

Functional Safety Verification For ISO 26262

Kevin Rich (<u>krich@nvidia.com</u>), NVIDIA Shekhar Mahatme (<u>smahatme@synopsys.com</u>), Meirav Nitzan (<u>meirav@synopsys.com</u>), Synopsys

- Emergence of the Self Driving Car
- Functional Safety Primer for Automotive Semiconductors
- Mutation Analysis for Validating the Verification Process
- Functional Safety Verification Flow: FMEA to FMEDA
- Customer Case Study; Q&A

Emergence of the Self Driving Car

U.S. DOT Releases New Automated Driving Systems Guidance

September 12, 2017 | Ann Arbor, Michigan

TRANSPORTATION SECRETARY ELAINE L. CHAO ANNOUNCES VISION FOR AUTOMATED VEHICLE TECHNOLOGY, EMPHASIZES SAFETY BENEFITS AND CONSUMER EDUCATION FOCUS

Ann Arbor, MI - The U.S. Department of Transportation and the National Highway Traffic Safety Administration (NHTSA) today released new federal guidance for *Automated Driving Systems (ADS): A Vision for Safety 2.0*. This is the latest guidance for automated driving systems to industry and States.

"The new Guidance supports further development of this important new technology, which has the potential to change the way we travel and how we deliver goods and services," said U.S. Transportation Secretary Elaine L. Chao. "The safe deployment of automated vehicle technologies means we can look forward to a future with fewer traffic fatalities and increased mobility for all Americans."

A Vision for Safety 2.0 calls for industry, state and local governments,

Levels of Automation in Cars

AUTOMATION LEVELS OF AUTONOMOUS CARS

Roadmap of Autonomous Cars

https://venturebeat.com/2017/06/04/self-driving-car-timeline-for-11-top-automakers/ http://www.driverless-future.com/?page_id=384 http://mashable.com/2016/08/26/autonomous-car-timeline-and-tech/#C3BDRFPicEg1

Complex SOCs For ADAS

Functional Safety Primer for Automotive Semiconductors

What is Functional Safety?

- Functional Safety is the "Absence of unreasonable risk due to hazards caused by malfunctioning behavior of Electrical/Electronic systems" [ISO 26262]
- In a nutshell, functional safety is about ensuring the safe operation of systems even when they go wrong
- Functional safety is critical to many markets: Aerospace, Medical, Industrial, Automotive, etc.

Functional Safety Standards

- IEC 61508: Base functional safety standard
- ISO 26262: Automotive functional safety standard
 - Derived from IEC 61508, published 2011
 - Part 1: Vocabulary

2018

- Part 2: Management of Functional Safety
- Part 3: Concept Phase
- Part 4: Product Development: System Level
- Part 5: Product Development: Hardware Level
- Part 6: Product Development: Software Level
- Part 7: Production and Operation
- Part 8: Supporting Processes
- Part 9: ASIL Orientated and Safety Oriented Analysis
- Part 10: Guideline on ISO 26262
- Part 11: Application of ISOS 26262 to Semiconductors (2nd Edition)

Functional Safety Verification for Automotive IPs/SoCs

ISO 26262-5 Product Development: Hardware Level, Part 8, and Part 11

2018

JNITED STATES

Safety Goals/Requirements

- Safety Goal
 - Top-level safety requirement
 - Derived from Hazard Analysis and Risk Assessment (HARA)
- Example(s)
 - Unintended activation of emergency brake must be prevented
 - Unintended inflation of airbags must be prevented.

Hazard Analysis and Risk Assessment (HARA) (OEMs)

E4

• Automotive Safety Integrity Level (ASIL)

Probability of Exposure		Con		ontrollability by		Severity of Failure		ASIL					
			Driver		Ξ.					A B	С	D	
									Severity	Probability	C1	C2	C3
E0	Combination of Very low Probabilities		C0	Controllable in general		S0	No injuries		S1	E0	QM	QM	QM
E1	Very Low Probability (less often than once a year for the great majority of drivers) C1 Simply controllable (99% or more of all drivers are usually able to avoid a harm)		S1	Light and moderate injuries			E1 E2	QM QM	QM QM	QM QM			
			drivers are usually about to avoid a harm)	drivers are usually able to avoid a harm)		S2	Severe and life- threatening injuries (survival possible)			E3	QM	QM	A
E2	Low Probability (a few times a year for the great majority of		C2	Normally controllable (90% or more of all drivers are usually able to avoid a harm)					S 2	E4 E0 E1			QM QM
	drivers)					S 3	Life threatening injuries (survival			E2	QM	QM	A
E3	 Medium Probability (once a month or more often for an average driver) High Probability 		С3	C3 Difficult to control or						E3	QM	Α	в
		(Less than 90% of all drivers are usually ab	(Less than 90% of all drivers are usually able	e		uncertain), fatal injuries		S 3	E4 E0	A QM	B QM	C QM	
E4			or barely able to avoid a harm)					E1	QM	QM	Α		
	(almost every drive on average)									E2	QM	Α	В
										E3	Α	В	С

