

1

Generating Bus Traffic Patterns

Jacob Sander Andersen, CTO, SyoSil ApS, Taastrup, Denmark (jacob@syosil.com)

Lars Viklund, Expert Engineer, Axis Communications AB, Lund, Sweden (lars.viklund@axis.com)

Kenneth Branth, Senior Consultant, SyoSil ApS, Taastrup, Denmark (kenneth@syosil.com)

Abstract— During the block level verification of the modules in an ASIC using SystemVerilog with the UVM

methodology [1] we were required to generate specific traffic patterns for a bus protocol as requested by the architect

(design engineers, system architect, etc.). Particularly the specification of the traffic pattern was problematic, as it was

ambiguous and could be interpreted differently by the architect and the verification engineers. For improved

reusability across various verification environments and platforms the traffic patterns could instead be accurately

expressed by using a domain specific language (DSL) [2]. The DSL could then easily be converted into executable code

for producing the expected traffic patterns.

Keywords—UVM;domain specific language; SystemVerilog; traffic pattern; bus-based protocol

I. INTRODUCTION

The work presented here is related to the work recently presented by the Accellera Portable Test and Stimuli

(PSS) working group [8] as both works deal with portable stimuli. However, this paper focuses on very fine-grained

traffic patterns on a single device under test (DUT) interface, targeting elements like:

• The functional specification. Certain patterns must be observed on a given bus. Especially, the

specification of performance requirements. Performance standards must be met under certain traffic

patterns applied to a given bus.

• Verification closure. Verification metrics (structural, functional coverage etc.) can only be closed if

certain traffic patterns are applied to a given bus.

On the other hand, the PSS work is more focused on the specification of system scenarios and coarser traffic

patterns. Furthermore, this work is inspired by [3], [4], [5] and [6] as they provide useful information on UVM

sequences, scheduling and especially CSP (Communicating Sequential Processes) for inspiration on the syntax.

The traffic patterns can be viewed as several (more than one) transaction producers trying to access the same

interface, involving randomization of the individual transactions, and synchronization and load balancing among

the producers. We have previously tried two methods for capturing these properties:

1. Informal natural language: Initially, the architects expressed the traffic patterns using informal natural

language. This lead typically to different interpretations between the architect and the verification

engineer.

2. Transaction diagrams: To improve over the natural language, we switched to using transaction

diagrams. However, it was in many cases unclear which aspects of the diagram that could be

generalized, if certain elements could be randomized or if the order mattered.

In retrospect, the workload can be significantly reduced if an exact way of expressing these traffic patterns are

used by the architect and an underlying, preferably automated, process was supported for generating traffic

patterns.

2

A simple example is a traffic pattern for a bus protocol like the well-known

AMBA AXI protocol [9] where a sequence of reads and writes for two different

address areas (See Figure 1) are carried out so that:

• Reads are done within a specific separate address area (BUF0) from a

start address and with incrementing addresses.

• Writes are done randomly to the same address area as above (BUF0)

but with slower frequency so less data is written as is read.

• Writes are done to another address area (BUF1) which is not

overlapping with random addresses where the first write must only

start after 4 reads have been done.

This can be viewed as three individual producers of transactions:

• Producer A: Reads to BUF0.

• Producer B: Writes to BUF0.

• Producer C: Writes BUF1 with a simple synchronization between them

to ensure that producer C starts only after producer A has done 4

transactions.

Figure 2 shows a solution to this scheduling problem among the set of legal solutions.

We model the traffic patterns by defining a transaction sequence model for which we define a DSL which

captures the set of transaction sequences (lists, parallelism with configurable scheduling, repetition, scheduling,

transaction state (start/end), etc.) and associated operations in conjunction with multiple producers of transactions

(scheduling, synchronization, etc.). Section III will provide more details.

The DSL is implemented as an embedded DSL (eDSL1, [7]). Thus, no parser needs to be implemented and the

benefits of a full featured programming language can be exploited directly. This is explained in more detail in

section V.

