
Functional Safety Verification
For ISO 26262

Kevin Rich (krich@nvidia.com), NVIDIA

Shekhar Mahatme (smahatme@synopsys.com),

Meirav Nitzan (meirav@synopsys.com), Synopsys

mailto:krich@nvidia.com
mailto:smahatme@synopsys.com
mailto:Meirav@synopsys.com

Agenda

• Emergence of the Self Driving Car

• Functional Safety Primer for Automotive Semiconductors

• Mutation Analysis for Validating the Verification Process

• Functional Safety Verification Flow: FMEA to FMEDA

• Customer Case Study; Q&A

Emergence of the Self Driving Car

U.S. DOT Releases New Automated

Driving Systems Guidance

September 12, 2017 | Ann Arbor, Michigan
​​​​​​​TRANSPORTATION SECRETARY ELAINE L. CHAO ANNOUNCES VISION FOR AUTOMATED VEHICLE
TECHNOLOGY, EMPHASIZES SAFETY BENEFITS AND CONSUMER EDUCATION FOCUS
Ann Arbor, MI - The U.S. Department of Transportation and the National Highway Traffic Safety Administration (NHTSA) today
released new federal guidance for Automated Driving Systems (ADS): A Vision for Safety 2.0. This is the latest guidance for automated
driving systems to industry and States.

“The new Guidance supports further development of this important new technology, which has the potential to change the way we travel
and how we deliver goods and services,” said U.S. Transportation Secretary Elaine L. Chao. “The safe deployment of automated
vehicle technologies means we can look forward to a future with fewer traffic fatalities and increased mobility for all Americans.”

A Vision for Safety 2.0 calls for industry, state and local governments,

Levels of Automation in Cars

Roadmap of Autonomous Cars

2010 2015 2020 2025 2030

L1

L2: Partial

Autonomy

L3: Limited Self Driving

L4: Full Self Driving

L5: Self Driving Only

Autonomous Braking

Adaptive Cruise Control

Parking Assist

ACC With Lane Keep Assist

Auto Pilot: Traffic Jam

Auto Pilot: Highway

Auto Pilot: Parking

Auto Pilot: Road Train

Self-Driving &

Human-Driven Car

Self-Driving Only

ADAS and Self Driving Car Market Watch
2017 2018 2019 2020 2021 2025 20302016

Source:

https://venturebeat.com/2017/06/04/self-driving-car-timeline-for-11-top-automakers/

http://www.driverless-future.com/?page_id=384

http://mashable.com/2016/08/26/autonomous-car-timeline-and-tech/#C3BDRFPjcEq1

https://venturebeat.com/2017/06/04/self-driving-car-timeline-for-11-top-automakers/
http://www.driverless-future.com/?page_id=384
http://mashable.com/2016/08/26/autonomous-car-timeline-and-tech/#C3BDRFPjcEq1

Complex SOCs For ADAS

Functional Safety Primer for Automotive

Semiconductors

What is Functional Safety?

• Functional Safety is the “Absence of unreasonable risk due to hazards

caused by malfunctioning behavior of Electrical/Electronic systems”

[ISO 26262]

• In a nutshell, functional safety is about ensuring the safe operation of

systems even when they go wrong

• Functional safety is critical to many markets: Aerospace, Medical,

Industrial, Automotive, etc.

V-Diagram: Automotive View of

“Design”

Specification

Implementation

Verification &

Validation

VehicleOEM

ECU
Tier 1

HW + SWSemi

Functional Safety Standards

• IEC 61508: Base functional safety standard

• ISO 26262: Automotive functional safety standard

– Derived from IEC 61508, published 2011
• Part 1: Vocabulary

• Part 2: Management of Functional Safety

• Part 3: Concept Phase

• Part 4: Product Development: System Level

• Part 5: Product Development: Hardware Level

• Part 6: Product Development: Software Level

• Part 7: Production and Operation

• Part 8: Supporting Processes

• Part 9: ASIL Orientated and Safety Oriented Analysis

• Part 10: Guideline on ISO 26262

• Part 11: Application of ISOS 26262 to Semiconductors (2nd Edition)