Safety Element out of Context (SEooC)

Chips and IPs are usually <u>Safety Elements out of Context</u>

Issue

No/little knowledge of the system in which the design is used

- Hazards
- Safety goals
- Architecture

Resolution

SEooC vendors need to specify Assumptions of Use (AoU)

- Safety requirements
- Expected integration environments and requirements

SEooC vendors should aim at highest expected ASIL

- Fault avoidance
- Fault control
- Independent confirmation measures

Digital Logic Failure Modes

Systematic failure / fault

 Failure related in a deterministic way to a certain cause to be eliminated by a modification of the design or of the manufacturing process, operational procedures and documentation

Random hardware failure / fault

• Failure occurring at a random time which results from degradation mechanisms in the hardware

2018 DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION UNITED STATES

Safety Fault Metrics for ISO 26262 ASIL Ratings

Fault Injection Testing recommended for ASIL A & B and highly recommended for ASIL C & D

	Method	ASIL A	ASIL B	ASIL C	ASIL D	
	Fault Injection Testing	+	+	++	++	
Maximize detection of single point and multi-point latent faults						
	Metric	ASIL B	ASIL C	ASIL D		
	Single Point Fault Metric	≥ 90%	≥ 97 %	≥ 99 %		
	Latent Fault Metric	≥ 60%	≥ 80 %	≥ 90 %		
Probabilistic Metric of Hardware Failure (PMHF)						
	Metric		ASIL B	ASIL C	ASIL D	
	PMHF (FIT Rate)			100	10	

ISO 26262 Safety Principles

Prevent / Eliminate Bugs	Control Failures			
Avoid Systematic Faults – Design Bugs	Control of Systematic Faults – Bug Escapes			
(Permanent Faults)	(Permanent Faults)			
	Control of Random Faults – H/W Failures (Permanent or Transient Faults)			
Implementation:	Implementation:			
Use best practice/certified design flows	Deploy comprehensive Safety Mechanisms			
Verification & Validation:	Verification & Validation:			
Use best-in-class Functional Verification methodology	Follow ISO 26262 recommendations for ASIL level			

Functional Verification is Essential Starting Point

Prevent / Eliminate Bugs

Avoid Systematic Faults – Design Bugs (Permanent Faults)

Verification & Validation: Use best-in-class Functional Verification methodology

Functional Verification Technology Platforms

- Many technologies must be used to ensure the highest functional verification quality
- Early software bring-up enables faster and more complete verification
- Verification quality analysis provides objective measure of functional verification effectiveness

Functional Safety Verification – Verify Control of Hardware Failures

- Hardware failures are modeled as both systematic and random faults (which may be permanent or transient)
- ISO 26262 recommends fault injection testing to verify the effectiveness of the Safety Mechanisms
- Results and reports from fault injection testing are essential for ISO 26262 FMEDA work product

Control Failures

Control of Systematic Faults – Bug Escapes (Permanent Faults)

Control of Random Faults – H/W Failures (Permanent or Transient Faults)

Verification & Validation: Follow ISO 26262 recommendations for ASIL level Determine Diagnostic coverage by fault simulation

Verification Flow Alignment

UNITED STATES

- Alignment of requirements for functional and safety verification
 - Accelerate complete verification process
 - Requires solution for systematic and random fault testing
- Integrated with ISO 26262 Flows
 - Failure mode effects analysis
 - Safety plan traceability and results

