a synthesizable transactor
(purple) which fetches transaction from Scemi pipe and drives the test environment .

• These scemi transactor based testbench contains an instance of a testbench control module which
imports a DPI hdl2c() which is invoked within an initial block , similar to having a run_test() for accessing
UVM test form testbench. The hdl2c() call is blocking and will transfers the execution thread control
from HDL testbench side to C and executes the test sequence. C to HDL synchronizations are controlled
via DPI or polling for certain status flags from a testbench register.

© Accellera Systems Initiative 6

Generic transactor testbench structure(3/4)
• At the end of C test hdl2c passed control back to the testbench control (tb_ctrl) which then raises a

shutdown request flag and waits for a shutdown acknowledge from test enviornment which is in granted state

by default, unless its controlled via external threads (e.g. UVM run_phase) to schedule simulation. If no

external threads are active tb_ctrl will immediately stop the simulation. Usually UVM run_phase withhold the

shutdown acknowledge to tb_ctrl so that the UVM check_phase and report phase can perfrom additional

analysis and generate status of the simulation.

• The test writer at each level focuses on implementing actions and multiple actions become a scenario or
the test objective. An action can be a combination of immutable and variable function.

© Accellera Systems Initiative 7

Generic transactor testbench structure(4/4)

• Immutable functions are set of process like for e.g. programming an IP for a certain mode of operation and this
behavior will not change regardless of the platform or whether testing at IP level or system level.

• A Variable function or hook function can morph its behavior based on platform or testbench. For example as a
preamble to programming the IP one may choose to enable the clocks and bring the system out of reset, this
process may vary depending on the testbench as at IP level this can be a signal connected straight to the I/Os of the
IP, although at the subsystem level there might be a clock gate and some external clock controller register needs
configuring to enable the clock to IP . Exposing these hook function will provide the flexibility to adapt the action
for a given platform. Details on example implementation will be discussed below.

© Accellera Systems Initiative 8

Generic re-usable testbench (1/6)
• In this section we will explain a re-usable generic testbench that we have used to verify Subsystem and SOC.
The subsystem here is an Image Processing Subsystem.

© Accellera Systems Initiative 9

Generic re-usable testbench (2/6)
Figure 2: Typical Subsystem Verification Testbench

© Accellera Systems Initiative 10

Generic re-usable testbench (3/6)
• Key:

• Light Blue: IPs
• Red: Clock and Reset Blocks
• Orange: Configuration Interfaces (Synthesizable SCEMI BFMs) Yellow: Testbench elements
• Pink: Register Banks
• Peach: C testcases
• Purple: interconnect

• Figure 2 depicts block diagram of Subsystem verification architecture. The IP in case of this particular Image Processing
Subsystem would be delivering the IP level tests and these tests will be re-used at subsystem and SoC level with some
modifications, like commenting the commands which are related to IP’s internal data generator since we will be using the external
imager in form of UVC/models. We also commented the ‘test models’ related commands because we will not be using the IP
delivered test models at the Subsystem, We had to add some additional commands required to access the testbench registers
used for the synchronization between the software and the external imager sequence (uvm) in case of Subsystem and SoC Level.

• Additional verification code was to configure various subcomponents and backdoor access to IPs eg descriptors. A C
framework was used for the backdoor access in the testbench. Also, C testcases are written in a way that the CPU can run them,
however during early integration testing, not all testcases have the CPU live. C part was written with consideration of generic test
bench approach so that same tests can be used for FPGA/Emulator with little modifications.

© Accellera Systems Initiative 11

Generic re-usable testbench (4/6)

• In order to provide a common verification environment across different SoC, subsystems and different platforms some generic

reusable testbench components have been developed The standard generic components are synthesizable BFMs for AXI4
interfaces, Company Standard Interfaces.

• These BFMs are bus masters and can drive standard slave interfaces that are compliant with AXI4 and Company Standard
Interface. Additional reusable components developed were for clock and reset generation (tb_ctrl),

• In order to re-use tests and test sequences, the Subsystem test sequence are layered where the platform, the testbench and
the subsystem specific code are structured in layers. This allows seamless porting to different platforms like an FPGA or emulator,
ports to a different testbench as well, without expecting any changes to be made to the tests

© Accellera Systems Initiative 12

Generic re-usable testbench (5/6)

© Accellera Systems Initiative 13

• At the SoC Level some additional verification code is required to configure various other subcomponents and a C test framework will
be used for the same. C tests will be written with consideration of generic test bench approach so that same tests can be used for
FPGA/emulator with little modifications. This includes use of SCE-MI pipes.

• Verification environment at SoC level will have additional memory interface, Vendor specific master/slave port and some IP port will be
connected to Memory Data Interconnect. Register interface Interconnect was connected to Configuration Data Interconnect

Generic re-usable testbench (6/6)
The figure 3 shows a typical case of re-use across different platforms and testbench.

Figure 3: API for Re-use

© Accellera Systems Initiative 14

PORTABLE STIMULUS (1/2)

• Our paper addresses the underlying infrastructure which Portable stimulus standard compliant verification synthesis engine will

use

• Portable stimulus defines high-level verification intent. A verification synthesis engine consumes that description and creates
test cases targeting different execution environments, such as simulation, emulation, hardware prototypes, and real silicon.

• Portable Stimulus enhances the existing SV/UVM methodology. It targets systems and the interaction between hardware and
software. At the block level, it’s possible to combine the strengths of both languages—SV/UVM provides transactors and legacy
verification intellectual property (VIP).

© Accellera Systems Initiative 15

PORTABLE STIMULUS (2/2)
• Portable stimulus standard is a set of semantics for a Verification Intent Model and from that model tools will be able to

synthesize testbenches that could target any number of execution engines. The model captures the intended behaviors of the
design in a way that complete testbenches can be generated, including stimulus and checkers.

• The generated testbench could either drive UVM models, or could generate code that executes on the embedded processors
or Python/C languages driving bus masters like embedded processors or a combination of both. Results of the run can be
annotated onto the model for notions of system-level coverage. And the creation of those testbenches also includes notions of
randomization, so nothing is lost in terms of methodology.

• Our future work will involve how to map the verification intent model into our generic tb based verification infrastructure.

© Accellera Systems Initiative 16

https://semiengineering.com/kc/knowledge_center.php?kcid=55
https://semiengineering.com/kc/technology.php?tid=31055

Summary

• We discussed about –

▪ Verification Environment - Reusability

▪ Generic Transactor testbench structure

- SCEMI based Transactors

- SCEMI pipes Communication

- Immutable functions

- Variable functions

- Test case Promotability

▪ Generic re-usable testbench

- Sondrel Image processing Subsystem verification architecture

- Re-use across different platforms & Testbenches

▪ API for re-use

▪ Portable Stimulus

© Accellera Systems Initiative 17

Questions

© Accellera Systems Initiative 18