Functional Safety Verification for Automotive IPs/SoCs
ISO 26262-5 Product Development: Hardware Level, Part 8, and Part 11

3. Concept phase

2. Management of functional safety
1. Vocabulary

3-6 Hazard analysis and risk

assessment (HARA)

4. Product development at the system level
4-7 System architectural design

6. Product development at the SW level5. Product development at the HW level

9. ASIL-oriented and safety-oriented analyses

8. Supporting processes
8-6 Specification and management of safety requirements

8-8 Change management
8-7 Configuration management

8-10 Documentation management
8-11 Confidence in the use of software tools
8-12 Qualification of software components

10. Guideline on ISO 26262

5-6 Specification of hardware safety requirements

5-8 Evaluation of the hardware architectural metrics

5-9 Evaluation of the safety goal violations due to random failures

6-6 Specification of software safety requirements

6-10 Software integration and verification

6-11 Testing of the embedded software

7. Production, operation,

service

11. Guideline on application of ISO 26262 to semiconductors
Source: ISO/DIS26262:2016:

Overview of ISO26262

Safety Goals/Requirements

• Safety Goal

– Top-level safety requirement

– Derived from Hazard Analysis and Risk Assessment (HARA)

• Example(s)

– Unintended activation of emergency brake must be prevented

– Unintended inflation of airbags must be prevented.

Hazard Analysis and Risk Assessment

(HARA) (OEMs)

• Automotive Safety Integrity Level (ASIL)
ASIL

Safety Element out of Context (SEooC)

• Chips and IPs are usually Safety Elements out of Context

Issue
No/little knowledge of the system in which the
design is used
- Hazards
- Safety goals
- Architecture

Resolution
SEooC vendors need to specify Assumptions of Use
(AoU)
- Safety requirements
- Expected integration environments and

requirements
SEooC vendors should aim at highest expected ASIL
- Fault avoidance
- Fault control
- Independent confirmation measures

Digital Logic Failure Modes

Found/covered by
Functional

Verification tools

Assessed by
Functional Safety
Verification tools

Safety Fault Metrics for ISO 26262 ASIL Ratings

• Fault Injection Testing recommended for ASIL A & B and highly recommended for ASIL C & D

• Maximize detection of single point and multi-point latent faults

• Probabilistic Metric of Hardware Failure (PMHF)

Metric ASIL B ASIL C ASIL D

Single Point Fault Metric ≥ 90% ≥ 𝟗𝟕% ≥ 𝟗𝟗%

Latent Fault Metric ≥ 60% ≥ 𝟖𝟎% ≥ 𝟗𝟎%

Metric ASIL B ASIL C ASIL D

PMHF (FIT Rate) 100 𝟏𝟎𝟎 𝟏𝟎

Method ASIL A ASIL B ASIL C ASIL D

Fault Injection Testing + + + + + +

ISO 26262 Safety Principles

In Operation

Prevent / Eliminate Bugs

Avoid Systematic Faults – Design Bugs

(Permanent Faults)

Control Failures

Control of Systematic Faults – Bug Escapes

(Permanent Faults)

Control of Random Faults – H/W Failures

(Permanent or Transient Faults)

Lifecycle of Component / Automobile

Development & Manufacturing

Implementation:
Use best practice/certified design flows

Implementation:
Deploy comprehensive Safety Mechanisms

Verification & Validation:
Use best-in-class Functional Verification methodology

Verification & Validation:
Follow ISO 26262 recommendations for ASIL level

Delivery

Functional Verification is Essential Starting Point

Prevent / Eliminate Bugs

Avoid Systematic Faults – Design Bugs

(Permanent Faults)

Verification & Validation:
Use best-in-class Functional Verification methodology

Functional Verification Technology Platforms

• Many technologies must be used to ensure the highest functional verification quality

