Generation of Constraint Random Transactions for
Verification of Mixed-Signal Blocks

Alexander W. Rath*, Sebastian Simon*, Volkan Esen* and Wolfgang Ecker*
*Infineon Technologies AG
Email: Firstname.Lastname @infineon.com

Abstract—The Universal Verification Methodology (UVM) has
become a de facto standard in today’s functional verification of
digital designs. However, it is rarely used for the verification
of Designs Under Test containing Real Number Models. This
paper presents a new technique using UVM that can be used in
order to compare models of analog circuitry on different levels
of abstraction. It makes use of statistic metrics. The presented
technique enables us to ensure that Real Number Models used
in chip projects match the transistor level circuitry during the
whole life cycle of the project.

I. INTRODUCTION

In today’s IC designs more and more parts of the analog
implementation are shifted to the digital domain, since digital
circuits scale better with new technologies. This trend leads to
mixed signals designs. Their analog and digital parts interface
with each other as well as with the outside world.

The functional verification of the analog parts is different
compared to the verification of the digital parts:

— Digital parts are functionally verified on register trans-
fer level (RTL). Very sophisticated transaction-based
methodologies like OVM [1] or UVM [2] are used in
order to accomplish this task. The key concepts of these
methodologies are the generation of constrained-random
stimulus [3], automated checking mechanisms [4] and the
collection of functional coverage [5].

— The analog parts of mixed signal designs are usually
verified on SPICE level by using network simulators [6].
This approach covers mainly the verification of electrical
parameters, e. g. input resistance and amplification. How-
ever, it is also used to verify the functional behavior of
the block.

In the verification of the whole chip (chip-level verification),
where the system-level behavior as well as the interconnectiv-
ity of the blocks are to be checked, the degree of detail of the
SPICE models is often not required. Also, they slow down the
simulation speed by magnitudes.

In consequence, it is a common practice not to use the
SPICE models in chip-level simulations. Instead, so called real
number models (RNM) are used [7], [8]. They just reflect the
functional behavior of the analog parts and are developed by
using a hardware description language, e.g. VHDL, Verilog
or SystemVerilog. The advantage of this approach is that a
regular event driven simulator can be used in order to perform
the chip-level verification.

As UVM is state of the art [9] in automated digital veri-
fication, it is desirable to perform the verification of such a
chip-level using UVM as well. Thus, we have presented in
[10], how analog stimulus can be generated and in [11], how
analog responses can be checked using UVM. In this paper,
we will present how the generation of analog sequences and
transactions can be done efficiently with SystemVerilog and
UVM.

In the following chapters we present an outline of the
approach and how it is mapped to the UVM. Furthermore, we
describe the application of this approach to a typical example
and provide an overview of experimental results. In connection
to that, an analysis with regard to related work in this area is
given, followed by a conclusion and an outline of steps that
are to be addressed next.

II. APPROACH

In order to verify a chip-level consisting of RTL models and
RNMs, it is mandatory to stimulate it with analog and digital
signals and automatically check its responses—digital as well
as analog—for functional correctness.

In principal, UVM offers these mandatory features. How-
ever, it is originally intended for digital stimulus generation
and the comparison of digital signal sequences. Our purpose,
however, requires the generation of a wide range of analog
stimuli and the comparison of analog signal sequences.

While digital behavior represents a sequence of binary
values at specific points in time, analog behavior represents
a continuous progression of arbitrary values, i.e. a function
t — f(t). Hence, it is necessary to provide a framework which
on the one hand can create stimulus in such a way and on
the other hand, provides methods to compare such continuous
behavior.

In this paper we will focus on the constrained random
generation of analog transactions and sequences. Thus, in the
following sections, we describe how we enhance the UVM
framework in order to support this feature. Our enhancement
to UVM, we call A-UVM (analog UVM).

