
Generic Programming in SystemVerilog

Mark Glasser

NVIDIA Corporation

Santa Clara, CA 95050

mglasser@nvidia.com

Abstract—Making programs generic, or generic programming,
means making programs independent of information about types,
sizes, locations, and similar specific information. This requires
certain programming styles and language features which avoids
coding low-level details. SystemVerilog, with its heritage as a
hardware modeling language, has some features for generic
programming but is not considered a generic programming
language.

We have developed the SystemVerilog Extension (SVX) library
which provides facilities that improve the capability of Sys-
temVerilog to render generic programs. SVX is written entirely
in standard SystemVerilog with no reliance on DPI or any other
external interface.

Aspects of generic programming are discussed, including
removal of assumptions and abstraction.

We give a tour of the library and its facilities and features.
Then we discuss concepts of generic programming in terms
of SVX. Finally, we compare our work with others who have
approached the same topic and describe some future directions
for generic programming in SystemVerilog.

Index Terms—generic programming, data structures, Sys-
temVerilog, Verilog, verification

I. INTRODUCTION

Anyone who has done any programming at all in any

language quickly discovers they are writing programs or parts

of programs that are very similar. When one day you need to

sort integers and another day you need to sort strings you have

the nagging suspicion that there must be a way to write one

piece of code that sorts both kinds of things. The algorithm

for sorting is the same, whether the type of the thing you are

sorting is integer or string. The differences are in type-specific

details that are independent of the actual sort algorithm.

Enter generic programming. Generic programming is a style

of writing code that enables programs to be used for multiple

purposes, such as writing a single program (or function

or class) for sorting lists of strings, integers, or imaginary

numbers stored as pairs of floating point values. Generic

programming involves writing algorithms that are independent

of data types, size of objects or structures, memory allocation

models, and other low-level details. Generic programs are

highly reusable.

To make a program generic you must imbue it with degrees

of freedom, means of configuring or changing aspects of

the program without changing the program itself. The most

obvious way is to parameterize things. Changing a parameter

can change some aspect of a program without touching the

program’s code. Another way is to employ abstraction. Im-

plementation details can be hidden behind abstract interfaces.

Alternate implementations of the interface can be supplied

without disturbing code that uses the interface. The most basic

form of generic programming is using variables or named

constants instead of literal constants. Another common form

of generic programming is using functions as a means of

abstraction.

While SystemVerilog supports some means for building

generic programs it is not generally thought of as a generic

programming language. SystemVerilog provides things like

functions and parameterized classes, but lacks other things like

parameterized functions, or partial template specialization.

A. Assumptions

All of those low-level details represent assumptions. Making

a program generic means removing assumptions within the

program. An assumption is essentially anything that’s hard-

coded, usually a value, size, or type. By hardcoding something

we are assuming that it will never change. An assumption can

be quite blatant such as bounds of a for-loop or it can be quite

subtle such as the return type of a function. As an example of

the latter kind of assumption, consider the following function

(in C++):
int f(int a, int b) { return a * b; }

Function f() contains a subtle assumption that the product

of a and b will always fit into an integer without overflowing.

Perhaps this is an acceptable assumption for the given appli-

cation, perhaps not. One way to eliminate the assumption is

to have the return type be a long instead of just an int.

Another way is to check number of bits in the arguments and

throw an exception if the product would not fit into the return

type. Each of these means of eliminating an assumption has

consequences in terms of the program structure, and each has

a cost. The architectural consequences and cost of eliminating

the assumption must be weighed against the risk of leaving it

in.

Removing an assumption can be as simple as replacing

a literal constant with a named constant or a variable. You

need to find a place to initialize the value of the variable

and you must take care to ensure that the variable is always

used in places where the constant was used before. Often,

however, removing an assumption requires more thought about

the nature of the assumption and the costs of eliminating it.

It’s usually not possible to remove all assumptions in a pro-

gram. However, assumptions that remain should be intended

and documented. For example, in building a memory model

it is useful to assume bytes are eight bits. Removing that

assumption and allowing bytes to be any number of bits is

expensive in terms of code and testing and does not necessarily

provide any real value to the user. Perhaps someone may want

to create a memory model with 12-bit bytes or 7-bit bytes

but those situations are very rare, if they exist at all. So it is

reasonable to make the assumption that bytes are always 8 bits.

When we document an assumption it becomes a constraint.

When a user chooses our memory model for an application

he can decide whether or not he can live with the constraint

that bytes are 8 bits. He can only make that decision of the

constraint is documented.

B. Reuse

Reuse is about adapting a piece of code to a new situation.

Every degree of freedom represents an assumption that has

been replaced with some means of modifying an aspect of

the code from outside without modifying the code itself. The

degrees of freedom represent ways in which the code can be

reused.