• Early software bring-up enables faster and more complete verification

• Verification quality analysis provides objective measure of functional verification effectiveness

Functional Safety Verification –

Verify Control of Hardware Failures

Implementation:
Adopt state-of-the-art Safety Mechanisms

Control Failures

Control of Systematic Faults – Bug Escapes

(Permanent Faults)

Control of Random Faults – H/W Failures

(Permanent or Transient Faults)

Verification & Validation:
Follow ISO 26262 recommendations for ASIL level

Determine Diagnostic coverage by fault simulation

• Hardware failures are modeled as both systematic

and random faults (which may be permanent or

transient)

• ISO 26262 recommends fault injection testing to

verify the effectiveness of the Safety Mechanisms

• Results and reports from fault injection testing are

essential for ISO 26262 FMEDA work product

Verification Flow Alignment

System Requirements

Safety Plan

Fault Injection Testing

Safety RequirementsFunctional Requirements

Verification Plan

Functional Verification

Simulation EmulationFormal PrototypingStatic

Fault Simulation

Debug

FMEDA ReportTapeout

• Alignment of requirements for

functional and safety verification

• Accelerate complete verification

process

• Requires solution for systematic

and random fault testing

• Integrated with ISO 26262 Flows

• Failure mode effects analysis

• Safety plan traceability and

results

Traceability

Verification Goal Comparison

Functional Verification

Prevent / Eliminate Bugs

Avoid Systematic Faults

Functional Safety Verification

Control Failures

Confirm robustness of safety mechanisms

“In Operation” testing

Unified verification technologies with fastest

engines

Development and manufacturing testing

Control of Random Faults

Confidence in tool chain

Validate functional correctness of design

Verification Goal Comparison

Functional Verification

Prevent / Eliminate Bugs

Functional Safety Verification

Control Failures

Unified verification technologies with fastest

engines
Certified tool chain

Functional Safety Process
Implement and Confirm Quality of Safety Mechanisms (SM)

• Define Failure Mode and Effects Analysis (FMEA) for device

• Implement Safety Mechanisms to protect against failures

• Run fault injection to get ISO 26262 metrics

• Generate FMEDA report, Safety manual

ECC Memory

Protection

Software Test

Libraries

Dual-Core Lockstep

Custom Safety

Mechanisms

Example

Unique Functional Safety Needs - Summary

'SGV' columns: S=SPF, M=MPF, N=Safe [Drop-down]:

'DC gets MPF' columns: Y=Yes, N=No [Drop-down]:

Effect description of the FM

(what happens in case the FM

occurs) Po
rt

 IF

D
C

ge
ts

 M
PF

Re
g

IF

D
C

ge
ts

 M
PF

A
D

R
IF

D
C

ge
ts

 M
PF

CM
D

 IF

D
C

ge
ts

 M
PF

D
A

TA
 IF

D
C

ge
ts

 M
PF

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 S
PF

s)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 la
te

nt
 fa

ul
ts

)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 tr
an

si
en

t

fa
ul

ts
)

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 s
in

gl
e

to
 la

te
nt

fa
ul

ts
)

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 S
PF

s)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 la
te

nt
 fa

ul
ts

)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 tr
an

si
en

t

fa
ul

ts
)

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 s
in

gl
e

to
 la

te
nt

fa
ul

ts
)

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 S
PF

s)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 la
te

nt
 fa

ul
ts

)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 tr
an

si
en

t

fa
ul

ts
)

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 s
in

gl
e

to
 la

te
nt

fa
ul

ts
)

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 S
PF

s)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 la
te

nt
 fa

ul
ts

)

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 tr
an

si
en

t

fa
ul

ts
)

ID
 D

ia
gn

os
is

D
C

va
lu

e
es

ti
m

at
ed

(f
or

 s
in

gl
e

to
 la

te
nt

fa
ul

ts
)

1 Ports Controller 0.0111 0.1153
wrong port selected 8.3% 8.3%

one out of the 4 ports are wrongly

selected and lead to "write wrong data to

external memory N N N N N N N N S N DI001 60.0% 60.0% 60.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153
internal data stuck