A. Transactions

The core elements in UVM-based testbenches are the trans-
actions. In the following, we explain this statement and the
consequences, it implies for testbenches. Furthermore, we
extend the concept of transactions towards the analog world.

1) Transactions in UVM: Not only in a UVM context, a
transaction is a set of parameters, which describes a certain
protocol in an abstract manner above the signal level. For ex-
ample, a transaction for a simple serial protocol may contain a
parameter “address” and another parameter ’data”. However, it
will not contain information about how exactly the transaction
will look like on pin level. Thus, the same transaction could
potentially be used to abstractly describe a simple parallel
protocol. The motivation of modeling protocols using trans-
actions is that a verification engineer is often not interested
in the signal level behavior of the design. For example, if it
is to be checked that a certain register in the DUT holds the
correct value, only the address and data information of the
respective communication is of interest. There is no reason
for carrying the information about what exactly happened on
pin level. However, in order to communicate with a DUT, the
transaction has to be translated from transaction level to pin
level and vice versa. In a UVM testbench so-called drivers
and monitors are used to accomplish this task. Together, a
driver and a monitor form an agent, which is also called a
verification component (VC). Hence, the transactions that are
used to communicate with the DUT determine the structure of
the testbench.

In UVM, the code to describe the example transaction
mentioned would look like this:

class my_item extends uvm_sequence_item;
rand int address;

rand int data;

‘uvm_object_utils_begin (my_item)
‘uvm_field_int (address , UVM_ALL_ON)
‘uvm_field_int (data , UVM_ALL _ON)

‘uvm_object_utils_end

endclass

2) Analog Transactions: Analog signals are different com-
pared to digital signals, as their co-domain is practically
unlimited. That allows single analog signals to adopt different
shapes, whereas a single digital signal is always of rectangular
shape. Despite this, it is possible to classify the shape of
an analog signal. For example, an analog signal can be of
a linear, harmonic or cubic spline shape or of any other shape
as well. Obviously, in order to precisely describe an analog
signal, it is not sufficient to simply name its shape. Additional
parameters are required. For example, in order to describe a
linearly shaped signal, its slope as well as one value at a certain
point in time are to be specified.

In A-UVM, we identify the term “shape” with the term
“protocol” known from purely digital interfaces. The term
“transaction” stands for a data structure which contains the
parameters needed to specify an analog signal.

For example, a signal with a sinusoidal shape would be de-
scribed by a transaction holding the two real-valued parameters
“amplitude” and “frequency”.

However, in our approach we found it necessary to add
some meta data to the transactions. Thus, we separated the
transaction parameters from the sequence item, by defining a

new class a_uvm_data_structure. This class serves as
a base class for a new class containing the analog transaction
parameters.

class sinus extends a_uvm_data_structure;
real ampl;
real freq;
‘uvm_object_utils_begin(sinus)
‘uvm_field_real (ampl, UVM_ALL _ON)
‘uvm_field_real (freq, UVM_ALL _ON)
‘uvm_object_utils_end
endclass

The transaction itself references the data structure.

class a_uvm_sequence_item extends
uvm_sequence_item ;
//transactions parameters
rand a_uvm_data_structure data_str;
// meta data
string algorithm_name;
protected a_uvm_tlm_time
duration ;
protected a_uvm_tlm_time
sample_rate;

‘uvm_object_utils_begin
(a_uvm_sequence_item)

‘uvm_object_utils_end
endclass

B. Generating analog stimulus from transactions

In UVM-based testbenches, drivers are used to transform
transactions to signal level activity. In this section we show
how A-UVM accomplishes this task regarding the analog
transactions defined in the previous section.

In purely digital environments, a protocol is engraved into
the digital driver using an FSM. According to the previous
paragraph, a signal shape must be engraved into the analog
driver. However, this cannot be done using an FSM. Instead a
numerical algorithm must be used.