Verification Goal Comparison

Functional Verification Prevent / Eliminate Bugs

Validate functional correctness of design

Unified verification technologies with fastest engines

Development and manufacturing testing

Avoid Systematic Faults

Functional Safety Verification Control Failures

Confirm robustness of safety mechanisms

Confidence in tool chain

"In Operation" testing

Control of Random Faults

Verification Goal Comparison

SGS

SAAR

Functional Verification Prevent / Eliminate Bugs

Unified verification technologies with fastest engines

'Shift-Left' for Faster Time-to-Market

Manage Growing SoC Verification and System Validation Complexity and Cost

Functional Safety Verification Control Failures

Certified tool chain

ASIL D READY

Functional Safety www.sgs-tuev-saar.com

CERTIFICATE	NO FS/71/220/17/0	214 PAGE 1/1	HERE
LICENCE HOLDER	MANUFAC	TURING PLANT	
SYNOPSYS, INC. 690 E. MIDDLEFIELD MOUNTAIN VIEW, C/ USA	ROAD 690 E. MI A 94043 MOUNTA USA	YS, INC. DDLEFIELD ROAD IN VIEW, CA 94043	
PROJECT NO/-ID	LICENSED TEST MARK	CERT. REPORT NO.	
L38S-AU01	SOS IN INSTITUTE BORISHIT	L3850003	
Tested according to dentities	ISO 26262-8:2011; clause 11. IEC 61508:2010; clause 7.4.4	4.8 and 11.4.9	
Certified product(s)	Z01X ^{1M} functional safety verifi	cation solution	- N124
Model(s)	Version M-2017.03		
Technical Data and Parameter	Suitable for verification of safe ISO 26262 up to ASIL D IEC 61508 up to SIL 4, cla	ty related hardware acc. to:	
Specific Requirements learning industry	Any changes to the design, co require repetition of some pa- retain the certification. The o part of this certificate. The guidelines shall be maintained	emponents or processing may ret of the pre-qualification to prificate report is an integral is safety related application	
Certification Bo for Functional Sa SGS-TÜV Saar Gr Zertenersystem for Assessed	dy Munich, 27. fety J. U.C. former Journal Journal	10.2017 mann	
Hast mark regulation is an integral po- mist and deficiency duals of migrate 5-TUV Saar Generi, Halmanesskale Statistics and the Integral and San	ert of this performen e Destanting des Zertilistes 1, 11373 Mäscher, Germany Ernall fallings com	i sugar	
100		A	

SGS

MULTIN ST

Functional Safety Process

Implement and Confirm Quality of Safety Mechanisms (SM)

- Define Failure Mode and Effects Analysis (FMEA) for device
- Implement Safety Mechanisms to protect against failures
- Run fault injection to get ISO 26262 metrics
- Generate FMEDA report, Safety manual

DVCONFERENCE AND EXHIBITION UNITED STATES

Mutation Analysis for Qualifying Verification Process

Use best-in-class Functional Verification methodology

Follow ISO 26262 recommendations for ASIL level

Quality of Verification

- Failing tests are debugged
- False Positives are silent
- False Negatives and False Positives are bugs in verification

Systematic Failures

Effective Verification

• Applies universally

Systematic Failures

Assessing Verification Effectiveness

Code coverage measures activation, but **not** propagation nor detection

Functional coverage checks "important" functional points, however comprehensiveness of functional points is unknown

Mutation-Based Analysis Concept

- Automatically inserts "artificial bugs" called faults into the design
- Runs verification process on "broken" design
- Measures the ability of the environment to activate, propagate, and detect faults

How Does Mutation Work?

• Modifies design code to insert defects

Pass the broken design to the verification

- Does at least one test fail? Environment is robust
- Do all tests pass?
 Problem with verification environment

Interpreting Results

- Non-activated (NA)
 - Stimulus does not exercise the fault
 - Similar to code (line) coverage
- Non-propagated (NP)
 - Stimulus exercises the fault
 - But no difference seen at observation points vs. passing simulation
- Non-detected (ND)
 - Stimulus exercises the fault
 - A difference(s) propagates to observation point(s) vs. passing simulati
 - But all tests PASS
- Detected (D)
 - Stimulus exercises the fault
 - At least one test FAILs
 - OK

Systematic Failure Methodology

- Fault Reduction Technology
 - Remove Equivalent Faults
 - Faults which do not change the design due to dead logic or redundant code
 - Prioritize fault injection
 - Top 2 fault classes can expose big problems quickly
 - Drops related faults when a fault is non-detected
 - May also be non-detected and would point to same weakness
- Methodology
 - Leverage the verification infrastructure
 - Submit multiple test runs in parallel
 - Start with a small set of tests/seeds
 - A "smoke suite" will quickly find missing checkers/assertions that won't "appear" if you simply add more tests
 - Iterate
 - Fix problems as they are found and then continue