As a counter-example of code that is not very reusable,

consider a class that implements a stack with a fixed size. For

a particular application it’s known that the stack will never

have more than ten entries. So, a fixed-size stack is acceptable

in this case. It meets requirements and the program that uses

this stack works correctly in all the tests and in production.

In a completely separate application another stack structure is

required. This time it’s likely that as many as one hundred

items will be on the stack at once. Can our stack be reused?

No, not really. The stack class does not meet the require-

ments of the current application. It will have to be modified

to make it meet the new requirements. It does not have a

degree of freedom that enables it to be reused in these two

applications. Any time you have to modify code you cannot

claim you are reusing it. Copy and modify (sometimes referred

to informally as cut-and-paste) is not reuse.

The correct thing to do is to build a stack class that has stack

size as a degree of freedom. Then copying and modifying

would not be necessary. Instead any program that needed a

stack could refer to an entry in a library.

The more assumptions you can eliminate the more generic is

your program. Eliminating assumptions increases the reusabil-

ity of a piece of code. So, the more generic a program is the

more it can be reused.

C. Abstraction

Often, in the world of design and verification we talk about

abstraction and abstraction levels. An abstraction level is a

particular abstraction of data and time used to model systems.

A common abstraction level is labeled RTL. In RTL data is bit

accurate and time is discrete. Terms like RTL and transaction-

level have become familiar within the design and verification

community as representations of particular abstractions.

When we talk about abstraction in a discussion about

generic programming we mean something a bit different. We

are talking about hiding implementation details, usually behind

and interface. In some cases this will abstract the kind of data

that we deal with, but that is not necessarily the intent. The

details are still there, they are just not immediately visible.

SVX, which we will discuss in detail coming up, has a

vector container. The vector has operations such as read, write,

clear, etc. There is nothing magic in the implementation of

vector#(T,P), it’s based on the SystemVerilog unbound

queue. All of the operations available on our vector are also

available on the queue built in to the language. So why not

just use the built-in queue and not even bother with the vector?

The reason is that the vector container provides a useful

abstraction. All of the details of the operations are hidden

behind a set of class methods. Details about full or empty

containers, first and last objects, copy, clone, compare, etc.

are out of view and therefore no longer important. Each

operation has a name that reflects what it does. You can think

in terms of those operations an not have to think terms of low

level constructs. To experienced SystemVerilog programmer it

may be obvious that q[0:$-1]; represents a pop_back()

operation, but to most it would not. They would have to do

some mental gymnastics to realize this little fragment of code

represents something more abstract.

Abstraction also enables us to be more consistent. We can

provide a consistent interface for vectors, deques, queues, and

even trees and graphs. Again, the details are hidden out of

view so you only need to deal with the abstraction of the

operations and not their implementation.

II. THE SVX LIBRARY

The SVX Library is a library written in standard SystemVer-

ilog that supports generic programming. It contains two major

parts, one for representing data structures, and the other for

representing behaviors. The following is a tour of the library.

It does not represent complete documentation for the library,

only a discussion of the essential features with an emphasis

on those facilities that enable generic programming.

III. STRUCTURE

SVX provides some data structures in the spirit of C++ STL.

These are vector, queue, stack, dequeue, map, and tree. The

data structures are containers that hold arbitrary typed objects.

Figure 1 shows all of the structural elements in the library1.

A. Traits Classes

In order to understand SVX containers you first need to

understand how traits classes are used in SVX. There are some

aspects or traits of a data type that the compiler cannot figure

out for itself. It may not be able to ascertain the empty object

or how to sort (order) objects of that type, for example. We

have to explicitly supply this information for the compiler. We

do this using a traits class.

A traits class, as the name suggests, is a class that supplies

information about the characteristics or traits of a type, in-

formation that the compiler cannot determine for itself. SVX

1Because of the differences between C++ and SystemVerilog there was no
attempt to replicate STL or rewrite it in SystemVerilog. It simply was a source
of inspiration for a SystemVerilog facility.

map iterator

list iterator

permute iterator

tree iterator

linked structures tree

containers
map

vector

queue

stack

deque

object
pair

triple

iterators

traits

sorter

Fig. 1: Structural Elements of the SVX Library

typedef empty_t prop typename of the empty object

empty_t prop value of the empty object

compare func compare two object for less-than,
greater-than, or equal

equal func compare two objects for equality

sort func sort a collection of objects

TABLE I
TABLE OF TRAITS CLASS MEMBERS AND METHODS

uses traits classes to supply information such as the type of

an empty object, the value of an empty object, and compare,

equal, and sort functions2.

SystemVerilog does not support semantics like partial tem-

plate specialization in C++. So it’s not possible to create

traits classes that are automatically recognized by the compiler

based on their type. Instead, we must explicitly supply a traits

class to a data structure.

Since traits classes are type-specific they do not have a base

class. Nonetheless traits classes have a specific form which

must be adhered to in order to work properly in SVX. The

required set of members and methods for a traits class are

shown in table I.

