
Functional Coverage – without SystemVerilog!

Alan Fitch
Doulos Ltd
Ringwood

UK
+441425471223

alan.fitch@doulos.com

Doug Smith
Doulos

Morgan Hill
California, USA

+1-888-GO DOULOS
doug.smith@doulos.com

ABSTRACT
This paper investigates the implementation of functional coverage in
languages such as VHDL and SystemC®1, when for some reason the
use of SystemVerilog is not possible.

General Terms
Verification, Languages, Measurement.

Keywords
Functional Coverage, SystemVerilog, SystemC, VHDL

1. INTRODUCTION
Functional Coverage has become a key part of verification
methodology in the ASIC world. Used together with testbench
automation / constrained random verification, it provides a closed
loop from test planning through simulation (and formal verification)
via coverage measurement, back to the test plan. Over recent years,
complete re-usable verification methodologies have been developed,
using the object-orientated features of SystemVerilog [4] for
implementation [8][12]. However programmable devices (FPGAs
and CPLDs) have also grown in size and complexity; and for reasons
that are not completely clear, much design and verification of these
devices is carried out in VHDL [6]. Meanwhile, at the system level,
there is use of SystemC [5] primarily for Virtual Prototyping but also
for high level synthesis. This paper looks at the implementation of
functional coverage in VHDL, and then briefly at implementing
functional coverage in SystemC.

Section 2 reviews coverage and specifically functional coverage.
Some of the key features of the implementation of functional
coverage in SystemVerilog are shown, together with some example
code. Assertions are also discussed briefly, though these are not the
main focus of the paper.

Section 3 describes a simple approach to collecting coverage data
using concurrent procedure calls in VHDL. This relies on post-
processing of potentially large data files, but is very easy to
implement. A similar approach to that used in the Open Verification
Library (OVL) [7] is used to easily enable and disable coverage
collection.

Section 4 shows a more complex VHDL implementation using
design entities. The issue of cross coverage is also addressed. Code
examples are written for maximum portability to the VHDL 1076-
1993 standard, but we also show how VHDL 1076-2008 provides
some very useful features which would significantly simply and
improve the code.
Section 5 provides a brief summary of the performance and ease-of-
use of the approaches shown. Section 6 provides an overview of how
functional coverage can be implemented SystemC.

Section 7 describes recent developments in a standard for storing
coverage being developed by the Accellera UCIS activity.

Finally, section 8 draws some conclusions from the work carried out,
and suggests recommended approaches.

2. From Coverage to Functional Coverage

2.1 Kinds of Coverage
One simple classification for kinds of coverage is

• Structural coverage
• Property coverage
• Sample-based coverage

Structural coverage relates specifically to code, and the execution
paths that may be taken through that code. Examples include code
coverage (has every line of code been executed?), Finite State
Machine coverage (have all allowed transitions and states been
exercised?), and expression coverage (have all elements of an
expression been exercised?).

Properties are Boolean statements about a design, which may include
temporal aspects (that extend in time). For instance a property might
state that if signal X is true at a particular clock cycle (the
antecedent) then signal B must be true within 10 to 20 clock cycles
(the consequent). Assertions are statements that require properties to
hold in some way: for instance a property must always hold; or must
never hold. Properties and assertions may be written in the Property
Specification Language (PSL) [3] or SystemVerilog Assertions
(SVA). Note that a property is considered to hold if the antecedent
never occurs (i.e. X is never true in the example above). Hence it is
useful to cover properties and assertions to check if a property was
never exercised, as well as measuring how many times it held, or
failed to hold.

Modern verification languages such as SystemVerilog allow
measurement of the range of values that occurred during simulation
for a particular object. We have referred to this above as "sample-
based" coverage. The description of sample-based coverage in the
SystemVerilog Language Reference Manual (LRM) [4] is quite
extensive – but the essential idea is to sample values and sort them
into ranges or "bins".

For instance, a design might be sending three sorts of packet, and the
verification engineer might want to check that all three types of
packet have been generated at the input, and received at the output.