Phases of Functional Qualification

Model	Parse the design to determine faults to insert Search for unreachable faults Determine cones of influence Create Instrumented Files for the next 2 phases
Activate	Run every test once Determine which tests activate each fault Determine which faults are not activated
	Iterate enabling a fault in the Design
Detect	Run tests activating the fault
	Determine if any test is capable of propagating and detecting the fault
Fix and iter	e as problems are found

Easy Integration Within Existing Systematic Failures Environments

Systematic Failures

Formal Verification

Detailed Fault Reports

Qualification Status	ult Classes.	Sour	ce Files Tes	stcases Probe	s Wave	eforms Hel	p 🗸							
Fault classes for 'dag_top'														
Class name	Faults in Design	Faults in List	Non-Activated	Non-Propagated	Detected	Non-Detected	Disabled By Certitude	Disabled By User	Dropped	Not Yet Qualified				
ConnectivityOutput	183	183	16		107	19	5	0	36	0				
ResetConditionTrue	261	261	0	89	149	11	4	0	0	8				
SynchronousControlFlow	797	797	2	29	370	4	48	0	338	6				
ConnectivityInput	1596	1596	103	18	527	10	98	0	840	0				
SynchronousDeadAssign	331	331	0	19	183	7	93	0	29	0				
ComboLogicControlFlow	762	762	23	25	253		Part of Contract Cont							
SynchronousLogic	532	532	3	13	246	Qualification Status Pault Class	es. Source Files. Testcases. Prof	waters. Top -		0				
ComboLogic	8958	8958	14	101	584	Fault class "CannectivityCulput"				428				
OtherFaults	1869	3	0	0	0	This report was generated on: 2011-1 Use these links for directly jumping to table of the kinn-directly jumping to	1-21 at 0746-18 The tables : the table of the Non-Detected fo Ofacility and the table of the Dis shield By C	alls (2 fault), the table of the Non-Propag edited (table) (2 fault)	ated faults () faults), the	0				
All Fault Classes (9)	15289	13423	161	294	2419					442				
						Non-Detected leafs Facility Sciences to Output S1 B0 Votal : 2 NonDetected Non-Propagated facility Facility Characteris to Output Total : 0 NonPropagated	Type S #Unable for detection DupudPortDucket DupudPortDucket S Type S #Unable for Detection	Son S. Educoded Tenteuron S. 1 1 1 100 3 2 100 Educated Tenteuron S. File S. Lat	Mar St. Lone S. Uppolipione St. Uppolipione H4					

Results by Fault Class

Functional Safety Verification Flow FMEA to FMEDA

ISO 26262 Work Products

- FMEA, FMEDA
 - F Failures of a given component Consider a component in a system
 - M Mode Look at one of the ways in which it can fail
 - E Effects Determine the effects this failure mode will cause to the system we are examining
 - **D Diagnostic** Determine the coverage
 - A Analysis Analyze how much impact the symptom will have on the environment/people/ the system itself

Failure Mode Effect Analysis (FMEA)

- Systematic method of failure analysis
 - For each element:
 - Identify the manner in which a failure can occur
 - Identify the consequences of the failure
 - Identify the probability/severity of the failure
- Common entry systems
 - Excel spreadsheet
 - Commercial tools

FMEA Components

- Checkbox of items in an FMEA
 - Block Diagram
 - Block List
 - Failure Modes
 - Potential Cause of Failure
 - Safety Mechanism
 - RPN (Risk Priority Number)
 - Estimated Coverage

FMEA Inputs example

Design block level list and diagram.

Block Diagram of FIFO with Static Memory

FMEA Failure Mode analysis example

- Failure Mode 1:
 - Failure: Full signal is not raised when FIFO is full
 - Effect: Data will be overwritten
 - Safety Mechanism: Redundant read/write pointers
- Failure Mode 2:
 - Failure: Data in FIFO is corrupted
 - Effect: Invalid data
 - Safety Mechanism: ECC

Block Diagram of FIFO with Static Memory

5

5

5

5

5

5

CPU/GPU: Unintended instruction(s) flow executed Processing units: Other sub-elements: d.c. fault mode

CPU/GPU::Unintended instruction(s) flow executed units: ALU - Data Path::Soft error model (for seque

CPU/GPU: Unintended instruction(s) flow executed a units: ALU - Data Path:: Soft error model (for seque