1 An embedded domain-specific language (eDSL) is a domain-specific language that's defined in terms of a

more powerful general-purpose "host language"

Figure 1: Memory Map

Producer A

Transactions

1

3

2 1 3

1 2

3 4

5

Producer B

Transactions

1 2

3

Producer C

Transactions

1 2

3 4

5

Interface

4 1 2 2 5 3

4 5

Traffic Pattern

Figure 2: A legal traffic pattern solution to the simple example

Memory Map

BUF0

Incremental reads

Random writes

BUF1

Random writes

3

II. SCOPE DEFINITION

The scope is kept to targeting a single DUT interface throughout the paper for simplicity. However, the concept

can be extended to handle the coordination of the production of transactions on multiple DUT interfaces. The bus

traffic pattern presented here is generally an abstraction for well-known protocols like AMBA-AXI or similar.

Furthermore, the paper is not targeting how and which transactions the transaction producers are producing and

how they are constrained related to each other (Internally for the same transaction producer or across the transaction

producers). The work presented here merely expresses a model for the transactions coming from different

transaction producers but not the contents of the transactions.

Also, the synchronization and scheduling are based on the number of transactions or if the transactions have

started or finished.

III. TRANSACTION SEQUENCE MODEL

The transaction sequence model needs to provide the

fundamentals for expressing generic bus patterns with

respect to transaction sequences coming from multiple

transaction producers in parallel, the synchronization

among them and scheduling. Abstractly this can be

viewed as a source/sink model with multiple sources and

a single sink as depicted in Figure 3. The model then

needs to describe how the transactions produced by the

sources are executed on the sink being the bus interface.

The cloud in Figure 3 represents the potential

synchronization, scheduling etc. among the sources.

Having the source/sink model fresh in memory we can

now refine this model into a more fine-grained model in

which the sources are defined as Transaction Producers

(TP) and the cloud object is refined into a Transaction

Sequence (TS) Graph. This model allows us to have a separation of concerns:

• The TS graph is created once by a tool and instantiated inside the verification environment

• The TPs generate the transactions when requested

• The bus traffic pattern at the sink is then the consequence of generating transactions by traversing the

TS graph and selecting transactions produced by the transaction producers

• The chosen transaction is then applied to the bus interface sequentially, e.g. by an UVM agent which

also could allow multiple outstanding transactions.

Ultimately, the transaction sequence model can is defined as consisting of the following components:

• TP: Capable of producing a specified number (N) of randomized transactions. A TP may be referenced by

multiple Transaction Sequence Elements (TSE, see below for definition). Furthermore, the TP instance has

the following state and functions:

o A state consisting of:

▪ started_trans: The global number of started transactions for the TP. Incremented

whenever a transaction is started. Never decremented.

▪ ended_trans: The global number of ended transactions for TP. Incremented whenever a

transaction is ended. Never decremented.

o A set of functions:

Source 0

Source 2
Source 1

Synchronization/

Scheduling/etc.

Sink

Figure 3: Source/Sink Model

4

▪ started(<N>): Returns: False if the producer has not started N transactions, True if it has

started N transactions

▪ ended(<N>): Returns: False if the producer has not ended N transactions, True if it has

ended N transactions

• Transaction Sequence (TS): A graph expressing the relation between the defined TPs and optional scheduler

strategies using the nodes known as Transaction Sequence Elements (TSE).

• Schedulers: Capable of specifying different scheduling strategies such as “Weighted” (Scheduling based e.g.

on the number of transactions from each producer related to each other with a weight), “Round Robin”, etc.

Attributes for each type of scheduling strategy can also be specified, e.g. weights for the weighted strategy. A

scheduler instance can be reused in multiple parallel constructs. Hence. State for each reference must be

maintained by the scheduler. Additionally, the termination criteria must also be specified.

• Transaction Sequence Elements (TSE): The TSEs defines the nodes of the TS graph. There are different

TSE node types. Each node type has also a state and a set of functions which are like the TP state and functions.