A-UVM uses a predefined interface for the communication
between a generic driver and the algorithms. This interface
allows new — potentially project specific — algorithms to be
plugged in. It also allows to exchange the algorithm to be used
during runtime. This plug-in mechanism is realized using the
so-called “strategy pattern” from [12]. Regarding algorithms,
A-UVM is not restricted to SystemVerilog. Algorithms written
in C, Matlab or other languages can be plugged in as well.

The interface that is to be provided by every algorithm
consists of the following methods. We explain them in the
following paragraphs.

pure virtual function void pre_process(
a_uvm_data_structure data_str);

Transaction
freg: 200kHz
ampl: 5 A-UVM Sinus
name: sine Driver Algorithm
dur S5us
samp: 250ns j

_\—\—\—\”—'—’—1 X

Figure 1. Process of driving an analog transaction onto a signal in A-UVM.

pure virtual function real get_real(real
X);

virtual function void post_process ();

When the driver receives a potentially randomized transac-
tion, it reads the meta field algorithm_name. Then the driver
selects this algorithms from its data base and passes the field
data_str to the algorithm by calling its method pre_process.
This algorithm can use this in order to open a connection to
external tools, e.g. to Matlab, if required.

After that the driver starts to call get_real repeatedly. The
interval in which the driver calls this method is determined by
the meta field sample_rate in the transaction. The argument x
of the method represents the time elapsed since the start of the
transaction. This information is used by the algorithm in order
to compute the actual signal value. It is returned by the method
get_real . The whole process lasts until the time specified by
the meta filed duration in the transaction is elapsed. After that,
the driver calls post_process. Upon this call, the algorithm
can perform finalization tasks, e.g. closing the connection to
an external tool. Now, the A-UVM driver is ready for the next
transaction, which can be processed by the same or another
algorithm.

Figure 1 visualizes the whole process at the example of a
sine wave. However, A-UVM is not restricted to sine waves.
It features algorithms for FOURIER synthesis, cubic spline
interpolation, ramps, jumps and others.

C. Constrained random generation of transaction parameters

In the following sections, we show how digital transactions
are generated using UVM and how analog transactions can be
generated efficiently in A-UVM.

1) Generation of transactions in UVM: Transactions with
integer parameters (see the example my_item in section
II-A1l) are usually generated by creating a new instance of
it and then randomizing it, possibly with some constraints
provided in a with clause. Since the randomize () method
provides a return value which reports about the success, it
is good practice to grab it in order to react on a possible
randomization failure:

my_item tx = my_item:: create ("tx”);
if (!tx.randomize () with {addr > 5;})
‘uvm_fatal (”Rand.fail”, 7 ...7)

If the item is to be sent to a sequencer directly, the respective
API of sequencer is to be called:

my_sequencer.send_request (tx);
my_sequencer.wait_for_item_done (tx);

In order to reduce the coding effort for this process, UVM
provides the ‘uvm_do macro family:

‘uvm_do_on_with (my_item,
{addr > 5;})

my_sequencer ,

The macro shown in the example got widely adopted by ver-
ification engineers, as it is very compact and easily readable.
Furthermore, it enables a declarative programming style for the
creation of stimulus. This style is efficient and also provides
some esthetic appeal.

2) Generation of analog transactions: Unfortunately, the
method described in the previous section works for digital
transactions only, but not for analog transactions. This is due
to the fact that even the newest version of SystemVerilog does
not allow to randomize real typed class members:

class my_class;
rand real value;
endclass

// Compile Error!

There are several options to work around this problem. We
will discuss them in the following paragraphs.

One option is to simply declare the class without the rand
keyword and to randomize the class member value via
the detour of an integer variable value_int and a call to
Surandom:

my_class m = new();
int unsigned value_int = $urandom % 500;
m. value = real (value_int)/1000.0;

In this example, the the class member got randomized to a
value smaller than 0.5. However, it has been done in a very
procedural way, such that no constraints can be provided. This
can be improved by using std: :randomize () instead of
Surandom () :

my_class m = new();

int unsigned value_int;

if (!std:: randomize(value_int)
with {value_int < 500;})
‘uvm_fatal (”Rand._fail”, 7 ...”)

m. value = real ’(value_int)/1000.0;

Now, the code is already much cleaner. However, there is still
the detour via an integer variable and it is still not possible to
specify constraints within the class my_class, as it has no
truly random member.