Here is a prototypical traits class for some type T. Replace

T with the name of a type to create a traits class for a specific

type.

class T_traits extends void_t;

typedef T empty_t;

const static empty_t empty = <empty value>;

static function bit equal(input T a,

input T b);

endfunction

static function int compare(input T a,

input T b);

return !equal(a,b);

endfunction

static function sort(ref void_t vec[$]);

endfunction

2Traits classes in SVX contain behaviors so they technically could be called
policy classes. However, they also contain properties so the term traits classes
is correct and perhaps equally incorrect. The term traits classes seems most
appropriate since the purpose is to describe a type and not specifically for
providing interchangeable algorithms.

endclass

Implementations for equal() and compare() are re-

quired. An implementation for sort() is optional. If you

do not have a need to sort objects of the type associated

with the traits class then an implementation of sort() is

not necessary. Sort() can be implemented in one of several

ways. For scalar types the built-in sort command can be

used. Or you can use the built-in generic sorting class. The

built-in sorting class is generic because it does not make

any assumptions about the type of object it is sorting. It is

parameterized with the type of object to be sorted and it

relies on the compare() function in the traits class to determine

relative ordering of objects.

We’ll look at how traits classes are used in the next section,

III-B, on containers.

B. Containers

The organization of the container classes are shown in 2.

The primary base class is container. Most of the operations

on containers require some knowledge of the type of the object

in the container so there are not a lot of virtual functions

in the base class. In fact, there are only two — size()

and clear(). Size() returns the number of items in the

container, and clear() empties the container — that is, it

removes all of the objects in the container.

The class typed_container is a base class that knows

about the type of the object held in the container. It takes two

paramaters, T, which is the object type, and P, which is the

traits class for type T. It contains no additional methods and

only one property, m_empty which holds the empty object

for type T.

typed_container

container

vector map

queue deque stack

Fig. 2: Relationships of Container Classes

Vector is an unsized list of objects of type T. The objects

can be referenced by index. Because the underlying structure

is a SystemVerilog queue, the head and tail (front and back) of

the vector can be accessed, though the textttvector API does

not provide this capability. Derived objects, deque, stack,

and queue do provide access to the head and tail based on

the semantics of the particular data structure.

The map container maps a key object to a data object. Keys

must be unique. Objects can be inserted, deleted, and looked

up by key.

Containers are parameterized by the type of thing they

contain and the relevant traits class. The following declaration

of a vector takes two parameters.

vector#(string, string_traits) v;

The first parameter specifies that the vector is a vector of

strings. The second parameter is a traits class for strings.

Providing the traits class as a parameter gives the vector class

all the information it needs to perform all of the interface

operations in a type-safe and type-correct manner.

One of the operations that is available for vectors is

read(). Read() takes an index as an argument. If the

index is out of bounds of the vector then read() is expected

to return an empty element. For a string the empty element

is an empty string, which syntactically is a pair of double

quotes(””). The traits class tells the vector class for a string the

empty object is ””. For a vector of integers, for example, we

would use an int_traits class as the second parameter.

When we call read() with an out-of-bounds index then a

zero is returned. For integers, the empty object is 0.

Traits classes make the container classes truly generic.

Using traits classes we can configure containers to operate

on any type without restriction. Any type-specific could that

would need to be in the container classes can be instead in

the traits classes.

C. Iterators

Iterators are class objects that attach to containers and

provide a means to easily traverse the containers and access

objects sequentially. Iterators gives us a way to access con-

tainers in an abstract and generic way.

SVX provides several kinds of iterators:

• List iterator — iterate over vectors, queues, stacks, and

dequeues.

• Map iterator — iterate over maps.

• Permute iterator — iterate over permutations of a list.

• Tree iterator — iterate over items in a tree.

Each kind of iterator has four types, each of which imple-

ments a different interface — forward, backward, bidirectional,

and random — for a total of sixteen different iterators.

The bidirectional iterators implement both the forward and

backward interfaces.

The forward interface provides a means to sequentially

traverse objects from first to last. The particular object that

is first and the order of the objects is defined by the container.

interface class fwd_iterator

extends iterator_base;

pure virtual function bit first();

pure virtual function bit next();

pure virtual function bit is_last();

pure virtual function bit at_end();

endclass

The backward interface is similar to the forward iterface ex-

cept that it provides a means for traversing objects sequentially

from last to first.
interface class bkwd_iterator

extends iterator_base;

pure virtual function bit last();

pure virtual function bit prev();

pure virtual function bit is_first();

pure virtual function bit at_beginning();

endclass

The random interface provides a means to randomly select

an object within the container. It also has functions for man-

aging the random number generator seed in order to maintain

random stability in applications where that is required.
interface class random_iterator

extends iterator_base;

pure virtual function bit random();

pure virtual function void set_seed(int seed);

pure virtual function void set_default_seed();

endclass

The iterator_base base class provides a skip()

function for all interfaces. Whereas the next() and prev()

functions move the state of the iterator forward or backward

one item, skip() will move the iterator state forward or

backward one or more items. A positive argument to skip()

will move the state forward, a negative argument will move the

state backward. The implementation of skip() is dependent

on the nature of the interface. For example, for iterators

that implement fwd_iterator, skip() will only allow

the state to be moved forward and not backward; similarly,

iterators that implement bkwd_iterator the state can only

be moved backward.
interface class iterator_base;

pure virtual function

bit skip(signed_index_t distance);

endclass

In no case, no matter which iterator function is used, can the

state be moved beyond the beginning or end of the container.

