2014

DESIGMN AND VERIFICATION

DV

CONFERENCE AMD EXHIBITION

Generation of UVM compliant Test Benches for
Automotive Systems using IP-XACT with
UVM-SystemC and SystemC AMS*

Ronan Lucas, Magillem Design Services, Paris, FrFdncas@magillem.com

Philippe Cuenot, Continental Automotive France, [bose, France,
philippe.cuenot@continental-corporation.com

Marie-Minerve Louérat, Yao Li, Zhi Wang, Jean-P@hlaput, Frangois Pécheux, Ramy Iskander,
LIP6, UMR 7606 SU-UPMC/CNRS, Paris, Francwarie-minerve.louerat@lip6.fr

Martin Barnasconi, NXP Semiconductors, Eindhovegethidrlandsmartin.barnasconi@nxp.com

Thilo Vértler, Fraunhofer IIS, Design Automationvion, EAS, Dresden, Germany,
thilo.voertler@eas.iis.fraunhofer.de

Abstract—This paper will present a methodology and flow tcautomate the test bench creation for automotive
heterogeneous HW/SW systems, using SystemC, Syste®iIS and IP-XACT. The UVM foundation elements such
as test, environment, UVC (Universal Verification @mponent), transactions and associated configuratioobjects are
introduced, which are packaged by means of IP-XACTvendor extensions. The benefit is to facilitate thére)use of
UVM components and environments by providing a readble and configurable test platform description, tatrace the
requirements of tests, and to generate automaticgllithe entire UVM environment and simulation build flow after
configuration of the test scenario. The automatiotechnology is based on IP-XACT and uses new capabés of the
Magillem tools solution.

Keywords— Simulation, Verification, EDA Automatior§ystemC, SystemC-AMS, IP-XACT, UVM

I INTRODUCTION

The complexity of electronic systems for the automoiiveustry is increasing. These systems are
characterized by having close interaction between sgt(@\W), hardware (HW) and analog components. The
Electronic Control Unit (ECU) is a heterogeneous sysgnce it contains digital, analog low-voltage and high-
voltage electronics, combined with software running on mbeglded processor. Furthermore, automotive
systems are safety critical systems, and as a cazsegjwerification of all related requirements is maogat

Therefore, to design these safety-critical systemsgiiggneers more often require a virtual prototype (VP) of
the hardware architecture. Using the VP, software engirgrer able to debug the HW/SW automotive system
before the actual availability of the hardware prototypder on, when the HW is available, in the form of an
FPGA or test chip, a strong benefit is to reuse tsedases and test benches used for the VP, and to bepily t
as well to validate the hardware prototype.

To introduce this way-of-working with a stronger focus remise, we propose to generate test benches
following the Universal Verification Methodology (UVMyrinciples [1] using IP-XACT [2], which are used to
bridge the gap between verification and validation. Tlegsed techniques are applied on a smart power supply
module, which is part of an automotive Electronic Controitto demonstrate the automation capabilities for
verification methods.

The paper is organized as follows. Section Il describegdlated work in the areas of methodologies and
verification tools. Section Il introduces the verifice methodology and framework using UVM in Systemc. |
Section 1V, the IP-XACT extensions are presented for US§dtemC. The automotive use case is presented in
Section V. Section VI shows the automation techniquesdbaisdP-XACT, supported in the Magillem design
environment. Then, in Section VII, the experimental resaéspresented based on the automotive application.
Finally, Section VIII gives the conclusions and future dicets.

*Sponsored by the European Commission within the
7th Framework Program for Research and Technaib@'evelopgnent (FP7/ICT 287562)

2014

DESIGN AND VERIEICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

1. STATE OF THE ART

Driven by the complexity of embedded systems and the¢ysafiical HW/SW systemsdifferentverification
methodologies for digital systems have been develgpedpromoted by EDA vendors ower the last des
evolving towards the UVMas part of an industry supported standardization effortcicelera [1].The UVM
standard has arisen from sealeattempts to create structured and reusable veidficanvironment for digite
systems as shown in Figure 1.fihds its origin in quite a number of formeerification technologies ar
methodologies (e.@RM, VRM, AVM, VMM, OVM) [3 -6]. The development of the UVtandarcincludes an

opensource class library to create verification compor, to support design and verification enginein the
creation of digital test benches.