It is possible to overcome those limitations by inter-
nalizing value_int to my_class and using the class’s
post_randomize () callback.

class my_class;
rand int unsigned value_int;
real value;

function void post_randomize ();

value = real ’(value_int)/1000.0;
endfunction
endclass

// ...

my_class m = new();

if (!m.randomize ()
with {value_int < 500;})
‘uvm_fatal (”Rand_fail”, 7 ...”)

This solution is already feasible, as it already looks very
similar to the digital example provided in the previous section.
The last drawback is the fact that the division operation is very
arbitrary. Although very intuitive, there is no formal reason to
use a division. Any other function that uses two integers in
order to produce a real-valued measure could be used instead.
Expressed in mathematical terms it means that any function
of the following form could be used:

r = f(a,b) with (a,b) € Z, r € R (D

In practice, the following functions are probably the most
useful ones:

1) The aforementioned division f(a,b) = ¢ with b # 0.
This function is useful in the most cases.

2) Exponential functions, e.g. f(a,b) = a/1000 - 10°.
These functions are useful, if numbers from a very big
range are to be randomized.

Expressed in SystemVerilog, it leads to a virtual class that
features equation 1 as a pure virtual method. We called that
method update (). Since the code presented below is used
in our library A-UVM, we don’t call the class my_class
anymore.

virtual class a_uvm_rand_real base;
protected real value;
rand int a;
rand int b;

pure virtual function void update ();

function void post_randomize ();
update ();
endfunction

function real get_value ();
return value;
endfunction
endclass

In order to gain random numbers, an implementation of
the function update () is to be provided. In the following
example, we show a quotient based implementation:

class a_uvm_rand_real extends
a_uvm_rand_real base;
constraint b_not_zero {b != 0;}

virtual function void update ();

value = real’(a) / real ’(b);
endfunction
endclass

// ...

a_uvm_rand_real m =

if (!m.randomize ()
with {a inside {[0:499]}; b == 1000;})
‘uvm_fatal (”Rand.fail”, 7 ...”7)

This solution is already very good, as it allows internal and
external constraints in a declarative programming style, where
the class is used. Also, in SystemVerilog, object handles can
be declared as rand. This makes it possible to use the class
a_uvm_rand_real to be used as a field in any class that
needs random real-typed members as if it were a normal real
field:

new () ;

class data_structure;

rand a_uvm_rand_real rl, r2;

constraint cl {

rl.a inside {[0:499]}; rl.b == 1000;
}
constraint c2 {

r2.a inside {[0:299]}; r2.b == 1000;

}

function new();
rl = new();
r2 = new();
endfunction
endclass
/...
data_structure d = new();
if (!d.randomize () with {r2.a >= 200;})
‘uvm_fatal (Rand._.fail”, 7 ...”)

The example shows that the presented SystemVerilog class
a_uvm_rand_real_base is a powerful and suitable re-
placement for the missing feature of randomizable real values.

III. RELATED WORK

UVM [2] is the emerging de facto standard for creating
reusable testbenches and verification environments. Released
by Accellera, this standard defines a class library, which
allows verification engineers to build verification components
(VCs) and environments in a standardized way. Further, the
UVM class library provides a callback mechanism, which
enables VCs and system models to communicate via TLM
(Transaction Level Modeling) [13].

For the analog domain, no such abstract communication
technique is available. However, several different approaches

to extend modern hardware, verification and system descrip-
tion languages with the ability to describe analog behavior
have been developed; the newest being SystemC-AMS, pre-
sented in [14]. SystemC-AMS allows modeling engineers to
describe analog behavior in frequency and time domain.