1 SystemC® is a registered trademark of Open SystemC Initiative

2.2 Functional Coverage

To quote from the SystemVerilog LRM

"Functional coverage is a user-defined metric that measures how
much of the design specification, as enumerated by features in the
test plan, has been exercised."

Functional coverage relates to design intent, that is the user must
work out manually which coverage measurements demonstrate that
each specification point has been met; however all the kinds of
coverage mentioned above may be used. Typically different kinds of
coverage measurement are combined into a common database, which
may then be related back to the test plan; and the test plan is derived
from the design specification.

2.3 Functional Coverage Example

A simple example [1] shows how various kinds of coverage may be
implemented. This example assumes that PSL and SystemVerilog
are available, and uses the SystemVerilog bind construct to connect
SystemVerilog to existing VHDL code. The design example is a
remote control such as might be used for a TV, consisting of a
keyboard scanner and a frequency generator circuit. Figure 1. shows
a block diagram.

Certain sequences of events must happen as a consequence of button
presses. These are easily captured as assertions. Figure 2 below
shows an example of one of those assertions, written as embedded
PSL within VHDL code.

To measure property coverage using PSL, we may specifically use
the cover directive. Figure 3 shows an example but written outside
VHDL in a PSL vunit (verification unit).

vunit slot_coverage (FreqGen(RTL))
{
 cvg: cover { SlotNum = 0 [+];
 SlotNum = 1 [+];
 SlotNum = 2 [+];
 SlotNum = 3 [+];
 SlotNum = 0}
 @ rising_edge(Clock);
}

Figure 3. PSL cover In A vunit

Next let us look at an example of sample-based coverage. The code
in Figure 4 declares a SystemVerilog covergroup, containing two
coverpoints and a cross coverpoint.

covergroup testremote_cg
 @(posedge SlowClock);

 coverpoint RowB
 {
 ignore_bins ignore = {3'b000,
 3'b001, 3'b010, 3'b100};
 option.at_least = 100;
 }

 coverpoint ColB
 {
 ignore_bins ignore = {3'b000, 3'b001,
 3'b010, 3'b100, 3'b111};
 option.at_least = 100;
 }

 cross_row_col: cross RowB, ColB;

endgroup

Figure 4. SV covergroup

There are many features of SystemVerilog coverage, only some of
which are shown here – for full details the reader should refer to the
SystemVerilog LRM, chapter 18. Here we use the concept of ignore
bins (values that should be ignored); and cross coverpoints – a
coverpoint that samples when two values occur at the same sample
instant (the positive edge of the signal SlowClock in the code above).
The cross results in a count of the number of occurrences of rowB
and colB in the following 12 combinations:

1 2 3

4 5 6

7 8 9

3

3
ROW

COL

RESET

SLOWCLK

CLK

XMIT

CLKON

Remot
e

F1, F2, F3, F4,
Timeslot

Detector

COL

ROW

SLOWCLK

RESET

CLKON CLK

XMIT

F1, F2, F3, F4,

TIMESLOT

SCAN FREQGEN

Figure 1. TV Remote Control Example Block Diagram

-- psl B1_1: assert
 (always rose(Button(1)) ->
 next_e[20 to 50](Found = "1000"))
 @ rising_edge(SlowClock);

Figure 2. PSL Assertion Example

Table 1 Cross Coverage Example
RowB ColB

011 011, 101, 110

101 011, 101, 110

110 011, 101, 110

111 011, 101, 110

The covergroup and its coverpoints are declared in a module, which
is bound to the VHDL. Figure 5 shows the binding code

module sv_top;
 TestRemote top ();
 bind TestRemote cvg_TestRemote cvg1 (
 .SlowClock, .Button, .rowB,
 .ColB, .Found);

endmodule

Figure 5. The SystemVerilog bind statement

The module cvg_TestRemote above contains the covergroup and a
set of port declarations, which are mapped to the signals to be
monitored by the covergroup.