Iterators, like their counterpart containers, are parameterized

using traits classes.

IV. BEHAVIOR

SystemVerilog provides a syntactic way to define concur-

rent behaviors via the fork/join construct (and its cousins

fork/join none and fork/join any). This makes it easy to

identify concurrent behaviors in code, but difficult to manage

them. Using only the SystemVerilog constructs concurrent

processes are static, they can only be executed when the locus

of control passes through the process definition(s).

SVX has loosened the bonds of processes making them

objects that can be stored, passed through function arguments,

and started and stopped at any time.

The primary elements of a behavioral part of the SVX

library are behaviors and processes. A behavior is an ab-

straction of a task and function. Behaviors can be executed

in a blocking or nonblocking fashion. In order to execute a

behavior as nonblocking it must be attached to a process.

A process facilitates the concurrent execution of a behavior.

Processes are mainly used for executing task behaviors, since

process

process behavior

master process

process group

generic context behavior

function behavior

task behavior

reduce behavior

Fig. 3: Behavioral Elements of the SVX Library

task behaviors may consume time. However processes do not

distinguish between task and function behaviors and can be

used to execute either. The SVX classes for behaviors and

processes and their relationships are shown in figure 4.

generic_behavior

behavior_if

generic_context_behavior

task_behavior fcn_behavior

process_base

process_if

process_behavior process_group

Fig. 4: Relationship between Behavior Classes

A. Functions and Tasks

Process_if is an interface class with virtual functions

for executing a behavior. Nb_exec executes a behavior in a

nonblocking manner, that is without consuming a delta cycle;

exec executes behavior in a blocking manner. A blocking

behavior may or may not consume time.

interface class behavior_if;

pure virtual task exec();

pure virtual function void nb_exec();

endclass

The class generic_context_behavior introduces

the concept of a context. A context is a data object that supplies

data to a behavior. Or, stated another way, a behavior operates

upon a context. A behavior may alter the state of a context

object. The parameter to generic_context_behavior

defines the type of the context object for a family of behaviors

which are derived from generic_context_behavior.

This class provides some methods for executing behaviors with

a context and managing a context object.

virtual class generic_context_behavior#(type T=int)

extends generic_behavior;

protected T c;

virtual task exec();

virtual function void nb_exec();

virtual function void bind_context(T cntxt);

virtual task apply(T cntxt);

virtual function void nb_apply(T cntxt);

virtual function T get_context();

endclass

Exec and nb_exec are implementations of the vir-

tual functions defined in the parent class behavior_if.

Bind_context() stores a context object so it can be

accessed be exec() and nb_exec. Apply() is equivalent

to bind() followed by exec() — it first binds the context

to the behavior and then executes the behavior. Nb_apply()

works like apply() except that it executes the behavior in

a nonblocking manner.

The task_behavior and fcn_behavior classes con-

tain the behavior to be executed. Task_behavior has a

virtual method tsk() and fcn_behavior has a virtual

method fcn which must be implemented with a task or

function behavior, respectively. We’ll call these the behavior

methods. To create a behavior derive a class from the appro-

priate base class for a task or function behavior and implement

the behavior method. For example:
class my_task_behavior

extends task_behavior#(context_type);

task tsk()

// task behavior goes here

endtask

endclass

Generic_context_behavior contains a protected

variable c which is the context. To access the context you

can simply refer to c. Putting all the parts together, we can

demonstrate a (trivial) behavior that simply executes a delay

and the delay comes from the context.
class delay extends task_behavior#(int);

task tsk();

#c

endtask

endclass

To execute the behavior we must instantiate it and execute

it via one of the execution methods. In the following example

we will use apply() to bind the context and execute the

task.
delay d = new();

d.apply(5);

d.apply(20);

The two apply() calls in our example execute in blocking

mode. Time will advance 5 time units after the first call and

20 more after the second.

We can alter our previous example so that the tasks execute

in nonblocking mode.
delay d = new();

d.nb_apply(5);

d.nb_apply(20);

In nonblocking mode time does not advance after each call.

Instead the tasks are launched independently and will finish

independently. This is equivalent to executing processes using

fork/join_none.