Need:
UvM AMS
extensions

1%t generation 2d generation:

€RM, URM, VRM AVM, OVM, VMM

Years: ~ 2003 - 2008 ~ 2008 - 2011 ~2011 - ..

Figure 1 Historical perspective on verification Methoddles

Till recently, dedicated verification languages were usederification, such as vere, or SystemVerilog
The use of the SystemC language to enable more abststat-level verification isnot yet supported. Therefo
a UVM standard compliant language definition and referemegglémentation in SystemC:/C+7] has been
developed by NXP in the context of the VERDI proje8]. Moreover, the AMS extensioifier SystemC [9] are

also used to handle the verification of mi-signal systems, which can be applied within suchM.
environment.

lll. VERIFICATION FRAMEWORKUVM-SYSTEMC

UVM for SystemC defines all the essential featurescteate a UVM standard compliant verifica
environment. It contains many buift-capabilities dedicated to verification, such as testtaest bench creatir
configuration, phasing, comparing, scoreboarding anartieg [10]

The main principle of UVM is tdelf the verification engineer to dathe abstract test scenario in terms
stream of transactions. These transactions are furdifieed into signals and sent to the Device édnbest
(DUT) by a driver. The monitor collects the output sigriedsn the DUT and stores them. Frrom a ret set of
output signals, the analysis utility functions compute peeformances of the DUT andd send them é
scoreboard. The scoreboard compares the resulting perfoeroéthe DUT with the referencee o

Seq! Seq2 SeqN
u wait(T) n H -
21 2 2, Virual Top-Down Bottom-Up @ B
fo to+T W«NT t Sequences refined stimuli performances
generation indicators A
reconstruction

Scoreboard Perft Perf2

2) Analysis waiyT) [2] wair) [T] e+
Y 1] o
to

A >
Result to+T t0+2T t
Monitor / /

\v \ Virtual
Sequencer

w
@
a
=
@
3
@®
N

Driver

SIENCI - s - i (3) Signal/
Vin(t) Samples Samples Vou(t) seq Seq2
Seql Seq2 x
i 1]
IS BT
T1 T1+T t 7 T1+T t

Figure 2 UVM based layering and the signal/result synchronimatio

Figure 2 illustrates the topewn decomposition of test sequence stimuli in UVM, ab sas the bottc-up
reconstruction of performance indicators for verifioati The sequencers/drivers wait for a peiT. The

2014

DESIGN AND VERIEICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

monitoring thread waitéor the same period, so the emission of stimuli amdrédtonstruction of performan
indicators are kept synchronous during the simule

In order to enable horizontal or vertical reua UVM environment is built in a structured way w
specific conmunication interfaces between its componeThe typicalverification environment architecture
illustrated in Figure 3lt consists of multiple UVM compents (7). The corner stone of the UVM hierarchipé
agent component (6). An agent component instantiateshallcomponents that are necessary to
(respectively monitor) the signals to (respectivebyrfy the DUT.

top (sc_main)

A~ = DUT : Design Under Test
y - [EE:L?,LLIEE cania 1@ APP : Software application executed on DUT
e TDF : Timed Data Flow signal
Hlestbench (env) s o LSF : Linear Signal Flow
- scoreboard) '))
2 irtual Ede T vt | Bubes ELN : Electrical Linear Network

model

sequencer | | 1 z

DIG : Digital physical signal
AMS : Convertor port between digital and analog si
UVC : Universal VerificatiolComponent (uvm_en

uvet emvi@ | uve2 (env)

[agent(s) || agent
|.J§._Sc=r ! cont | sqr | cont | Agent (uvm_agent)
-~ |MD% | Drv || Mon | Sqgr: Sequencer (uvm_sequencer)
: —J) L)) LF Drv: Driver (uvm_driver)
- Mon: Monitor (uvm_monitor)
| Interfaces(@ | -
f x ¥ % Scoreboard: (uvm_scoreboard)
'8 - — . . .
oia Ams DUTT o ams Subscr: Subscriber (uvm_subscriber)
ARt Pl Test bench (uvm_env)