Let us now look at some ways of achieving coverage in VHDL.

3. VHDL Coverage with Concurrent Procedures

This section looks at a simple approach to storing coverage
information. To minimize the amount of effort to collect coverage
information, we will simply store data directly in a file (i.e. no
attempt is made to process the data during simulation). This will be a
single file declared in a package, which may be made available at
any point in the design or verification environment hierarchy.

3.1 Global Declarations

To share declarations across many files, we declare a package which
sets various global parameters. Part of this package is shown in
Figure 6 below. The package opens a file. A separate package
configpack is used to read global configuration data from a file. The
configuration file is copied into place using an external Tcl [10]
script, which means that different sets of parameters can be set
without re-compilation.

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.configpack;

package coverpack is

 constant coverageEnable : BOOLEAN :=
 configpack.get("coverageEnable");
 constant coverageFileName : STRING :=
 configPack.get("coverageFileName");
 constant testID : STRING :=
 configPack.get("testID");
 constant openMode : FILE_OPEN_KIND :=
 configPack.get("openMode");

 file coverageFile : text open openMode
 is coverageFileName;

Figure 6. Global Coverage Declarations

Note that the open_mode is also set from the configuration file – this
means that the first test can be set to open the file in write_mode,
while subsequent tests open the file in append_mode, allowing all
coverage data from multiple test runs to be collected in the same file.

3.2 Concurrently-called Coverage Procedure

To collect coverage, we use concurrent procedure calls. In VHDL, a
procedure may be called from a process sequentially; or it may be
called concurrently within an architecture. If a procedure is called
concurrently, it is equivalent to calling the procedure from a process
which is sensitive to the procedure signal inputs.

procedure cover(
 signal s : in std_logic_vector;
 constant path : in string;
 file F : text;
 signal t : in BIT ;
 constant eventsOnly : BOOLEAN := false)
 is
 variable L : LINE;
 begin
 if eventsOnly and not S'EVENT then
 return;
 end if;
 write(L, path & " : ");
 write(L,s);
 write(L, " : " & testID & " : ");
 write(L, NOW);
 writeline(F, L);
 end;

Figure 7. Coverage Procedure Definition

Figure 7 above shows the code of such a procedure, suitable for
monitoring changes in the value of a std_logic_vector, the standard
VHDL logic vector type. The signal t is used to trigger the
procedure: it is declared as type bit to allow the use of the VHDL
'transaction attribute. The constant testID is declared in the package
and is intended to uniquely identify the test run.

The procedure call is shown in Figure 8:

cpgen: if coverageEnable generate
 cover(RowB, RowB'instance_Name,
 coverageFile, RowB'TRANSACTION,
 true);
end generate;

Figure 8. Coverage Procedure Concurrent Call

The use of a generate statement allows coverage to easily be
disabled.

The VHDL 'instance_name attribute returns the full path to the
object in question. This is an example of what is sometimes called
"data introspection" – the ability of a programming language to know
information about itself.

The use of the 'transaction attribute and the final Boolean parameter
allows the user to choose if coverage data should be written out
whenever RowB is assigned (even if its value does not change) or
only when RowB's value changes. It can be useful in transaction level
verification environments to store data whenever it is assigned – for
instance you might want to transmit the same packet consecutively.

Note that neither of these attributes behave as you might expect if
you call them from within the procedure: this is why they are passed
in as arguments.

:testremote(bench):colb : 011 : test1 : 20000000 ns
:testremote(bench):rowb : 111 : test1 : 20000000 ns
:testremote(bench):found : 0000 : test1 : 20000000 ns
:testremote(bench):colb : 101 : test1 : 40000000 ns
:testremote(bench):rowb : 111 : test1 : 40000000 ns
:testremote(bench):found : 0000 : test1 : 40000000 ns

Figure 9. Extract of raw coverage data

After running the testbench, the output file contains lines of data as
shown in Figure 9 above. This data must be post-processed to create
coverage information. Each line contains information about the full
path to the covered object, the object's value, the test identifier, and
the time it was assigned or changed. This is enough to compute
coverage or cross-coverage information, for instance using a Perl [9]
script.