0/1 or bit fl ip
81.3% 81.3% wrong data to external memory

N N N N N N N N S N - 0.0% 0.0% 0.0% - 0.0% DX001 99.0% 99.0% 99.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153

internal clock stuck

0/1 or toggles

incorrectly

8.3% 8.3% wrong data byte to external memory
N N N N N N N N S N - 0.0% 0.0% 0.0% - 0.0% DX001 99.0% 99.0% 99.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153

internal reset stuck

0/1 or toggles

incorrectly

2.1% 2.1% corrupted data to external memory
N N N N N N N N S N - 0.0% 0.0% 0.0% - 0.0% DX001 99.0% 99.0% 99.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153 - 0.0% 0.0% - N N N N N - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153 - 0.0% 0.0% - N N N N N - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153 - 0.0% 0.0% - N N N N N - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153 - 0.0% 0.0% - N N N N N - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153 - 0.0% 0.0% - N N N N N - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

1 Ports Controller 0.0111 0.1153 - 0.0% 0.0% - N N N N N - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0% - 0.0% 0.0% 0.0% - 0.0%

Additional UseCase 2 UseCase3 Additional UseCase 3

No

Block / sub-block

name

[Drop-down]:

Block /

Component

Type

(Block Group)

Failure Mode (FM)

for the block

FM

distribution

FM

distribution

transient
λ [FIT] λtransient [FIT]

Diagnosis type to be considered

Internal Additional Internal UseCase1 Additional UseCase 1 UseCase2

Project

designation:

Customer / Order

Number:

SURNAME, First

Name
Department 4/1/2017 4/5/2017 4/12/2017

Clever, Max Memory Development / CoolDesigns Attendant Attendant Absent

Smart, Tom Memory Development / CoolDesigns Attendant Absent Attendant

Funny, Simon Quality Department / CoolDesigns Attendant Attendant Attendant

Save, Steve Safety Department / CoolDesigns Attendant Attendant Attendant

Blind, Alex Safety Consultant / HotConsultants Attendant Attendant Attendant

Rich, Ben CEO / CoolDesigns Attendant Absent Absent

Role Signature Name Temp Ver Date

Author (SGS-TÜV) R. Hankammer 0.32 2/2/2017

Reviewer (SGS-TÜV) R. Pason 0.32 2/7/2017

Notice about reporting requirements:

FMEDA Example / Memory Controller (highly simplified)
just for illustration purposes - all formulas removed

EXMPL01

1. Participants Date

2. Quality Assurance

FMEDA

Failure Mode, Effects and Diagnostic

for Integrated Circuit

1.0
Analyis Version

7/6/2017
Version Date

0.36
Template Version

Final
Status

Certified toolchainGenerate FMEDA reports

(ISO-26262 deliverable)

Safety Requirements

Safety Verification Plan

Safety Coverage

tests

covergroups

code cov

fault

Traceability

Mutation Analysis for Qualifying Verification

Process

ISO 26262 Functional Safety Principles

In Operation

Prevent / Eliminate Bugs

Avoid Systematic Faults – Design Bugs

(Permanent Faults)

Control Failures

Control of Systematic Faults – Bug Escapes

(Permanent Faults)

Control of Random Faults – H/W Failures

(Permanent or Transient Faults)

Lifecycle of Component / Automobile

Development & Manufacturing

Implementation:
Use best practice/certified design flows

Implementation:
Deploy comprehensive Safety Mechanisms

Verification & Validation:
Use best-in-class Functional Verification methodology

Verification & Validation:
Follow ISO 26262 recommendations for ASIL level

Delivery

Systematic Failures

Ensure Avoidance of Systematic Faults

Quality of Verification

• Failing tests are debugged

• False Positives are silent

• False Negatives and False Positives are bugs in verification

Design has bug(s)

Yes No

Verification
result is

Pass False Positive Ok (done)