]
sottware HRF
o

Embeddad
Kene]

| ToF | | LsF El Test (uvm_test)

Figure3: UVM test environment and terminology

Typically, the agent instantiates three componentsqaeseer (5), a driver (3) and a meonitor (B @gen
components use a TLM interface with the higher levels inegbebench archicture and use a physical le
interface (2) to communicate with the DUT. The DUT illxomposed of digital and AMS parts, somehefn
eventually executing software. The drivers translagesequence of data transaction to SystemCetiseren
signalsfor the digital IPs and to Syster-AMS TDF (Timed Data Flow) samples for AMS IPS aedad to DUT
port (Fig. 2 and Fig. 3).

The test bench (12) is defined as the complete verificatieirtonment which instantiates and configu(11)
the universal verifiation components (7), scoreboard (8) and virtual sequéjcéihe virtual s sequencer cont
all sequencers at top level. The sequencers handlamdlattions and send them to the drivers. Ssmps (10
encapsulate sequence items, defined as trions. The monitor (4) receives and accumulatesthiput signa
level vectors/samples. Utility functions in monitarsllect signals and the analysis functions compysten
performances. The scoreboard (8) performs-to-end checking by comparing thelden model referenc
performance specifications with the extracted perfores

IV. IP-XACT EXTENSIONS FORUVM-SYSTEMC

The IP-XACT metdata is used to provide a unified specification for a ieatibn component to exchar
and share compati# components from multiple companies or services. Moreifggaly, the (creation of UVI
extensions in IRXACT enable efficient assembly and configuration of tesichetest and togp level element:
generating the relevant SystemC and Sys-AMS views necessary to conduct verification.

The UVM architecture is structured in layers from the Il to the virtual sequencerss, and UVQsch
can be reused independently of each othermaintain reusability, the IRKACT description is following th
same hierarchical structure using tconcept of design, component and hierarchical vdefined in the
IEEE1685 standard schema.

2014

DESIGMN AND VERIFICATION

DV

CONFERENCE AMD EXHIBITION

In order to identify each UVM specific componen®-XACT vendor extensions are introduced in the
component definition of the schema. This extenslefines the class from which the component is derivom
(cf. Figure 3).

The instantiation of the different UVCs in the IR&T design and the interconnections with the sooaeth
will assemble the test-bench. The UVCs and scorela@ hierarchical components with TLM interfacBsese
hierarchical interconnections allow connecting aately subscribers and monitors.

The top level instantiates the DUT, the test andu@l) interfaces used to connect the UVCs toDkEl by
using the UVM configuration database mechanism. If&ACT representation of a (virtual) interface ds
SystemC or SystemC-AMS component extended witimi@nface attribute and contains a physical interface and
a logical interface. The physical interface issadif SystemC or/and SystemC-AMS signals definithwat will be
encapsulated in the interface and used to conhecDUT. It is represented by the IP-XACT ports @ad be
eventually regrouped in a bus interface definiiery. AHB, OCP, ...). The logical interface is désed as a bus
interface and represents the interconnection wighdVC through the UVM configuration mechanism. Thes
definition of the bus interface of the UVC and wat interface must be the same. The IP-XACT abtrac
definition and port map descriptions are not defiimethis bus interface to avoid any actual conpest

The UVM configuration database is a central resewlatabase to store and retrieve any type specific
information of UVM and non-UVM objects at any plaicethe verification environment. IP-XACT parameter
are used to specify if an element is stored incthrefiguration database. UVCs and interface compisnesm be
enabled or not in this database depending on a&apngbarameter. Properties and specific variabktisge are
also supported by the configuration database. kamele, the property whether a UVC is active orspasis
specified in a parameter. The switches to enabéelkihg and coverage collection in the monitors depen
boolean parameters. All these parameters are efieed, specified in a view section relative to the
configuration and is introduced using the IP-XAG3ndor extension attribute/mCfgDatabase.