It is relatively easy to write overloaded cover procedures for all the
different data types you wish to cover – even for user-defined types.

3.3 Pros and Cons

Concurrent procedures are easy to implement, and have little impact
on the monitored code; also they are easily applicable to monitoring
user defined data types (for instance records).

Disadvantages are that the technique creates large files – the example
created an 18MByte text file (compared to less than 30kBytes in the
proprietary SystemVerilog coverage database format); and of course
the user must write a script to post-process the data.

4. Coverage using Design Entities

4.1 Why Use Design Entities?

Using concurrent procedures generally limits coding to one of two
styles: either the concurrent procedure is effectively "combinational"

(i.e. it runs from top to bottom in zero time); or it is possible to use
an "implicit state machine" style using multiple wait statements.
These restrict the user in writing complex behavior because any state
(or memory) has to be held outside the procedure and accessed as an
inout parameter.

Alternatively Design Entities make it easy to create local variables to
hold local state – for instance to count occurrences in bins for
sample-based coverage.

The next example shows how we can emulate some of
SystemVerilog's sample-based coverage functionality – but with
some limitations.

4.2 Limitations of Using Design Entities

The example we will show implements ignore bins and illegal bins;
but does not implement automatic bins. Also for technical reasons
with VHDL 2002 and earlier, it is difficult to handle arbitrary width
vectors (because records may not contain unconstrained fields), so
the particular implementation assumes limited range vectors of less
than 32 bits width. This limitation could easily be removed by using
VHDL 2008, but at the time of writing that would compromise
portability.

A second limitation is that we have to write one design entity per
data type we wish to cover – of course we may use good software
engineering practice to factor out common code, but there will
necessarily be repetition.

Again this can be removed by using VHDL 2008, due to the
introduction of type and subprogram generics.

4.3 Example Design Entity

To investigate the feasibility of using Design Entities, a coverpoint
Design Entity was written: this does not use the concurrent
procedure calls at all, instead it encapsulates a process which collects
samples when triggered and sorts the samples into a specified set of
bins. Because we are now using Design Entities, it is possible to
provide constant information (such as the bin specifications) using
VHDL generics. First let us look at the generics of the coverage
design entity, shown in Figure 10.

entity coverStdLogicVector is
 generic (path : string;
 h : histIntegerArrayT;
 default : boolean
);

Figure 10. Coverpoint Design Entity Generics

The first generic, path, is the path returned by `instance_name, as
used before in the procedure-based approach. The last generic,
default, tells the code to implement a default bin if set to true.

The middle generic, h, is the interesting one. This allows us to supply
a set of bin specifications to the coverpoint. We do not have to know
how many bins in advance because VHDL allows unconstrained
array generics and ports.

The declaration of the type histIntegerArrayT is shown in Figure 11
below; it is an unconstrained array of records.

type histIntegerT is
 record
 min : natural;
 max : natural;
 count : integer; -- -1 => illegal bin,
 -- -2 => ignore bin
 atLeast : natural;
 end record;

 type histIntegerArrayT is array
 (natural range <>) of histIntegerT;

Figure 11. Bin Specification Data Types

To use the array, we take advantage of the ability to declare items
within the VHDL generate statement. Figure 12 shows the use of the
coverpoint defined above:

cpgen4: if coverageEnable generate
 constant RowBHist : histIntegerArrayT :=
 -- min max count atLeast
 (0 => (0, 2, -2, 0),
 1 => (4, 4, -2, 0),
 2 => (3, 3, 0, 100),
 3 => (5, 5, 0, 100),
 4 => (6, 6, 0, 100),
 5 => (7, 7, 0, 100));

 signal rowBOut : natural;
 signal Trigger : std_logic;
begin
 Trigger <= '0', '1' after 1 ns, '0'
 after 2 ns when rising_edge(slowclock);

 cprowB: coverStdLogicVector generic map
 (path => RowB'Instance_name,
 h => rowBHist,
 default => false)
 port map (s=> rowB,
 valout => rowBOut,
 doLog => stopTest,
 trigger => Trigger);
end generate;

Figure 12. Coverpoint Instantiation

The constant RowBHist specifies the bins we wish to use. The signal
rowBOut is used to implement cross coverage. The trigger signal is
used to indicate when the input s should be sampled. The input port
doLog is used to trigger logging of the coverage data at the end of
simulation.