Fail
Ok

(debug design)
False Negative

Systematic Failures

Effective Verification

• Applies universally

Design under
Verification

Verification Environment

Compare

Bug

Stimulus

Reference Model

Activation DetectionPropagation

Systematic Failures

Assessing Verification Effectiveness

Design under

Verification

Verification Infrastructure

Compare

Bug

Test

Cases

Expected Results

DetectionPropagationActivation

Code coverage measures activation, but not propagation nor detection

Functional coverage checks “important” functional points,
however comprehensiveness of functional points is unknown

Systematic Failures

Mutation-Based Analysis Concept

• Automatically inserts “artificial bugs” called faults into the design

• Runs verification process on “broken” design

• Measures the ability of the environment to activate, propagate, and detect faults

.

Functional Qualification

Design under

Verification

Verification Infrastructure

Compare

Fault

Stimulus

Expected Results

Activation Propagation Detection

Design can be:

- C / C++ / SystemC

- VHDL / (System)Verilog

- Mixed analog and

digital

Can be anything, including

- Analog

- VHDL / (System)Verilog

- C / C++ / SystemC

- Formal

Systematic (SW, HW model)

or Random (HW model)

Systematic Failures

How Does Mutation Work?

• Modifies design code to insert defects

o1 = f(i1)  o1 = 1’b0 // tie to constant

if (a)  if (TRUE) // force execution

f1(); f1(); // of “if” branch

else else

f2(); f2();

a = b | c  a = b & c // change operator

• Pass the broken design to the verification
– Does at least one test fail? Environment is robust

– Do all tests pass? Problem with verification environment

Systematic Failures

Interpreting Results

• Non-activated (NA)

– Stimulus does not exercise the fault

• Similar to code (line) coverage

• Non-propagated (NP)

– Stimulus exercises the fault

• But no difference seen at observation points vs. passing simulation

• Non-detected (ND)

– Stimulus exercises the fault

– A difference(s) propagates to observation point(s) vs. passing simulation

• But all tests PASS

• Detected (D)

– Stimulus exercises the fault

– At least one test FAILs

• OK

Systematic Failures

Systematic Failure Methodology

• Fault Reduction Technology
– Remove Equivalent Faults

• Faults which do not change the design due to dead logic or redundant code

– Prioritize fault injection
• Top 2 fault classes can expose big problems quickly

– Drops related faults when a fault is non-detected
• May also be non-detected and would point to same weakness

• Methodology
– Leverage the verification infrastructure

• Submit multiple test runs in parallel

– Start with a small set of tests/seeds
• A “smoke suite” will quickly find missing checkers/assertions that won’t “appear” if you simply add