Moreover, the configuration of the test bench aexfication components can be performed with thip loé
configuration objects. From the test bench configon, the user can configure the different UVCstigh
nested configuration objects associated to each.U~v@irn, the configuration objects contain hasdier their
sub-component configuration objects. The prototgbeeach configuration object must be defined within
extensions in the IP-XACT component descriptiorcokfiguration is defined by a name and an unbourided
of parameters and/or nested configuration desoripirhe parameters are user-defined and specifidtei view
referenced in the configuration description. Theohation is “user” indicating that the value is sified by the
user input and the new value is stored in a desiglesign configuration description.

V. USE CASE DESCRIPTION

The selected use case as DUT to evaluate the tegyrie a subset of a smart power supply moduleaeted
from an automotive Electronic Control Unit (ECU) afi engine management system developed by Corglnent
Automotive France. It is integrated in an ASIC udihg a set of voltage regulator blocks providiryesal
supply ranges: an internal and external resetitiydior the complete ECU, and an SPI communicainterface.
Additionally, a complex state machine for safetynitaring purpose is integrated in the ASIC supéngshe
ECU via the same SPI interface with a specificquok The prototype built for the definition of czapt for the
automation of the UVM verification methodology epresentative of the ASIC, but scaled down forrtatand
experimentation purpose. It is implemented usingt&yC and SystemC-AMS class libraries and compeitad
IP-XACT.

According to the UVM methodology, the DUT verifigat will be performed by simulation. The test beiigh
implemented with the UVM-SystemC class librarie©ieTUVCs are defined according to the DUT subset
behavior, in order to be reused across severajnlesrification projects. Moreover, the UVCs arafigured via
the UVM configuration object to facilitate reuseydain particular to allow driver configuration femriable
stimuli definition. The stimuli itself are capturéd a text file defining the transactions to drive sequence of
the respective UVC sequencer. These stimuli filesdesigned using a specific format to overwrite dhiver
transaction and are shared with the tool environtrfigrtape-out silicon laboratory validation usibgbview [11]
configurable scripts.

2014

DESIGMN AND VERIFICATION

DV

CONFERENCE AMD EXHIBITION

The DUT is organized with four main functionalgtiea single analog voltage regulator captured meTData
Flow (TDF) domain of SystemC-AMS, a logical conkeolof the voltage regulator similar to ASIC resentrol,
a mixed function supervising the voltage valuehef tegulator and building frame for communicatiamioking
the ASIC specific protocol, and finally a digitalPBinterface defined at transactional level ideaitio the one
used in the ASIC. The UVM test-bench is organizéth w UVCs controlled by a virtual sequencer, agicted
in the architecture view in Figure 4 below.

Test (UVM-SystemcC)

Testbench

UVC (VOUT)
| AMS

DuT
sca tdf
Monitor

Voltage
Regulator

Listener

Agent config

£
;

—_
&
=
g
.“g
w
£
=
il
g
o
tn
=
[
5
=

!

Listener
F.

UVC (VIN)

ANMS
Monitor

Listener

3 AMS —_
; -
— EqUENCET Driver S Comm.
—— o
= S protocol
Trace|| 2 |4 £
fie || 2 UVC ENA) preg
=
Monitor
- sc_lpgi I
Testbench] Reset
config. . T
P | sequencer Driver
file 5Pl Interface
UVC(5PI)
Virtual [~
Z|sequencer B I N O — Monitor
frun ail [Agent config _lpeic, sc_tlm i

sequences
Wlin parafiel

Driver

Sequencer

i

Figure 4: UVM-SystemC verification environment fopower supply module

The first AMS-UVC agen(VIN) is driving a TDF input signal of the DUT power tage regulation. A
configuration object is associated to this agemtefine the characteristics necessary for the agjentlation as a
point to the virtual interface, the active or passitate of the agent, the reference to the stifileli the
configuration for interpolation between stimuli glie value, and the AMS configuration for simulatiime step.
The configuration object is derived framm_object. The UVC itself is derived from classm_env and is part of
the nested hierarchy of the test bench componeivedefromuvm_env. The configuration is defined in the test
layer (derived fromuvm test) and instantiates a test bench and configuratijact The driver of VIN, derived
from uvm driver, is feed by transactions of typevm sequence from the sequencer. The transaction
(uvm_sequence_item) delivers a vector containingf_value andtime_stamp pairs to the VIN driver.