Inside the coverpoint, we keep an array of bins, and update them
whenever a new value is sampled. The data is again written out to a
common file, declared in the package as before.

The process for the coverpoint which covers type std_logic_vector is
shown in Figure 13. Note how this is much more complicated than
the code for the concurrent procedure call (Figure 7) because it
processes the data into bins during simulation.

(Note: the code for the helper procedures computeMaxCoverage and
writeCoverageResults is not shown).

process
 variable vH :
 histIntegerArrayT(h'range) := h;
 variable bvint : natural;
 variable uncategorised : natural;
 variable categorised : natural;
 variable found : boolean;
 variable nIgnoreBins, nIllegalBins :
 natural;
 variable maxCoverage : real := 0.0;
begin
 wait until rising_edge(trigger) or
 (doLog'event and dolog = '1');
 if rising_edge(trigger) then
 bvint := to_integer(unsigned(s));
 valout <= bvint;
 found := false;
 for i in vH'range loop
 if (bvint >= vH(i).min) and
 (bvint <= vH(i).max) then
 if (vH(i).count = -1) then
 report "Illegal bin " & path &
 " " & integer'IMAGE(bvint)
 severity ERROR;
 elsif vh(i).count = -2 then
 else
 vH(i).count := vH(i).count + 1;
 categorised := categorised + 1;
 end if;
 found := true;
 end if;
 exit when found;
 end loop;
 end if;
 if not found then
 uncategorised := uncategorised + 1;
 end if;
 if doLog'event and dolog = '1' then
 computeMaxCoverage(vh,s'length,
 default, nIllegalBins,
 nIgnoreBins,maxCoverage);
 writeCoverageResults(vh, maxCoverage,
 path, categorised, uncategorised,
 coverageFile);
 end if;
end process;

Figure 13. Coverpoint Process

This implementation was simulated and the results compared to the
original SystemVerilog – fortunately the results were the same.

Figure 14 shows a sample of the output in the coverage file (a single
line representing one coverpoint for the Button signal): to clarify the
values, each field has been put on a separate line, joined by the line
continuation character “\” and annotations (which do not appear in
the file) have been added in bold:

9 : \ number of bins
min max count at least percent of target
256 256 781 10 7810.00 : \ bin 1
128 128 993 10 9930.00 : \
64 64 945 10 9450.00 : \
32 32 1920 10 19200.00 : \
16 16 1717 10 17170.00 : \
8 8 666 10 6660.00 : \
4 4 1528 10 15280.00 : \
2 2 471 10 4710.00 : \
1 1 321 10 3210.00 : \ bin 9
 :testremote(bench):button : \ object path
test1 : \ test ID
14227 : \ Uncategorized
9342 : \ Categorized
100.00 Coverage

Figure 14. Annotated Example of Coverpoint Output

An advantage of this file format is that it is very small.

4.4 Implementation of Cross Coverage

The coverpoint implementation outputs each value as detected. This
makes it possible to design a cross coverpoint. The cross coverpoint
samples the output of two coverpoints, takes in two histograms
describing bins, and collates cross coverage data. The processing
code is not shown, but it is similar to the basic coverpoint code in
Figure 13. The entity declaration and instantiation are shown in
Figure 15:

entity crossCover is
 generic (path1, path2 : string;
 h1, h2 : histIntegerArrayT;
 atLeast : natural := 0);
 port (i1, i2 : in natural;
 trigger : std_logic;
 doLog : std_logic);
end entity;

-- instance
cpRowBColB : crossCover
generic map (path1 => rowb'instance_name,
 path2 => colb'instance_name,
 h1 => rowBHist,
 h2 => colBHist,
 atLeast => 1)
 port map (i1 => rowBout, i2 => colBout,
 trigger => Trigger,
 doLog => stopTest);

Figure 15. Cross Coverpoint Entity and Instantiation

Again the results were correlated with the SystemVerilog original.
The total text file size was 9kBytes.