The drawback is that there is no verification library like
UVM for SystemC or SystemC-AMS.

Another new approach is UVM-MS presented in [15] and
[16]. However, this approach focuses mainly on the direct
stimulation of the pins of the DUT using UVM and an
additional Verilog-AMS layer.

All these newer approaches for the analog domain enable
the verification of AMS models. The difference between AMS
models and the aforementioned RNMs is that AMS models
aim more at a higher level of electrical accuracy that is
often not required for chip-level verification, since in a chip-
level verification the overall functionalities rather than the
electrical parameters are of interest. In consequence, none of
the approaches mentioned in this section fits to our verification
problem described in section I.

IV. APPLICATION AND DISCUSSION

In this section we show an application of the approach
presented in the previous paragraphs.

The application is a voltage regulator circuit for which an
RNM written in SystemVerilog has been developed, in order
to speed up chip-level simulation. Since jump stimuli cause the
most significant output for regulators, we have built a testbench
(see figure 2) that stimulates both regulators with jumps of
random height and evaluates the responses of both models
for consistency. The step responses upon a unit jump of both
models are shown in figure 3.

The testbench’s driver produces jumps. The height of one
jump is the only parameter of the incoming transaction.
The height is randomized by the test sequence using the
randomization method presented in the previous sections. The
monitors calculate the frequency spectra of the model’s outputs
within an interval of 2ns. One transaction produced by a
monitor carries the frequency spectrum of one step response,
ie. a list of complex values. After that, the comparison
component of the testbench calculates the correlation of a pair
of transactions.

Our test sequence produces 1000 random jumps in a row.
The first version of the RNM simulated together with its
SPICE counterpart leaded to a correlation coefficient greater
than 0.89 for every produced frequency spectrum pair. The

Spectrum

L= Monitor @:(>

RNM i Spectrum
Monitor

Figure 2. The testbench used in order to compare two different abstraction
levels of a voltage regulator

Correlation

Test Jump
Sequence Driver

Transistor
Level

1 -
RNM

0 — ¢
0 2ns

Figure 3. Step responses of the two voltage regulator models. The frequency
of the transient oscillation is the same for both models. That indicates, that
the frequency spectra of both models can be correlated, in order to evaluate
the consistency. If the oscillation frequency of the transistor level circuit was
changing due to a change in its design, the correlation would become much
smaller, indicating that the RNM is to be updated.

calculation of the correlation coeffcient is shown in [11].
We ran this test sequence in a nightly regression. After a
design change in the transistor level regulator, the oscillation
frequency was reduced by a factor of 2. Since the RNM was
not updated, the correlation dropped down to a value smaller
than 0.24 for every transaction pair. This was a clear indication
that an update of the RNM is required. After updating the
RNM, the correlation went up to 0.9 again.

The effort for constructing the testbench was about one
week. In contrast, the effort for building a testbench relying
on directed tests and manual wave form checking is slightly
smaller. However, such a directed testbench can not be run in
nightly regressions and the effort that is needed in order to
check the consistency between the two models manually over
and over again during the project exceeds the effort spent for
our approach by far. Furthermore, the A-UVM-based approach
presented in this paper features randomization. Thus, it covers
corner cases that are easily forgotten in a directed testbench.

V. CONCLUSION AND OUTLOOK

In this paper we introduced a strategy for randomizing ana-
log transaction and highlighted its key features. The technique
tackles the necessity of being able to stimulate Designs under
Verification with analog constrained signals. Our future work
will focus on the extensions of the presented methodology,
regarding usability and flexibility. The goal is to provide a
UVM based building box that covers the need of verifica-
tion engineers to simulate and verify designs containing real
number models. This building box shall include methods and
techniques for driving, monitoring and checking of analog
signals, as well as for coverage collection and reference
modeling.