To synchronize the AMS domain of the DUT with théver, an AMS (TDF) module is instantiated in the
driver, which is natively synchronized using a SystemC-Adé8verter port between the TDF and discrete event
domain. The AMS simulation time step of this comgminis scheduled by the value of the UVC configarat
object propagated through the UVM component hierarchyaviglass attribute. The AMS module embeds the
TDF port interface in thelriver to pass the analog value and time stamp, whergpoitged values are managed
in the AMS component. In the driver the virtualeiriace is bound to the output port of the AMS congra. The
driver stimuli are preprocessed from the stimuli text,fded recovered in the body method of the sequence
generate the transaction. The VIN moniterusing the same transactions as the driver, eagptin a one
dimensional vector. In a similar way, the moniiostances contain an AMS TDF module to ensure the
synchronization with the AMS TDF domain, and bihd tirtual interface to input port of this TDF mdelu

2014

DESIGMN AND VERIFICATION

DV

CONFERENCE AMD EXHIBITION

A second logical UVC agelfENA) is setting or resetting the digital reset inputhef DUT via the control of
the virtual interface. This UVC is also associatéth a configuration object defining the configtioa of the
agent as a pointer to the virtual interface, the/aor passive state of the agent, and the rederémthe stimuli
file. Similar to the above VIN agent, its driver fisd by the value of a transactias vector of logic_value-
time_stamp pairs Identically, the sequence is preprocessing theséetion by reading the values from the text
file recovered from label definition in the datesbaThe monitor is capturing the same transactidre twritten in
the listener of the scoreboard.

The third logical agen{SPI) is managing the transaction for SPI communicakigrcontrol of the virtual
interface It has also a configuration object similar to ofi¢ghe ENA agent, but in addition it includes a fgeirto
another SPI configuration object for defining tigicharacteristics of the SPI communication. Thevedri
sequence and monitor are similar to control inBEN& agent; the only change is that the driver istaaling the
SPI timing configuration thanks to the configuratiobject accessed thought the component hieraruthyhbject
configuration.

The fourth AMS UVC agenfvOUT) is a passive component that only monitors thewsutpthe DUT. It has
a configuration object necessary to configure theukation time step for the AMS part and a pointerthe
virtual interface. The construction for the monii®identical to the one in the VIN agent.

The UVCs are strongly coupled due to the dependsrioi the DUT. The UVC sequences are executed in
parallel, started by the virtual sequence and rev@mmon reference time t0. The scoreboard colleitts
recorded transaction of the UVCs via the listeiersuild a log file, storing data and time stampda off-line
post-verification. The scoreboard has a configamatibject to configure the filename for the log fiand uses
start-time and stop-time of the recording to ensimglar recording conditions to the laboratory ieorment for
off-line comparison (limitation capacities consiita). The object configurations are nested withi lhierarchy
and passed-through via the UVM configuration dasabavhich is declared at the top-level of the tesacilitate
configuration and reuse.

The challenge for the automation is to be ablerépuée agents and scoreboard components as satuctur
organization and to generate all the glue code ssacg for the testuym test) and test benchuym env)
generation, including the initialization and negtof the object configuration passed through tleeanchy of the
database. The dynamic aspects of using a virtupleseer processing sequences for dynamic behavjartly
written, as the complete sequence stimuli are ddffrom the configuration issued from the stimeskttfile.

VI. EDA AUTOMATION USING IP-XACT

Magillem tooling [12] is able to generate the wholéM-SystemC test environment (in .h and .cpp Jilies
top-level, test, test bench and also test bencligumation and virtual sequencer, based on theahibical IP-
XACT description of the platform.

The meta-data are loaded in a dedicated data rdadely a preliminary step. From this structureddelove
elaborate the assembly of each design dependiribeomterconnection and the configuration of thetances.
Once these pre-required steps are realized, the g&ihrator can be executed to provide the diffeatput
files. For each generated file, a specific sub-tpggne is associated, ensuring modularity in théigecture of the
tool. Additionally, a template mechanism, one pengyator, is introduced to provide flexibility atakes into
account some coding style and text formatting.hkse templates, some specific tags started andl drydthe
‘@’ character are inserted between comments ore8yStcode and will be replaced by data during the
generation.