5. Summary of Results with VHDL

The methods described both gave the same results. Using concurrent
procedures created large files (18Mbytes storing changes).
Implementing some coverpoint design entities in VHDL created a
small 9kByte file.

Simulation speed was surprisingly similar between SystemVerilog,
VHDL concurrent procedures, and VHDL Design Entities –
probably limited by the performance of the NFS (Network File
System) disk being used.

Table 2 Simulation Speed Measurements
Test User Time (s) Kernel Tme (s)

Procedures 23.0 0.66

Procedures +
events

23.3
0.65

Entities 21.9 0.59

Original Code 22.83 0.52

For ease-of-use, concurrent procedures are good as they are very
easy to implement and use, but of course require post-processing of
large files. Design entities required more development effort, and
were limited to covering essentially 32 bit integers, whereas
concurrent procedures can easily handle any data type (including
records).

VHDL 2008 would make the design entities considerably more
flexible – type generics would allow commonality of code; and
records of unconstrained arrays would remove the 32 bit limit in the
implementation of the binning.

In conclusion, for a modern transaction-based verification
environment, where data is processed at a high level of abstraction,
concurrent procedures are the best approach as they can handle
abstract data types, and would not create very large files. For sample-
based coverage of data types less than 32 bits wide, the design
entities can be used, at the cost of some development effort.

Of course SystemVerilog is still a much more powerful and
expressive language, but the point of this paper is to see what can be
done without SystemVerilog!

6. Overview of Coverage using SystemC

One of the authors of this paper created a simplified coverage
implementation during a consultancy activity. This activity showed
that an experienced SystemC/C++ coder can write something useful
in about 3 days. While the code cannot be shown, the key features
were

• Use of the SystemC Verification Library (SCV) to
implement data introspection, creating generic print
routines to dump information.

• Use of the SystemC hierarchy code to create as a unique
identifier for each covered object.

• Storage of coverage data in a singleton class which can
then be dumped at end of simulation.

• Simplified coverage sampling based on a "sample" method
and the use of identical timestamps to detect cross
coverage.

6.1 Other SystemC Implementations

There are two other possibilities. Firstly PSL supports SystemC, so it
is possible to implement property coverage with SystemC by using
PSL.

Secondly, if the reader has Cadence simulation tools, there is a
thorough implementation of sample-based coverage within the
Cadence extensions to the SystemC Verification Library.

6.2 Cadence Verification Extensions Example

The Cadence Verification Extensions (CVE) to the SystemC
Verification Library (SCV) provide C++ classes to implement
coverage. The starting point is the use of SCV smart pointers –
namely the template class scv_smart_ptr<T>. scv_smart_ptr<T>
takes a template data type which has been extended using SCV
Extensions. The process of adding extensions allows extended data
types to support data introspection amongst other things – an object
(even a plain C++ integer) can be extended so that it has a full
hierarchical name. The use of SCV extensions is beyond the scope of
this paper: for the purpose of demonstrating SystemC coverage code,
we will assume that the data types used have been extended.

First, Figure 16 shows the declaration of a smart pointer and a
coverpoint. Note the inclusion of the Cadence “cve.h” header.

#include "cve.h"
void f() {
 scv_smart_ptr< sc_uint<4> > ptr("ptr");
 scv_coverpoint SCV_COVERPOINT_CTOR(cov);

 // automatic binning
 cov.cover(ptr, scv_coverbin::AUTO);

 // sample on every change
 cov.sample_at(&ptr);
}

Figure 16 Basic CVE Coverpoint

At the end of simulation, coverage data is saved by making a call to
the function cve_coverage_save_nc().