HOST FM 3 MEM CTRL

HOST FM 5 REG UNIT

HOST FM 6 REG UNIT

HOST FM 7 REG UNIT

HOST FM 8 REG UNIT

MEM CTRL

HOST FM 4

9

10

11

12

13

14

15

FMEA Work product example:

A	В	с	D	E		F	G	н	1	J	к		L	м	N
\square							PRIN	IARY	SAFETY	MECHAN	IISMS				
-															
• •															
			I				Pequire				1				
5	Element	Unique ID	Safety Mechanism	Diagnostic or	Avoidance?	Туре	ments ID	Periodicity	Execution Time	Error Response	Error Reporting Time	Equivaler	nt ISO 26262 Diagnostic	ISO 26262 DC	Estimated
	Host H	IOST_PSM_1	Host Safety 1	Avoida	ince	HW (internal)		continuous	Real-time	Interrupt	1ms	hardware	e consistency monitoring	High	Medium
	Host H	IOST_PSM_2	Host Safety 2	Diagno	ostic	HW (internal)		continuous	Real-time	Interrupt	1ms	Processing units	: Other sub-elements::Parity bit	Low	Medium
18	Host H	OST_PSM_3	Host Safety 3	Avoida	ince	HW (internal)		continuous	Real-time	Interrupt	1ms	hardware	e consistency monitoring	High	Medium
<u> </u>	nost [H	1051_PSM_4	Host Safety 4	Diagno	JSUC	Hw (internal)		continuous	[Real-time	Interrupt	Ims	over/	under flow detection	LOW	Medium
4 4	В		C D	E	F		G		н		t		J		к
									MAI	N FMEA					
2															
2 3 4															
2					Potential Fault	ts Potenti (as seen a	al Errors It top design	Potential	Effect(s) of Failure system)	(visible to					Severity
	Unique ID	D Top Desi	gn Element Elemen	-1 Element -2	Potential Fault	ts Potenti (as seen a element	al Errors It top design boundary)	Potential	Effect(s) of Failure system)	(visible to Sy	stem-Level Potential Effec	t Class	ISO 26262 Equivalent Fault/En	rror/Failure	Severity [Optional]

incorrect registers (Memory content corruptid Processor architectural state/control corrug CPU/GPU: Unintended instruction(s) flow executed processing units. Other sub-elements: d c. fault mode

incorrect registers Memory content corruptid Processor architectural state/control corrug CPU/GPU::Unintended instruction(s) flow executed processing units: Other sub-elements::d.c. fault mode

incorrect registers Memory content corruptid Processor architectural state/control corrup CPU/GPU::Unintended instruction(s) flow executed units: ALU - Data Path::Soft error model (for seque

corrupted CPU write Memory content corruptid Wrong coding, wrong or no execution

corrupted CPU write Memory content corruptid Wrong coding, wrong or no execution

incorrect registers rMemory content corruptid Processor architectural state/control corrup

Failure Mode Effect & Diagnostic Random Failures Analysis (FMEDA) Random Failures

- A detailed analysis technique to obtain:
 - Design failure rates
 - Failure Modes diagnostic capability
- FMEDA is an extension of the FMEA analysis
 - Assessing the Safety Metrics for the given Failure Mode

- Technology Information for Failure In Time (FIT)
 - Needed to compute Failure Rates

ISO 26262 acceptable technology standards:

- · IEC TR 62380
- SN 29500
- FIDES Guide

- Design information
 - Digital logic and analog area, flop/latch, RAM/ROM counts
 - Needed to compute Failure Mode Distribution
- Safety Mechanism (if exists) for the Failure Modes

Failure Mode (FM) Distribution

- Each FMEDA needs to have a base Failure Rate assigned to it
- Possible distributions:
 - Uniform: Each FM has a failure rate equal to the overall failure rate divided by the number of failure modes
 - Reasonable assumption for initial analysis; assumes highly symmetrical design
 - Area: Each FM's failure rate depends on its relative portion of the design area
 - Similarly, it may depend on the number of gates/flops
 - Number of outputs affected
 - Considers their cone of influence

FMEDA Diagnostic Coverage Components

- Fault list a list of design locations with potential random failures
 - Based on FMEA potential cause of failure
 - Generated from block level or elementary sub parts
- Observation Points
 - Design points in which the effect of an injected fault should be observed
 - Normally –at the boundary of a block in which the fault is injected

Diagnostic Points

- Design points which are activated when the safety mechanism detects the injected fault
 - e.g.: safety_alarm IO pin, interrupt to interrupt controller etc.