B. Processes

The process classes provide fine-grained process control for

blocking behaviors similar to SystemVerilog.

interface class process_if;

pure virtual function void suspend();

pure virtual function void resume();

pure virtual function void kill();

pure virtual function bit is_done();

pure virtual task await();

endclass

Processes are bound to behaviors and provide the fine-

grained control over the execution of the bound behavior.

We will look at some applications for behaviors in section

VI-D.

V. OTHER UTILITIES

The permutation iterator and the lexer are two utilities in

the SVX library that aid in writing generic programs.

A. Permutations

The permute iterators operate on permutations of a vector.

They provide a means to walk through some or all of the

permutations of a list and randomly select permutations.

Permutations have interesting applications in verification. Con-

sider a device that has some set of operations which must be

verified. To thoroughly verify the operations you must show

not only that each one works correctly, but also that each works

correctly no matter which operation precedes or follows it. The

best way to do this is to run the operations in some order and

all of the permutations of the order. If the device has three

operations, A, B, and C then we need to run all the orderings

of three operations.
ABC, ACB, BAC, BCA, CAB, CBA

The number of permutations of a set is n! (n-factorial) which

is defined as n× (n − 1)× (n − 2)× ... × 1. A list of three

items has n! = 6 permutations.

For a large list of operations it may not be feasible to

run all of the permutations. A list of 10 items, for example,

has 10! = 3, 628, 800 permutations. Instead of running all of

permutations you could randomly select some percentage of

the total permutations.

The permutation iterator works much like the other iterators.

In fact, they implement the same iterator interface classes for

forward, backward, bidirectional, and random iterators.

The base class, permute_iterator_base provides

some additional functionality for dealing with permutations.

Like the other iterators the permutation iterators also bind to

a vector. Behind the sceneds they create a permutation

vector which contains references to items in the original

vector however, in different orders. Because references are

used objects are not copied.
class permute_iterator_base#(type T=int,

type P=void_traits)

extends typed_iterator#(T,P);

virtual function void bind_vector(vec_t v);

virtual function T get_nth(index_t n);

virtual function longint get_permutation_index();

virtual function vector#(int, int_traits)

get_permutation_vector();

virtual function bit skip(signed_index_t distance);

endclass

Bind_vector() binds a vector to a permutation iterator.

It also initializes the internal permutation vector and other

state information. The initial ordering of the bound vector

is the 0th permutation. The bound vector is never modified,

only the internal permutation vector is modified to reflect

a new permutation. If a vector is already bound you can

use first() to re-initialize the internal state to the 0th

permutation. Next() will advance the internal state to the

next permutation. Is_last() and at_end() can be used

to determine if the iterator state has reached the end of the

permutations.

The base class functions set() and get()

have no meaning for the permute iterators. Instead,

get_permutation_index() returns the index of

the current permutation, and get_nth() returns the nth

item of the current permutation.

B. Lexer

Surprisingly, SystemVerilog coding often involves a fair

amount of text processing. Unfortunately, the SystemVerilog

language does not provide much in the way of text processing

facilities. In their respective works, [1] and [2] have each

addressed text processing. We did not try to replicate their

work. Instead, we focused on an aspect of text processing that

is often overlooked, namely parsing. SVX provides a lexical

analyzer that can be used to extract tokens from a stream of

characters. The interface for the lexer is shown here:
class lexer_core;

function void start(string _s);

function string get_lexeme();

function token_t get_token();

function token_descriptor get_token_descriptor();

endclass

Start() binds the lexer to a string of characters of

arbitrary length. To parse an input stream, repeatedly call

get_token() until an EOL (end-of-line) token is reached.

EOL does not necessary mean the end of a line per se,

it means the end of the input string. The input string

may contain whitespace characters such as tab and newline.

get_lexeme() returns the string associated with a token.

This is useful to get the name of an identifier, for example.

get_token_descriptor() can be called after retrieving

a numeric token. It returns additional information about the

value and radix of a number.

A typical parsing loop looks like this:
lexer_core lex = new();

lex.start(s);

do begin

token = lex.get_token();

end while(token != TOKEN_EOL);

Of course, after the call to get_token() code can be

inserted to process the tokens. Table II has a list of tokens

recognized by the lexical analyzer.

The lexical analyzer is useful for parsing command line

options or input files. It also aids the cause of generic pro-

gramming by providing a means where information of various

sorts can be recognized programmatically (i.e. parsed) instead

of hardcoded.

TOKEN AMPERSAND TOKEN GREATER EQUAL TOKEN PLUS

TOKEN AT TOKEN GREATER THAN TOKEN POUND

TOKEN BACKTICK TOKEN ID TOKEN QUESTION

TOKEN BANG TOKEN INT TOKEN RIGHT PAREN

TOKEN CARAT TOKEN LEFT PAREN TOKEN SEMI

TOKEN COLON TOKEN LESS EQUAL TOKEN SLASH

TOKEN DOLLAR TOKEN LESS THAN TOKEN STAR

TOKEN DOT TOKEN LOGIC TOKEN STRING

TOKEN EOL TOKEN MINUS TOKEN TILDE

TOKEN EQUAL TOKEN OFF TOKEN TIME

TOKEN ERROR TOKEN ON

TOKEN FLOAT TOKEN PERCENT

TABLE II
TABLE OF TOKENS

VI. USING SVX

The purpose of writing generic code is to streamline code

and make the underlying logic readily accessible and not

hidden amidst a jungle of low-level details. Here are some

examples that rely on the facilities available in SVX.