more tests

– Iterate
• Fix problems as they are found and then continue

Systematic Failures

Phases of Functional Qualification

Detect

• Iterate enabling a fault in the Design

• Run tests activating the fault

• Determine if any test is capable of propagating and

detecting the fault

Activate
• Run every test once

• Determine which tests activate each fault

• Determine which faults are not activated

• Parse the design to determine faults to insert

• Search for unreachable faults

• Determine cones of influence

• Create Instrumented Files for the next 2 phases

Model

Fix and iterate as problems are found

Systematic Failures

Testcase
List

Mutation Based Analysis Flow

Easy Integration Within Existing

Environments

DUT

Verification Infrastructure

CompareTest

Cases

Expected Results

Systematic Failures

Mutated DUT

Config
Options

Reports

Formal Verification

Mutation Based Analysis Flow

Mutated DUTConfig
Options Reports

Systematic Failures

Proof

Properties

And

Constraints

DUT

Detailed Fault Reports

Results by Fault Class

Systematic Failures

Typical Problems Found

Results of
Human Error

Functional Qualification SolutionMissing or

incomplete test

scenario

Missing or incomplete

checker

Process problem

Hole in test

plan

Verification plan item

misinterpreted

Environment

over-constrained

Test plan item not

implemented

Checker not detecting

unexpected behavior
Checker disabled

or forgotten

Script error giving

a false positive

Systematic Failures

Functional Safety Verification Flow

FMEA to FMEDA

ISO 26262 Work Products

• FMEA, FMEDA

– F – Failures of a given component Consider a component in a system

– M – Mode Look at one of the ways in which it can fail

– E – Effects Determine the effects this failure mode will cause to the

system we are examining

– D – Diagnostic Determine the coverage

– A – Analysis Analyze how much impact the symptom will have on the

environment/people/ the system itself

Random Failures

Source:https://about.brighton.ac.uk/cem/research/seminars/2011/fmea_pres.pdf

Failure Mode Effect Analysis (FMEA)

• Systematic method of failure analysis

– For each element:

• Identify the manner in which a failure can occur

• Identify the consequences of the failure

• Identify the probability/severity of the failure

• Common entry systems

– Excel spreadsheet

– Commercial tools

Random Failures

FMEA Components

• Checkbox of items in an FMEA

– Block Diagram

– Block List

– Failure Modes

– Potential Cause of Failure

– Safety Mechanism

– RPN (Risk Priority Number)

– Estimated Coverage

Random Failures

FMEA Inputs example

• Design block level list and diagram.

Reset Logic

Flag Logic

Read Control

Read Pointer

Write Control

Write Pointer

SRAM

Random Failures

Block Diagram of FIFO with Static Memory

FMEA Failure Mode analysis example

– Failure Mode 1:

• Failure: Full signal is not raised when FIFO

is full

• Effect: Data will be overwritten

• Safety Mechanism: Redundant read/write

pointers

– Failure Mode 2:

• Failure: Data in FIFO is corrupted

• Effect: Invalid data

• Safety Mechanism: ECC

Random Failures

Block Diagram of FIFO with Static Memory

FMEA Work product example:

• <show FMEDA report example>

Random Failures

Failure Mode Effect &Diagnostic

Analysis (FMEDA)

• A detailed analysis technique to obtain:

– Design failure rates

– Failure Modes diagnostic capability

• FMEDA is an extension of the FMEA analysis

– Assessing the Safety Metrics for the given Failure Mode

Random Failures

FMEDA Inputs

• Technology Information for Failure In Time (FIT)

– Needed to compute Failure Rates

• Design information

– Digital logic and analog area, flop/latch, RAM/ROM counts

• Needed to compute Failure Mode Distribution

• Safety Mechanism (if exists) for the Failure Modes

Random Failures

ISO 26262 acceptable

technology standards:

- IEC TR 62380

- SN 29500

- FIDES Guide

Failure Mode (FM) Distribution

• Each FMEDA needs to have a base Failure Rate assigned to it

• Possible distributions:

– Uniform: Each FM has a failure rate equal to the overall failure rate

divided by the number of failure modes

• Reasonable assumption for initial analysis; assumes highly symmetrical design

– Area: Each FM’s failure rate depends on its relative portion of the design

area

• Similarly, it may depend on the number of gates/flops

– Number of outputs affected

• Considers their cone of influence

Random Failures

FMEDA Diagnostic Coverage

Components

• Fault list – a list of design locations with potential random failures

– Based on FMEA potential cause of failure

– Generated from block level or elementary sub parts

• Observation Points

– Design points in which the effect of an injected fault should be observed

• Normally –at the boundary of a block in which the fault is injected

• Diagnostic Points

– Design points which are activated when the safety mechanism detects the

injected fault

• e.g.: safety_alarm IO pin, interrupt to interrupt controller etc.

Random Failures

FMEDA Diagnostic Coverage

Components – cont.