REFERENCES

[1] “OVM User Guide — Version 2.1.2,” June 2011. [Online]. Available:
www.verificationacademy.com

[2] “Universal Verification Methodology (UVM) 1.1 User’s Guide,” May
2011. [Online]. Available: www.uvmworld.org

[3]

[4]

[5]

[6]

[7]

[8]

[9]

N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained
random simulation,” in Proceedings of the 2007 IEEE/ACM
international conference on Computer-aided design, ser. ICCAD
’07. Piscataway, NJ, USA: IEEE Press, 2007, pp. 258-265. [Online].
Available: http://dl.acm.org/citation.cfm?id=1326073.1326127

G. Allan, “Architectural considerations of scoreboard design,” in
Proceedings of the 2012 DVCON international conference, ser.
DVCON ’12, 2012. [Online]. Available: http://events.dvcon.org/2012/
proceedings/papers/01P_7.pdf

H. Carter and S. Hemmady, Metric Driven Design Verification: An
Engineer’s and Executive’s Guide to First Pass Success. Springer, 2010.
[Online]. Available: http://books.google.de/books?id=sAWtcQAACAA]J
P. Li, L. Silveira, and P. Feldmann, Simulation and Verification of
Electronic and Biological Systems. Springer, 2011. [Online]. Available:
http://books.google.de/books?id=N48SiipG8LkC

A. Elzeftawi, “CDNLive! — Real Number Model Development and
Application in Mixed-Signal SoC Verification,” April 2012. [Online].
Available: http://www.cadence.com/Community/blogs/ms/archive/2012/
04/09/cdnlive-real-number-model-development-and-application-in-
mixed-signal-soc-verification.aspx

W. Hartong and S. Cranston, “Real Valued Modeling for Mixed Signal
Simulation,” January 2009. [Online]. Available: http://www.cadence.
com/rl/Resources/application_notes/real_number_appNote.pdf

T. Poikela, J. Plosila, T. Westerlund, J. Buytaert, M. Campbell,
X. Llopart, R. Plackett, K. Wyllie, M. van Beuzekom, V. Gromov,
R. Kluit, F. Zappon, V. Zivkovic, C. Brezina, K. Desch, X. Fang, and

[10]

(11]

[12]

[13]

[14]

[15]

[16]

A. Kruth, “Architectural modeling of pixel readout chips velopix and
timepix3,” Journal of Instrumentation, vol. 7, no. 01, p. C01093, 2012.
[Online]. Available: http://stacks.iop.org/1748-0221/7/i=01/a=C01093
A. W. Rath, V. Esen, and W. Ecker, “Analog Transaction Level Model-
ing for Verification of Mixed-Signal-Blocks,” proceedings of DVCON,
March 2012.

A. Rath, V. Esen, and W. Ecker, “Comparison of Analog Transactions
using Statistics,” in Proceedings of International Syposium on System-
on-Chip, 2013.

E. Gamma, Design Patterns: Elements of Reusable Object-
Oriented Software, ser. Addison-Wesley Professional ~Com-
puting Series. Addison-Wesley, 1995. [Online]. Available:

http://books.google.de/books?id=60HuKQe3TjQC

M. Glasser and J. Bergeron, “TIm-2.0 in systemverilog,” in Proceedings
of the 2011 DVCON international conference, ser. DVCON °11,
2011. [Online]. Available: http://events.dvcon.org/2011/proceedings/
papers/04_2.pdf

“OSCI SystemC-AMS extensions,” March 2010. [Online]. Available:
WWW.systeme-ams.org

N. Khan, Y. Kashai, and H. Fang, “Metric Driven Verification of Mixed-
Signal Designs,” March 2011.

N. Khan and Y. Kashai, “From Spec to Verification Closure: A Case
Study of Applying UVM-MS for First Pass Success to a Complex
Mixed-Signal SoC Design,” February 2012.