They are needed as waits should be done both on TSEs and TPs.

o TSE types:

▪ TST: Produces a transaction from a given producer.

▪ TSS: Sequence node. Allows TSEs to be ordered sequentially.

▪ TSP: Parallel node. Allows scheduling among any number of TSEs with a specified

scheduling strategy and a termination criterion

▪ TSR: Repetition node. Repeat a given TSE N number of times.

▪ TSW: Waiting node. The node waits until a Boolean condition is met. The TSE and TP

functions can be used in the Boolean expression.

▪ TSC: Conditional node. Based on a Boolean condition it either evaluates the true branch

TSE or the false branch TSE.

o TSE state:

▪ started_trans: The number of started transactions as a sum of all producers which the

TSE spans. Reset whenever the TSE is started. Always incremented while the TSE is

running.

▪ ended_trans: The number of ended transactions as a sum of all producers which the TSE

spans. Reset whenever the TSE is started. Always incremented while the TSE is running.

o TSE functions

▪ started(<N>): Returns: False if the TSE has not started N transactions, True if it has

started N transactions

▪ ended(<N>): Returns: False if the TSE has not ended N transactions, True if it has ended

N transactions

▪ terminated(): Returns: False if the TSE is active and True if it is terminated.

▪ terminate(): Terminates the TSE

With this refined model we can now create a refined version of the example in Figure 2. This is shown in Figure

4.

5

IV. DSL AND ABSTRACT SYNTAX TREE

To formalize this even further then the transaction

sequence model allows us to define a DSL for the

transaction sequence model. An example of this is given

in Figure 5 which shows the TSR repetition transaction as

BNF and the semantics of the related TSE functions.

However, to avoid the overhead of having to define a

scanner and parser for the DSL then we deliberately

choose to specify the transaction sequence model directly

as an eDSL by defining an API for the nodes in the

abstract syntax tree (AST). Hence, the AST can be

represented directly by classes in Python. In the following

AST definition, Python is used for the signature definition

of the nodes (For simplicity only the weighted scheduler

is defined):

tp(name, N)

Parameters:

• name (string) – The name of the transaction

producer.

• N (integer) – The number of transactions to be

produced. 0 indicates infinity.

Return type: Returns a TP instance. The TP functions described in section III are supported.

scheduler_weight(name, weights)

Parameters:

• name (string) – The name of the scheduler.

• weights (integer list) – The list of weights to be used by the scheduler. First element in the list is the

weight for the first TSE in the tselist argument for the TSP node etc.

Return type: Returns a weighted scheduler instance.

tst(producer)

Parameters:

• producer (string) – The name of the transaction producer

Return type: Returns a TST node which produces a transaction from the specified producer. The TSE

functions described in section III are supported.

tss(tselist)

Parameters:

• tselist (TSE node list) – the list of TSE nodes which shall be evaluated in sequence

Return type: Returns a TSS node. The TSE functions described in section III are supported.

tsp(scheduler, tselist, termination_criteria)

Parameters:

• scheduler (object) – The scheduler used to evaluate the parallel node.

TSS

TP0

N=5

TP1

N=3
TP2

N=5

TSR

TST(TP0) TST(TP1) TST(TP2)

TSW(TP0

.ended(4))

TSP

TSR TSR

Scheduler

“Weighted”

Weights: [2, 1, 2]

‘ALL’: Termination criteria for TSP construct. All
processes must terminate before the TSP.

Figure 4: Example of a Transaction Sequence Model

6

• tselist (List of TSE nodes) – The TSE nodes

which shall be evaluated in parallel.

• termination_criteria (Boolean expression) –

The TSP terminates when termination_criteria

evaluates to true.

Return type: Returns a TSP node. The TSE functions

described in section III are supported.

tsr(tse, N)

Parameters:

• tse (TSE node) – Node to be evaluated N

number of times.

• N (integer) – The number of iterations. 0

indicates infinity.