• Workloads

– These are sets of tests which stimulate the area of the injected fault

– Types of workloads:

• Representative: follow normal use cases, do not necessarily activate all

signals in the relevant block

• Exhaustive: provide 100% toggle coverage of the relevant block

Random Failures

ISO 26262 Fault Classification
Random Failures

Source:

ISO 26262-5

Annex B

Technology

FIT

λS λSPF λRF λMPF, det

λMPF, lat

Fault Classification Simplified

Failure mode of HW element

Non-safety related Safety related

Safe fault
Not considered in Metric

Safe fault Detected MPF Perceived MPF Latent fault Residual and SPF

Random Failures

Faults Classification (1)

• Safe Faults (for calculating λS)

– Faults which will not violate a safety goal

– Example:

• Faults in CPU debug logic

• Single Point Faults (for calculating λSPF)

– A single fault which can lead to a violation of a safety goal

– Not protected by a SM

– Example:

• Interconnect with no protection for data of address buses

Random Failures

Faults Classification (2)

• Residual Faults (for calculating λRF)

– A single fault which can lead to a violation of a safety goal

– Not detected by a SM (SM does not have 100% coverage)

– Example:

• A memory fault which is not detected by memory diagnostics (e.g.

checkerboard test)

Random Failures

Faults Classification (3)

• Detected Dual (Multi) Point Fault (λMPF,det)

– A fault in combination with another fault which leads to a violation of a

safety goal

– Detected by the SM

– Example:

• A memory bit with a permanent fault which is protected by parity and activates

a warning light

• A fault in the parity logic leads to a violation of the safety goal

• Self Test of the parity logic can detect the fault in it

Random Failures

Faults Classification (4)

• Latent Dual (Multi) Point Fault (λMPF,l)

– A fault in combination with another fault which leads to a violation of a

safety goal

– Is not detected by the SM

– Example:

• A memory bit with a permanent fault which is corrected by ECC but does not

activate a warning light

• A fault in the ECC would lead to a violation of the safety goal

Random Failures

• Failure Rate:

• SPFM

• LFM

ISO 26262 Metric (part 5 Annex C)

Fault Classification Through Simulation

Observation Points

Non-Safety Related

F1
Diagnostic Points

Safety Mechanism

F2
?

F3

F4

Safety Related

F1 – Safe

F2 – Assumed Dangerous

F3 – Dangerous Detected

F4 – Dangerous Undetected

If a fault was not observed and/or

detected (F2), it can be:

1. A safe fault

2. A dangerous fault which did not

propagate due to insufficient

stimulus

Fault Injection Campaign

• Goal: determine Diagnostic Coverage of the SM by injecting faults in

the design, and checking if they are detected by it

– Fault simulators

• Can use existing verification tests

• Can run concurrently, handling many faults at a time

• Stimulus may not be sufficient to cause all dangerous faults to propagate

– Formal tools

• Can determine which faults are uncontrollable from the inputs

• Can check for Observation points Cone Of Influence (COI) – observability of

faults

Random Failures

Fault Simulation Strategies

• At the beginning of the fault campaign – sample low percentage (e.g.

2%)

– Check that your safety mechanism coverage matches expectations

• Full fault campaign –use Expert Judgement for sampling size

– well-known Safety Mechanisms vs. “home grown” ones

• E.g.: Covering a safety critical processor by creating a lock-step with a

redundant copy of the processor is a well known SM in the industry

» In this case it may be enough to fault simulate 5-10% of the faults

• Other SMs need 100% fault simulations

Random Failures

Add Observation (Strobe) Points

• When it comes to strobing, three things are important:

– Location (where), Location (when), Location (what)!

– Strobing affects not only how many faults will detected, it will affect performance at well.

– Use $fs_strobe to add observation and diagnostic points

Random Failures

initial begin
wait (reset===1);
$display (“reset completed injecting faults now”);
$fs_inject;
forever @(posedge testclk)
if (faultSenseOn === 1’b1)

#99 $fs_strobe(TPAD1, TPAD2, TPAD3);
end

Example:

Delaying fault injection until after
reset typically gives higher test
coverage due to more detected faults and
fewer potential faults

Syntax:
$fs_strobe(<list_of_hierarchical_signal_names>) or
$fs_strobe(<instance_path>) Automatically strobes all outputs of a