FMEDA Diagnostic Coverage Components – cont.

Random Failures

- Workloads
 - These are sets of tests which stimulate the area of the injected fault
 - Types of workloads:
 - **Representative**: follow normal use cases, do not necessarily activate all signals in the relevant block
 - Exhaustive: provide 100% toggle coverage of the relevant block

ISO 26262 Fault Classification

Faults Classification (1)

- Safe Faults (for calculating λ_S)
 - Faults which will not violate a safety goal
 - Example:
 - Faults in CPU debug logic
- Single Point Faults (for calculating λ_{SPF})
 - A single fault which can lead to a violation of a safety goal
 - Not protected by a SM
 - Example:
 - Interconnect with no protection for data of address buses

Faults Classification (2)

- Residual Faults (for calculating λ_{RF})
 - A single fault which can lead to a violation of a safety goal
 - Not detected by a SM (SM does not have 100% coverage)
 - Example:
 - A memory fault which is not detected by memory diagnostics (e.g. checkerboard test)

Faults Classification (3)

- Detected Dual (Multi) Point Fault ($\lambda_{MPF,det}$)
 - A fault in combination with another fault which leads to a violation of a safety goal
 - Detected by the SM
 - Example:
 - A memory bit with a permanent fault which is protected by parity and activates a warning light
 - A fault in the parity logic leads to a violation of the safety goal
 - Self Test of the parity logic can detect the fault in it

Faults Classification (4)

- Latent Dual (Multi) Point Fault ($\lambda_{MPF,I}$)
 - A fault in combination with another fault which leads to a violation of a safety goal
 - Is not detected by the SM
 - Example:
 - A memory bit with a permanent fault which is corrected by ECC but does not activate a warning light
 - A fault in the ECC would lead to a violation of the safety goal

ISO 26262 Metric (part 5 Annex C)

(C.1)

(C.5)

(C.6)

- Failure Rate:
 - $\lambda = \lambda_{\mathsf{SPF}} + \lambda_{\mathsf{RF}} + \lambda_{\mathsf{MPF}} + \lambda_{\mathsf{S}}$
- SPFM

 $1 - \frac{\sum_{SR,HW} (\lambda_{SPF} + \lambda_{RF})}{\sum_{SR,HW} \lambda} = \frac{\sum_{SR,HW} (\lambda_{MPF} + \lambda_{S})}{\sum_{SR,HW} \lambda}$ • LFM $1 - \frac{\sum_{SR,HW} (\lambda_{MPF,latent})}{\sum_{SR,HW} (\lambda - \lambda_{SPF} - \lambda_{RF})} = \frac{\sum_{SR,HW} (\lambda_{MPF,perceived or detected} + \lambda_{S})}{\sum_{SR,HW} (\lambda - \lambda_{SPF} - \lambda_{RF})}$

Fault Classification Through Simulation

2018

JNITED STAT

Fault Injection Campaign

- Goal: determine Diagnostic Coverage of the SM by injecting faults in the design, and checking if they are detected by it
 - Fault simulators
 - Can use existing verification tests
 - Can run concurrently, handling many faults at a time
 - Stimulus may not be sufficient to cause all dangerous faults to propagate
 - Formal tools
 - Can determine which faults are uncontrollable from the inputs
 - Can check for Observation points Cone Of Influence (COI) observability of faults

Fault Simulation Strategies

- At the beginning of the fault campaign sample low percentage (e.g. 2%)
 - Check that your safety mechanism coverage matches expectations
- Full fault campaign –use Expert Judgement for sampling size
 - well-known Safety Mechanisms vs. "home grown" ones
 - E.g.: Covering a safety critical processor by creating a **lock-step** with a redundant copy of the processor is a well known SM in the industry
 - » In this case it may be enough to fault simulate 5-10% of the faults
 - Other SMs need 100% fault simulations

Add Observation (Strobe) Points

• When it comes to strobing, three things are important:

2018

JNITED STATE

- Location (where), Location (when), Location (what)!
- Strobing affects not only how many faults will detected, it will affect performance at well.
- Use \$fs_strobe to add observation and diagnostic points

```
Syntax:
$fs_strobe(<list_of_hierarchical_signal_names>) or
                                                                              Automatically strobes all outputs of a
$fs_strobe(<instance_path>)
                                                                              Verilog instance
Example:
      initial begin
      wait (reset===1);
      $display ("reset completed injecting faults now");
                                                                               Delaying fault injection until after
      $fs_inject:
                                                                               reset typically gives higher test
      forever @(posedge testclk)
                                                                               coverage due to more detected faults and
        if (faultSenseOn === 1'b1)
                                                                               fewer potential faults
          #99 $fs_strobe(TPAD1, TPAD2, TPAD3);
      end
```