Return type: Returns a TSR node. The TSE functions

described in section III are supported.

tsw(wait_criteria)

Parameters:

• wait_criteria (Boolean expression) – Boolean expression to be evaluated. tse is evaluated when

wait_criteria is true.

Return type: Returns a TSW node. The TSE functions described in section III are supported.

tsc(tset, tsef, conditional)

Parameters:

• tset (TSE node) – Node to be evaluated when conditional is true.

• tsef (TSE node) – Node to be evaluated when conditional is false.

• conditional (Boolean expression) – Boolean expression to be evaluated. tset is evaluated when

conditional is true and tsef is evaluated conditional is false.

Return type: Returns a TSC node. The TSE functions described in section III are supported.

V. IMPLEMENTATION DETAILS

The implementation becomes simpler as we have no need for a scanner and parser as we can express the

transaction sequence model directly as an AST. The consequence is that the implementation builds up the abstract

syntax tree for the wanted bus traffic pattern using the AST

nodes and then generates code from that instance directly.

Thus, a Python representation is needed for each node in the

AST. See Figure 6 for an example of the TP node.

Our prototype generator in Python, targeting

SystemVerilog/UVM, constructs the specified AST and then

generates the following elements by using Python templates

that contains the static parts of the SystemVerilog code:

• A SystemVerilog/UVM representation of the

AST instance. The set of AST classes generated

in SystemVerilog/UVM is AST instance specific.

• A synchronization object for synchronizing

among transaction sequences.

Additionally, some reusable run-time SystemVerilog

components are also needed, such as:

• Base classes for the AST nodes

• UVM virtual sequence starting the bus traffic pattern

TSR.started

TSR.ended

TS TS TS

0 1

Time

1 0
0 0

0 1

Producer

<TSR>::=TSR(<TSE>, <N>)

Any other transaction

sequence element

Number of

repetitions

TSR(TS, 3)

class Base():

 def __init__(self, t, name = None):

 self.node_type = t

 self.refs = []

 self.name = name

 def get_name(self):

 return self.name;

 def get_type(self):

 return self.node_type;

 def get_refs(self):

 return self.refs;

class tp(Base):

 def __init__(self, name, n = 0):

 Base.__init__(self, 'tp', name)

 self.max_iter = n

 def show(self, parent, label = None):

 s = '{}'.format(self.name)

 print(s);

 self.tool.add_node(self, parent, label)

Figure 5: DSL for TSR repetition transaction

Figure 6: Python Representation of the TP node

7

• Interpretation algorithm

The AST is evaluated by traversing the nodes and getting the overall tree status which can be one of three things

only:

• WAITING: Cannot produce a transaction now.

• READY: The next transaction can be produced and applied

• TERMINATED: The AST finished (Either terminated or it finished)

Thus, once the AST has been constructed by the UVM sequence then the evaluation algorithm is started, and it

will evaluate the AST until it is TERMINATED.

This approach is not SystemVerilog/UVM specific. Thus, another back end can be implemented which for

instance generates the same output but for SystemC instead and a SystemC based runtime environment can be

used to evaluate the AST. Another solution could be to let the generator produce UVM sequences directly but

since we also have a SystemC based verification platform to consider then the former was a better choice.

VI. EXAMPLE

The transaction sequence model example shown in

Figure 4 can now be expressed as an AST in Python. This

is shown in Figure 7. The Python code is then executed

once within the verification flow. The dsl library contains

the base classes for the AST nodes along with the generator

implementation. The generator is executed via the

root.create_uvm() which will generate the

appropriate UVM code (Primarily uvm_sequences and

the AST captured in a uvm_object data structure). A top

uvm_sequence is also generated which need to be started

by a uvm_test.