Verilog instance

Generate Faults

• Many methods available to generate faults

– Let tool generate faults

– Import faults from 3rd party tools

– Specify faults using a proprietary Standard Fault Format

• Advantage of using Standard Fault Format

– Can specify user defined fault status

– Can specify regions to generate faults and also regions to exclude

– Extremely compact representation for transient faults

– Can use wildcards

– Can specify sampling methods during fault generation

– Can specify user defined coverage metrics

Random Failures

Use Concurrent Fault Simulator

Legacy Parallel Simulation Technology Concurrent Fault Simulation Technology

Good

Machine

Faulty

Machine

Differences

b’2

Good

Machine

Faulty

Machine

Differences

b’0

Good

Machine

Faulty

Machine

Differences

b’1

Faulty Machines

b’1 b’0

b’1 b’0

Good Machine =

Functional

Simulation

Differences

b’1

Thousands of faults in a single simulation

Orders of magnitude faster than parallel simulation

Random Failures

Use Formal Technology To Analyze

Safe/Unsafe Faults

Inject faults

Observed Not Observed

Workload issue

Safe

Formal

Non-controllable and

Non-observable

Observable or

Inconclusive

Fault list + DUT

Benefits of Formal Fault Analysis

Stage 1: Effective fault simulation

Stage 2: Manual analysis of unobserved

faults

• Formal filtering of faults can provide a boost to fault coverage % by eliminating safe faults

• Formal analysis of unobserved faults can help in creating better stimulus

% Fault

coverage

Time spent

% gain

achieved

manual time saved

Boost from formal analysis

% gain

achieved Boost from formal filtering

The fastest way to fault simulate is NOT to fault simulate …

FMEDA calculation & Report

• Probabilistic Metric for random Hardware Failures (PMHF)

• Single-point fault metric (SPFM)

• Latent-fault metric (LFM)

ISO 26262 Metric report

NVIDIA ISO 26262 Methodology

Case Study

NVIDIA Case Study

• Focus on FMEA to Metrics process for HW

• Big Picture

• FMEA Challenges

• FI Challenges

• Mindset Challenges

• Conclusions

Stating the Obvious : Speed Matters

FMEDA

FMEDA Flaw

Fault
Injection

FI Flaw

FMEA

FMEA Flaw

Work
Products &

Metrics
Start

FMEA Flaw FMEDA Flaw

Scaling the Obvious

FMEDA
Fault

Injection
FMEA

Work
Products &

Metrics
Start

Nobody Wins a Marathon in the 1st Mile

• How to interpret and apply ISO 26262?

• How to communicate that guidance?

Determine
methodology /

Develop
guidance

FME(D)A: Distribution vs. Quality

• Distribution of execution

• Quality of results

Distribution of Execution

vs.

Quality of Results

FMEA Execution Issues

• FMEA template format

• Scope of an individual FMEA

• Granularity of analysis within an FMEA

• Uniform application of the standard

• FMEA is just the start

DUT (Chip)

Z01X is a Tool, How Will You Use It?

• What IPs, FMs?

• DUT selection

– Where does the FM live?

– Available DUTs?

– Where does SM live? IP (Unit)

Scope of

FME(D)A

DUT (Cluster)

SM

SM for FMx

FI : No Shortage of Questions

• Workload selection

• RTL vs Gates

– Transients can reasonably use RTL or Gates

– Permanents need Gates

• DUT, Workload, RTL vs. Gates interact

FuSa Requires Mindset Change

• DV is used to thinking about systematics (“bugs”)

– DV: Assume functionality is buggy, expose the bugs

– FI for FMEDA: Assume functionally correct, measure efficacy of SM

• Arch, design are not used to thinking about random faults

Conclusions

• Specialized tools are necessary

– 100 Excels will not suffice

• FuSa methodology must be carefully defined

• FuSa methodology != DV methodology

• Phase rollout to avoid churn

– Single pilot

– 1 pilot per category/type of IP

– Full rollout

Thank You!