Generate Faults

- Many methods available to generate faults
 - Let tool generate faults
 - Import faults from 3rd party tools
 - Specify faults using a proprietary Standard Fault Format
- Advantage of using Standard Fault Format
 - Can specify user defined fault status
 - Can specify regions to generate faults and also regions to exclude
 - Extremely compact representation for transient faults
 - Can use wildcards
 - Can specify sampling methods during fault generation
 - Can specify user defined coverage metrics

Use Concurrent Fault Simulator

Legacy Parallel Simulation Technology

Concurrent Fault Simulation Technology

Benefits of Formal Fault Analysis

- Formal filtering of faults can provide a boost to fault coverage % by eliminating safe faults
- Formal analysis of unobserved faults can help in creating better stimulus

2018

FMEDA calculation & Report

	A	В	С	D	E	F	G	H	1
1						MAIN FMEDA			
9									
10	Unique ID	Top Design Element	Element-1	Element-2	Potential Faults	Potential Errors (as seen at the top design element boundary)	Potential Effects of Failure (visible to the system)	System level potential Sa effect class Rel	afety lated?
11	HOST_FM_1	MEM_CTRL			corrupted CPU command	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Uni Y	Yes
12	HOST_FM_2	MEM_CTRL			corrupted CPU command	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Uni Y	Yes
13	HOST_FM_3	MEM_CTRL			corrupted CPU write data	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Uni Y	Yes
14	HOST_FM_4	MEM_CTRL			corrupted CPU write data	Memory content corruption	Wrong coding, wrong or no execution	CPU/GPU::Uni Y	Yes
15	HOST FM 5	REG_UNIT			incorrect registers read	Memory content corruption	Processor architectural state/control corrupt	CPU/GPU::Uni Y	Yes
16	HOST FM 6	REG UNIT			incorrect registers read	Memory content corruption	Processor architectural state/control corrupt	CPU/GPU::Uni Y	Yes
17	HOST FM 7	REG UNIT			incorrect registers write	Memory content corruption	Processor architectural state/control corrupt	CPU/GPU::Uni Y	Yes
18	HOST FM 8	REGUNIT			incorrect registers write	Memory content corruption	Processor architectural state/control corrupt	CPU/GPU::Uni Y	Yes
		_			, v				
	A	L M N C	D P Q R	S T U	V W X	Y Z AA AB	AC AD AE AF	AG A	AH
1									
9				Perma	nent Fault Model				

														built-in	SoC built-in		Application	Application						
						Fsafe	Fsafe						SoC built-in	Diagno	Diagnostic	Application	Diagnostic	Diagnostic						
10	Unique ID	D _{FMi}	$\lambda_{intrinsic}$	λ_{nSR}	λ_{SR}	Device	Application	Fsafe	λs	λ _{nS}	F _{PVSG}	λ_{PVSG}	Diagnostic	stic ID	K _{FMC,RF}	Diagnostic	ID	K _{FMC,RF}	K _{FMC,RF}	λ_{SPF}	λ_{RF}	$\lambda_{MPF, primary}$	$\lambda_{MPF,secondary}$	λ_{MPF}
11 HOS	ST_FM_1	9.13%	5.81E+00	0.00E+00	5.81E+00	75%	0%	759	6 4.36E+00	1.45E+00	41%	5.96E-01			30%			0%	30.0%	0.00E+00	4.17E-01	8.57E-01	1.79E-01	1.04E+00
12 HOS	ST_FM_2																							
13 HOS	ST_FM_3	3.91%	2.49E+00	0.00E+00	2.49E+00	96%	0%	969	6 2.39E+00	9.96E-02	43%	4.28E-02	Host Safety 2	2 PSM_2	98%			0%	98.3%	0.00E+00	7.49E-04	5.68E-02	4.21E-02	9.89E-02
14 HOS	ST_FM_4																							
15 HOS	ST_FM_5	77.33%	4.92E+01	0.00E+00	0 4.92E+01	79%	0%	799	6 3.89E+01	1.03E+01	16%	1.65E+00			30%			0%	30.0%	0.00E+00	1.16E+00	8.68E+00	4.96E-01	9.17E+00
16 HOS	ST_FM_6																							
17 HOS	ST_FM_7	9.63%	6.12E+00	0.00E+00	0 6.12E+00	68%	0%	689	6 4.16E+00	1.96E+00	45%	8.82E-01	2,Host Safety	PSM_4	70%			0%	70.0%	0.00E+00	2.64E-01	1.08E+00	6.17E-01	1.69E+00
18 HOS	ST_FM_8																							