Furthermore, the root.create_graph() call

generates the AST as a viewable graph. It needs to be rerun

if the Python code or the generator is changed. The

VII. RESULTS

When compared to PSS, the defined AST will not

outperform PSS on vendor support, simulation platforms, debug, etc. but it allows the architect to express the

traffic patterns required when targeting fine-grained

transaction sequences on a single interface. Debugging is

quite straight forward as the result will just be a series of transactions being applied to the bus interface. Also,

because the implementation is an eDSL in Python, the maintenance of the software bundle is much easier.

Furthermore, the formalization of the problem has led to a tool which now can be used internally for expressing

advanced traffic patterns on different buses.

The AST will also make it possible to generate other elements in addition to the actual traffic pattern, e.g. a

graph visualizing the traffic pattern. It should be noted that the generated stimuli are portable as they will be related

to a certain bus protocol and not to a specific Device Under Test (DUT).

"""

AST Example

"""

from dsl import *;

tp0 = tp0('tp0', 5)

tp1 = tp1('tp1', 3)

tp2 = tp2('tp2', 5)

sch = scheduler_weight('WEIGHT', [2, 1, 2]);

tst0 = TST(tp0)

tst1 = TST(tp1)

tst1 = TST(tp2)

tsr0 = TSR(tst0)

tsr1 = TSR(tst1)

tsr2 = TSR(tst2)

tsw = TSW(tp0.ended() == 4)

tss = TSS([tsw, tsr2])

root = TSP(sch, [tsr0, tsr1, tss],

 tsr0.terminated() &&

 tsr1.terminated() &&

 tss.terminated())

root.create_graph('root');

root.create_uvm('root');

Figure 7: AST Example in Python

8

VIII. CONCLUSIONS

Overall, the paper demonstrates that the ability to express the traffic patterns accurately directly improves the

functional verification productivity and quality for RTL blocks significantly. It achieves this by providing architects

and verification engineers with a portable and executable specification of the required traffic patterns.

Additionally, the framework can quite straight forward be extended to handle the limitations defined in section

3. Handling multiple sinks can be done my allowing multiple roots and/or by defining multiple ASTs which can

share TSE nodes. The scheduling can also be extended to handle other meta data than counting transactions. For

instance, if scheduling is needed based on the amount of data then the TSE state and functions just needs to be

extended with a state capturing this and functions for accessing the new information. The functions can then be

used in the Boolean expressions.

Being able to handle constraints among transactions coming from the same transaction producer is more

difficult as this would require support for a constraint language in the transaction sequence model. For now, this

has been pushed to the evaluating layer. One way to solve this could of course be to allow the constraints to be

written in clear text as SystemVerilog constraints and then add directly into the code. However, the solution would

not be directly cross platform usable. This would require a constraint language which was generic.

Finally, releasing the generator to the open source community can be one way of allowing other verification

engineers access to tool which would allow them to generate complex traffic patterns.

REFERENCES

[1] IEEE Standard 1800.2-2017, “IEEE Standard for Universal Verification Methodology Language Reference Manual”, 2017.

[2] M. Fowler, “Domain-specific Languages”, Pearson Education, 2010.

[3] C. A. R Hoare, “Communicating Sequential Processes”, Prentice Hall International, 1985.

[4] S. Jamil Quirem and P. Krishna Saravu, “Fake CPU: A Flexible and Simulation Cost-Effective UVC for Testing Shared Caches”, In

Microprocessor and SOC Test and Verification (MTV), 2016 17th International Workshop on (pp. 1-6). IEEE, 2016.

[5] R. Edelman and R. Ardeishar, “Sequence, Sequence on the Wall – Who's the Fairest of Them All?”, Design and Verification Conference,

2013.

[6] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The

Single-Node Case”, IEEE/ACM Transactions on Networking. 1(3), 344-357, 1993.

[7] A. van Dursen, P. Klint and J. Visser, “Domain Specific Languages: An Annotated Bibliography”, ACM SIGPLAN Notices. 45(1), 26-

36, 2000.

[8] Portable Test and Stimulus Standard, “PSS Early Adopter II (PSS EA II)”, Accellera Draft Standard, 2018.

[9] Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI) protocol, ARM Ltd, 1996