A. Traversal

Let’s first start with an idiom for traversing a vector:

vector#(int, int_traits) v;

int t;

list_fwd_iterator#(int, int_traits) iter = new(v);

iter.first();

while(!iter.at_end()) begin

t = iter.get();

// do something with the element

iter.next();

end

One thing to notice is that there are no constants in the code!

The logic is easily visible without relying on numbers of any

sort. The begin and end points of the vector are abstracted

behind first() and at_end(). The iterator has the same

parameters as the vector it will traverse. Supplying the vector,

v, as an argument to the constructor binds the vector to the

iterator.

Now let’s look at code for traversing all of the elements in

a map. Our example map maps strings to objects.

map#(string, object, object_traits) m;

object t;

map_fwd_iterator#(string, object,

object_traits) iter = new(m);

iter.first();

while(!iter.at_end()) begin

t = iter.get();

// do something with the element

iter.next();

end

The code for traversing a map is the same as for travers-

ing a vector. We can make the code look identical be-

cause we have abstracted out the details. The thing that

remains is the traversal logic. Of course, the implementa-

tions of map_fwd_iterator#(K,T,P)::first() and

list_fwd_iterator#(T,P)::first() are quite dif-

ferent. However, at the user level, the level you are concerned

with as a user of the SVX library, the first() functions do

essentially the same thing. Their semantics are similar — to

reset the iterator to the first element.

I’m sure by now the reader can guess what the code will

look like to traverse a tree. Yes, you are right! It looks the

same as the code for traversing a list and a map.

tree m;

tree t;

tree_fwd_iterator iter = new();

iter.bind(m, PREORDER);

iter.first();

while(!iter.at_end()) begin

t = iter.get();

// do something with the element

iter.next();

end

The main difference is that when you bind the tree to the

iterator you must specify the order in which the tree will be

traversed.

B. Memory Management

Language defined structures such queues and associative

arrays in SystemVerilog have scopes that are syntactically

defined. This means that the scope of a queue or an associative

array is only within the scope where it is declared. Further,

these structures are allocated by the compiler as the flow of

control enters the appropriate scope and not via the new()

method.

By contrast, the structures in SVX, vector, queue, stack, etc.

are class objects and thus come into existence when new() is

called. These objects can be passed as class handles through

argument lists.

A queue defined using SystemVerilog syntax looks like this:

int q[$];

Queues declared in this manner can be assigned to each

other. However doing so entails copying the entire queue.

This is true for arrays and associative arrays as well. SVX

queues (of the same type) can also be assigned to each other.

Since they are class objects only the handles are assigned and

the entire queue is not copied. The map and vector structures

support copy() and clone() operations for those occasions

where the entire structure must be replicated. SVX structures

can efficiently be stored or passed through argument lists

without unnecessary copying.

C. Trees

Trees in SVX are not containers in the same sense as

vectors, queues, stacks, deques, and maps. Instead tree is

a base class from which you can create your own hierarchical

object. Creating a hierarchy of any sort is as simple as

extending the tree class.

We’ll use a hierarchical memory map as a way to demon-

strate how to use trees. To make a hierarchical memory map

you could define an object that represents a portion of an

address space. You can provide tree semantics simply by

extending your address space object.

class addr_map extends tree;

addr_t base_addr;

addr_t limit_addr;

endclass

Each tree node has a name, a parent and zero or more

children. You can create your hierarchy by creating a root

node and adding children as desired.
addr_map root, slave, mem, sys;

addr_map = root;

root = new("root", NULL);

sys = new("sys_bus", root);

root.insert(sys);

mem = new("mem_bus", root);

root.insert(mem);

slave = new("first_slave", sys);

sys.insert(slave);

slave = new("second_slave", sys);

sys.insert(slave);

// etc...

Nodes in a tree can be located by name. The find()

function takes apart the dot-separated name using the lexical

analyzer. A recursive algorithm locates each child and sub-

child until either a complete match is found or a child is not

located.

You can use the tree traversal functions to create your own

search.
tree m;

tree t;

tree_fwd_iterator iter = new();

iter.bind(m, INORDER);

iter.first();

while(!iter.at_end()) begin

t = iter.get();

if(match_tree_node(t)

break;

iter.next();

end

Match_tree_node() is a user-written function that

matches a tree node against user-defined criteria. Instead of

a break upon locating a matching node, you could instead

store the node in a list and create a set of all matching nodes.