- 4	A	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	BK
1																							
9														Transient Fa	ult Model								
10	Unique ID	λ _{mpf,p}		D _{EMi}	λ _{intrinsic}	λ _{nSR}	λ _{sr}	F _{safe} Device	F _{safe} Application	Fsafe	λς	λ _{nS}	F _{PVSG}	λ _{PVSG}	SoC built-in Diagnostic	SoC built-in Diagnostic ID	SoC built-in Diagnostic K _{FMC.RF}	Application Diagnostic	Application Diagnostic ID	Application Diagnostic K _{FMC.RF}	Kemcre	λspf	λ _{RF}
11	HOST_FM_1	8.94E-01									-				_								
12	HOST_FM_2			9.13%	3.88E-01	0.000	0.388	32%	0%	32%	1.24E-01	2.64E-01	92%	2.43E-01	Host Safety 2	_2	98%			0%	97.8%	0.000	0.005
13	HOST_FM_3	4.64E-05																					
14	HOST_FM_4			3.91%	1.66E-01	0.000	0.166	57%	0%	57%	9.48E-02	7.15E-02	15%	1.07E-02	Host Safety 4	_4	97%			0%	97.4%	0.000	0.000
15	HOST_FM_5	7.02E+00																					
16	HOST_FM_6			77.33%	3.29E+00	0.000	3.287	73%	0%	73%	2.40E+00	8.87E-01	82%	7.28E-01	Host Safety 4	_4	97%			0%	96.7%	0.000	0.024
17	HOST_FM_7	1.69E-01																					
18	HOST_FM_8			9.63%	4.09E-01	0.000	0.409	61%	0%	61%	2.50E-01	1.60E-01	45%	7.18E-02	Host Safety 4	_4	90%			0%	90.0%	0.000	0.007

ISO 26262 Metric report

- Probabilistic Metric for random Hardware Failures (PMHF)
- Single-point fault metric (SPFM)
- Latent-fault metric (LFM)

D	E	F	G	н
ME	ETRIC	S DASH	BOAF	RD
	Permanent	Transient	Total	
PMHF (Failures per 10^9 hours	1.84E+00	3.69E-02	1.88E+00	
SPFM	97.1%	99.1%	97.2%	
	Permanent			
LFM	88.8%			
Part	(P&T combin	ned)		
HOST	0.9	72356059		>= 90%
				< 90%

NVIDIA ISO 26262 Methodology Case Study

NVIDIA Case Study

- Focus on FMEA to Metrics process for HW
- Big Picture
- FMEA Challenges
- FI Challenges
- Mindset Challenges
- Conclusions

Stating the Obvious : Speed Matters

Nobody Wins a Marathon in the 1st Mile

- How to interpret and apply ISO 26262?
- How to communicate that guidance?

FME(D)A: Distribution vs. Quality

- Distribution of execution
- Quality of results

Distribution of Execution vs. Quality of Results

FMEA Execution Issues

- FMEA template format
- Scope of an individual FMEA
- Granularity of analysis within an FMEA
- Uniform application of the standard
- FMEA is just the start

Z01X is a Tool, How Will You Use It?

- What IPs, FMs?
- DUT selection
 - Where does the FM live?
 - Available DUTs?
 - Where does SM live?

FI: No Shortage of Questions

- Workload selection
- RTL vs Gates
 - Transients can reasonably use RTL or Gates
 - Permanents need Gates
- DUT, Workload, RTL vs. Gates interact

FuSa Requires Mindset Change

- DV is used to thinking about systematics ("bugs")
 - DV: Assume functionality is buggy, expose the bugs
 - FI for FMEDA: Assume functionally correct, measure efficacy of SM
- Arch, design are not used to thinking about random faults

Conclusions

- Specialized tools are necessary
 - 100 Excels will not suffice
- FuSa methodology must be carefully defined
- FuSa methodology != DV methodology
- Phase rollout to avoid churn
 - Single pilot
 - 1 pilot per category/type of IP
 - Full rollout

Thank You!