Listing 1 shows an example of the generator. [Eftecolumn shows the template used. The right molu
gives the generated code. The engine of each swdrager use the IP-XACT IEEE1685 standard API
(Application Programming Interface), the Tight Geater Interface, to query the model and get theardata
used to compute the final data that will be dumipettie template.

2014

DESIGN AND VERIEICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

Int sc_main(int, char*[]) {

/linstantiate the dut
@5Cl NSTANCES@

/linstantiate the virtual
interfaces
@/I RTUALI NTERFACES@

/] register virtual interface
via configuration nmechani sm
@REG STERVI RTUALI NTERFACE@

int sc_main(int, char*[]) {

/1 instantiate the DUT
V_regul ator_test* dut = new V_regul ator_test("dut");

/'l instantiate the UYM agent virtual interface

v_regul ator_if_ena* vif_v_regulator_ena = new v_regulator_if_ena();
v_regulator_if_vin* vif_v_regulator_vin new v_regulator_if_vin();
v_regul ator_if_spi* vif_v_regul ator_spi new v_regul ator_if_spi();
v_regul ator_if_vout* vif_v_regulator_vout = new v_regulator_if_vout();

/'l register virtual interface via configuration nmechanism

uvm confi g_db<v_regul ator _i f_ena*>::set (0, "*", "vif_v_regul ator_ena",
/| Connect the Virtual vif_v_regul ator_ena);
Interfaces to the dut uvm confi g_db<v_regul ator _if_vin*>::set(0, "*", "vif_v_regulator_vin",
@CONNECTI VI TY@ vif_v_regulator_vin);

uvm config_db<v_regulator_if_spi*>::set(0, "*", "vif_v_regulator_spi",

vif_v_regulator_spi);

uvm config_db<v_regulator_if_vout*>::set(0, "*", "vif_v_regulator_vout",
vif_v_regul ator_vout);

/1 Connect the Virtual Interface
dut - >Vi n_port (vif_v_regul ator_vin->sig_Vin);
dut - >Enabl e_V(vi f _v_regul at or _ena- >si g_Enabl e_V);

dut->Trans_spi _cs_port(vif_v_regul ator_spi->sig_Tspi _CS_V);
dut->Trans_spi _control _port(vif_v_regul ator_spi->sig_Tspi _CTRL_V);
dut - >Trans_spi _sdi _port (vif_v_regul ator_spi->sig_Tspi _SDl _V);

dut - >Trans_spi _sdo_port (vif_v_regul ator _spi->sig_Tspi _SDO V);

Listing 1: Template and generated code

VIl. EXPERIMENTAL RESULTS

The IP-XACT-based verification methodology aims at facilitating trlee of UVM objec:ts by providing
simple, configurable, and readable description of a UVNfigation component (UVC), to automate ttreation
of the test environment, and with this, to increase themétgr efficiency by letting him/her ffacan sequence
and tests. From a verificati point of view, the user builds the UVM platform by séhg the LUVCs from an-
XACT library, and instantiate, configure and interconnees¢hto build the test bench. Teest an-level are
similarly assembled and configured.

As shown in Figure 5the Magillem Platform Assembly tool offers a graphior TCL scripting interface 1
compose the IXKACT platform and generates the different UVM layerg-level, tes and test bench) in tt
SystemC and System@MS language

—g

=g

Dependency Evaluated V... Reconfigured Export
UVM_CFG_NAME
UVM_DB_CFG

UVM_ENA_FILENAME
UVM_SCB_FILENAME
UVM_SPLFILENAME
UVM_T_STEP

UVM_VIN_FILENAME

Figure 5 Magillem Platform Assembly tool to build the UVMst environmel

A parameter dedicated view facilitates the configurati the platform of test anpropagates through ti
hierarchy the parameter values to the-element using the IRACT description of the different configuratic
object associated to their RACT componen

2014

DESIGMN AND VERIFICATION

DV

CONFERENCE AMD EXHIBITION

Once the generation is completed, the followingsfihave been generated:

e sc_main.cpp : instantiating the DUT, virtual interfaces andttand connecting the DUT and virtual
interfaces

» test.h andtest.cpp: containing the declaration and the implementatibthe configuration object, the
build phase and the run phase.