D. Using Behaviors

Now that we have behaviors that are contained in objects,

we can store them, start and stop them at any time, apply

them to many contexts, and apply many behaviors to a single

context.

For example we can apply a single behavior to multiple

contexts stored in a list:
some_task_behavior b = new();

iter.first();

do begin

t = iter.get();

b.apply(t);

end while(!iter.at_end());

In a verification context this could perhaps be used to

randomize a set of objects in a list. Or it could be used in

a checker to validate correctness of a set of objects.

Or, we can store behaviors in a list and apply each one to

a single context.
iter.first()

do begin

b = iter.get();

b.apply(t);

end while(!iter.at_end());

This is similar to a callback model where behaviors are

”called back” thus avoiding coding them inline. This provides

a degree of freedom around the specific behavior that is

executed at a point in the program.

A clock-generator for multiple clocks is an application

for concurrent behaviors. Consider a set of clock-generator

behaviors stored in a list. Each one is connected to a virtual

interface which in turn is connected to an RTL clock pin. A

clock descriptor defines the frequency and other aspects of

each clock’s behavior.

class clk_behavior#(int unsigned N=1)

extends task_behavior#(clk_descriptor#(N));

task tsk();

wait(c.start_event.triggered);

forever begin

c.ckif.clk[c.clk_index] <= 0;

#c.time_lo;

c.ckif.clk[c.clk_index] <= 1;

#c.time_hi;

end

endtask

endclass

Executing the clocks involves creating an instance of the

clock behavior and initiating a process for each clock descrip-

tion.

virtual task exec();

process_behavior#(clk_descriptor#(N)) proc;

iter_t iter = new(clk_vector);

clk_procs = new();

iter.first();

while(!iter.at_end()) begin

beh = new();

proc = new(beh);

proc.bind_context(iter.get());

clk_procs.add_process(proc);

iter.next();

end

clk_procs.exec();

endtask

Now, we can use the fine-grained process control to start

and stop the entire group. To stop all of the clocks we call

suspend(); to start them running again we call resume().

Kill() stops all the clock processes. Individual clock pro-

cesses can similarly be suspended and resumed. This gives our

testbench a high degree of control over the device clocks.

E. Structure Composition

The availability of predefined structures makes it easy to

combine them in arbitrarily complex ways. You can create

lists of trees or trees of lists or maps of lists of trees, the

possibilities are endless. Let’s look at some examples.

vector#(tree, tree_traits) v_of_t;

map#(string, queue#(object, object_traits),

class_traits) m_of_q;

The first item above, v_of_t, is a vector of trees. Each

entry in the vector is a root node to a tree of arbitrary size.

We just have to provide a tree_traits traits class so that

the tree objects can be managed properly within the vector.

The second object, m_of_q is a map of queues. It maps

strings to queues of objects. To make this work we need two

traits classes, one for objects and one for the queue of objects.

For the latter we used class_traits which comes in the

SVX library. This traits class is used as a general purpose traits

class for any kind of class type. It assumes we don’t need

to sort these classes, and comparison is only for equality of

handles. Of course, if you require more sophisticated behavior

you can replace class_traits with your own traits class.

To make a tree of vectors, for example, you would have to

create a node type extended from tree that contains a vector.
class vector_node extends tree

vector#(string, string_traits) v;

endclass

You can use all of the tree traversal and search functions to

access modes in the tree.

VII. COMPARISON WITH OTHER WORK

Other authors have addressed the issue of generic program-

ming in SystemVerilog and building extension libraries. We’ll

compare SVX with two other SystemVerilog libraries, Svlib

[1], written by Jonathan Bromley and André Winkelman, and

Cluelib [2] written by Keisuke Shimizu.

A. Svlib

Svlib is a utility library as opposed to a library for generic

programming. The authors did not specifically address the

issue of generic programming. Svlib contains facilities for

dealing with files, regular expressions, and string manipula-

tions. It also has a DOM (document object model), a data

structure that can be populated from an external YAML file.

The DOM is intended as a way to cleanly represent config-

uration information to be used throughout the SystemVerilog

program.

The focus of svlib is on smoothing over platform and

language issues for a variety of utilities. Some of things in

svlib address the issue of abstraction. For example, the macro

‘foreach_enum abstracts away the details of writing a loop

over the members of an enumerated type. The Simulator

provides a means to programmatically access information

about the underlying simulator environment by abstracting

away the details of the specific simulator.

B. Cluelib

Cluelib takes a different approach to generic programming

than SVX. Instead of using traits classes the library requires

users to pass information about data types through function

arguments.

Users of Cluelib are forced to make a number of assump-

tions, something that is antithetical to the concepts of generic

programming. The library offers both a packed and unpacked

array object, requiring the user to choose one or the other.

Also, the packed array, unpacked array, and queue classes

each require either a SIZE or WIDTH parameter which is

used to bound the structure. In the case of the queue the SIZE

parameter is optional, used only when converting to a packed

or unpacked array. In practice, if you want to take advantage

of the conversions to packed or unpacked arrays you will have

to supply a fixed SIZE.

In SystemVerilog multiple instances of parameterized ob-

jects with different values for parameters are not assignment

compatible. Consider the following two queue declarations

using the Cluelib library where C is a class type:
queue#(C) a;

queue#(C, 10) b;

Even though both queue contain objects of type C they are

different types and cannot be used interchangeably through

assignment or passing as function arguments.

The deque class offers a bit more generic behavior. Not

requiring a size parameter, it’s not bounded. Since all deques

take only one parameters, the type of the object contained in

the deque, all deques that contain the same type are assignment

compatible. The deque does not offer random access like the

packed and unpacked arrays.

Cluelib takes a different approach to dealing with empty

objects. Let’s compare deque#(T)::get_first() in the

Cluelib library and vector#(T,P)::read() in SVX.

First the Cluelib function:
virtual function bit get_first(ref T e);

if (is_empty()) begin

return 0;

end else begin

e = q.pop_front();

return 1;

end

endfunction: get_first

Note that the value we are extracting from the data structure

is passed as a ref argument. The return value of the function is

used to report success or failure of the operation. In the case

where the data structure is empty e will have whatever value

it had when the function was called. You have to check the

return value of the function to see if you retrieved something

interesting. The call must always be followed by a check of

the return value. For example:
deque#(string) q;

string t;

if(!q.get_first(t))

t = "";

Now the SVX function:
function T read(index_t idx);

if(idx >= size())

return m_empty;

return m_vector[idx];

endfunction

Read() does not return a success or fail flag. Instead it

returns m_empty if there is nothing at the index passed in

as an argument. m_empty is obtained from the traits class

supplied for vector#(T,P)3. Depending on the application

it may be necessary to test the return value for empty value.

For some applications an empty value may be just fine and

this check is not required.
vector#(string, string_traits) v;

string t;

t = v.read(3);

3M_empty should be P::empty. However the compiler that the author
was using to build and test the code balked at this construct. The author found
it necessary to assign P::empty to a local class variable

if(t == "")

...

Much of Cluelib is devoted to string processing — accessing

and modifying strings or parts of strings. This is something

that is sorely needed for SystemVerilog programmers and is

not addressed in SVX except by the lexical analyzer.

VIII. FUTURE WORK

The next planned addition to SVX is a structure for rep-

resenting directed acyclic graphs (DAGs). This is a natural

extension to the data structures currently available in SVX.

The combination of behaviors and graphs can be used in

verification applications for driving complex stimulus and

tracking state transitions in a DUT. Petri net semantics can

be applied to graphs. A shared arbiter object would provide

some more control over concurrency, providing a way to create

very complex scenarios that are self-managed via the arbiter.

Having an extension library available for SystemVerilog

would greatly improve the productivity of programmers and

the overall quality of programs. The author would like to

see an extension library for SystemVerilog become integral

to SystemVerilog tools in the same manner as STL has for

C++.

SVX and the other two libraries mentioned in this paper,

[1] and [2], have some overlap and also each has some unique

features. It would be worthwhile to consider combining all

three, taking the best of each, to create a powerful, general

purpose extension library for SystemVerilog that provides

important structural and behavioral abstractions.

IX. CONCLUSION

Generic programming is a powerful set of techniques for

building transparent, robust, and reusable code. While Sys-

temVerilog has traditionally not been thought of as a language

for generic programming, generic programs can be written in

SystemVerilog – albeit with some help.

The SVX library, a library coded entirely in standard

SystemVerilog, provides many facilities for writing generic

programs. It introduces the notion of traits classes in Sys-

temVerilog and provides a comprehensive set of data structures

and behaviors that can be used to build high quality generic

programs. In addition to simply providing some nice utilities,

the library enables users to write more abstracted, and thus

more reusable, more transparent, and more robust programs.

ACKNOWLEDGMENT

The author would like to thank his employer, NVIDIA, and

Anshu Nadkarni for their support of the development of SVX

and the production of this paper.

REFERENCES

[1] J. Bromley and A. Winkelmann, “Systemverilog, batteries included:
A programmers utiloity library for systemverilog,” in DVCon 2014.
Accellera, 2014.

[2] K. Shimizu, “Sharing generic class libraries in systemverilog makes
coding fun again,” in DVCon 2014. Accellera, 2014.

[3] IEEE Standard for SystemVerilog — Unified Hardware Design, Specifi-

cation, and Verification Language, IEEE Standards Association, 2012.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and

Algorithms. Addison-Wesley, 1983.
[5] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference

Guide, 2nd ed. Addison-Wesley, 2001.
[6] R. Sedgewick, Algorithms in C. Addison-Wesley, 1990.