» testbench.h and testbench.cpp : containing the declaration and instantiationtioé UVCs, the
implementation of build phase and the connectehas

» testbench_config.h: the top level configuration object containing tdeclaration of each sub-
configuration object and the list of all global aareters

» virtual_sequence.h: referring all the sequencers in the platform thét be used to create the
sequence items and send them to the driver.

VIIl. CONCLUSIONS

This paper demonstrated test and test bench automdily means of generating the entire verification
environment in UVM-SystemC and SystemC-AMS, thattkshe use of the UVM standard and extended IP-
XACT descriptions. The approach has been demossti@i a voltage regulator ASIC as part of a smantep
supply module, extracted from an automotive Eledger&€ontrol Unit (ECU) of an engine managementeystlt
allows to facilitate the ASIC verification, by reéng existing test components and defining assatiate
configuration, to complete the verification phas@automated process.

The automation can be extended by the new tradtyabincept available in Magillem to permit the
execution by a requirement driven verification gsiracing down to the test component configuratiareover,
the stimuli text file driving the test sequence ldaa us to reuse the test scenario definition beEtwine
verification and validation phase. These featurdeu experimentation on the same use case will enthe
demonstration of IP-XACT extension capabilitiesponped by a verification and validation methodology

ACKNOWLEDGMENT

This work was funded by the project VerificationrHdeterogeneous Reliable Design and Integration
(VERDI), which is supported by the European Cominissvithin the 7th Framework Program for Reseanuth a
Technological Development (FP7/ICT 287562).

REFERENCES

[1] Accellera Systems Initiative, Universal Verificatitfethodology (UVM) standard,
http://www.accellera.org/downloads/standards/uvm/

[2] Accellera Systems Initiative, IP-XACT standalnttp://www.accellera.org/activities/committees/igex/ and
|IEEE Std. 1685-200%ttp://standards.ieee.org/getieee/1685/download-PE® 9. pdf

[3] A. Koczor, W. Sakowski, “SystemC library supporting//@ compliant verification methodology”, IP Embedd8gstem Conference
and Exhibition (IP-SoC), December 2011

[4] M. F.S. QOliveira, C. Kluznik, W. Mueller, W. Ecke¥, Esen, “A SystemC Library for Advanced TLM Veiditon”, Design and
Verification Conference & Exhibition (DVCon), Felany 2012

[5] A. Sarkar, “Verfication in the trenches : A System@lementation of VMM1.2",
http://www.vmmcentral.org/vmartialarts/2010/12/iedtion-in-the-trenches-a-systemc-implementatiérerom1-2/

[6] IEEE Standard Association, “1647-2011 - IEEE Stasidar the Functional Verification Language e “,
http://standards.ieee.org/findstds/standard/1647:20ml|

[7]1 |EEE Computer Society, 1666-2011 IEEE Standard SySteamguage Reference Manual,
http://standards.ieee.org/findstds/standard/1666:20ml|

[8] Y.Li, Zh. Wang, M. M. Louérat, F. Pécheux, R. Iskar, Ph. Cuenot, M. Barnasconi, Th. Vortler, Knvidch : “Virtual Prototyping,
Verification and Validation Framework for AutomogiWsing SystemC, SystemC-AMS and SystemC-UVM”, Embediad Time
Software and Systems (ERTS2), February 2014, Toulouse

[9] Accelera Systems Initiative, SystemC AMS 2.0 Standattd://www.accellera.org/downloads/standards/system

[10] M. Barnasconi, F. Pécheux, T. Vortler, “Advancingtsyn-level verification using UVM in SystemC”, Designd Verification
Conference & Exhibition (DVCon), Mar. 2014, USA

[11] LabVIEW System Design Softwarettp://www.ni.com/labview/
[12] Magillem Platform Assembhhttp://www.magillem.com/eda/