The example of Figure 16 created bins automatically. However bins
may be created manually using expressions as shown in Figure 17.

scv_smart_ptr< short int > ptr("ptr");
scv_coverpoint SCV_COVERPOINT_CTOR(cov);
// explicit binning
cov.cover(ptr, scv_coverbin::EXPLICIT);
cov.bin("negative", ptr() < 0);
cov.bin("small",
 ptr() >= 0 && ptr() < 256);
cov.bin("medium",
 ptr() >= 256 && ptr() < 1024);
cov.bin("large", ptr() >= 1024);

cov.ignore_bins(ptr() > 32000);
cov.illegal_bins(ptr() == -32767);
cov.sample_at(&ptr);

Figure 17 CVE Coverpoint with Explicit Bins

This uses the same expression evaluation code that is used by SCV
constraint expressions – note the empty parentheses when a smart
pointer is referenced in an expression: this is used to build
expressions which are stored within the SCV code.

Cross coverage is also possible. Figure 18 shows how a cross
coverpoint may be declared, given two existing coverpoints
cov_rowB and cov_colB:

scv_covercross SCV_COVERCROSS_CTOR(cross);

cross.cover(cov_rowB, cov_colB);
cross.sample_at(&colB);

// ... exercise coverage

cout << "Cross coverage = "
 << cross.coverage() << "%" << endl;

Figure 18 CVE Cross Coverage

If the reader is using Cadence tools, this provides a very extensive
coverage implementation in SystemC – for more details refer to the
full documentation [2].

7. Combining Coverage Data

All the VHDL implementations described so far have used text files.
This section briefly describes developments in creating a standard
coverage format.

Within Accellera there is an activity to create a standard approach to
storing coverage data using a standard application programming
interface (API). The standard under development is the Unified
Coverage Interoperability Standard (UCIS) [11]. This is being
developed after technology donations from the main EDA vendors.
At the time of writing, a draft header file is available. Of course an
implementation of the API will also be needed by any user.

When this standard is finalized, it will be straightforward to combine
coverage data from SystemC (since it is a C++ class library).

Historically VHDL simulators had proprietary C APIs – with the
advent of the VHPI (VHDL Programming Interface) [6] the C API of
VHDL has been standardized, and tool support is maturing. This will
allow portable interface code to the UCIS API to be written.

Although the UCIS header is not yet published, a draft may be
obtained by registering with the UCIS working group at Accellera.
An earlier superceded example of the basis of UCIS may also be
downloaded from the OVM website in the Contributions section (the
contribution called “UCDB API and XML Interchange Format
Description”). This contains an example C application demonstrating
how such an API may be used.

The UCIS API allows for specification and capture of coverage data
(statement, assertion, and sample-based); creation of multiple
database files; traversal of scopes (hierarchy) in a design; and
merging of coverage from different simulations.

This last point is perhaps the most significant: it will be possible to
merge coverage data from multiple simulation runs in different
simulation languages, using different tools.

8. Conclusions

This paper has surveyed the possibilities for implementing coverage
without using SystemVerilog.

For VHDL, the simplest and most flexible method is to dump data
into a file for post-processing. This may be implemented in a flexible
and re-usable why by writing a package of procedures and calling
them concurrently. An implementation using design entities has also

been shown which greatly reduces file size, slightly increases
simulation speed, but has limitations in the data types it can handle
using current widely implemented VHDL versions.

For SystemC, a competent C++/SystemC programmer can create a
basic coverage system with some effort, but by far the easiest
solution (if available) is to use the Cadence extensions to SCV.

Finally a brief overview of the forthcoming Accellera UCIS was
given, and its key features outlined.

9. ACKNOWLEDGMENTS
Thanks to John Aynsley (Doulos) for his original SystemVerilog
coverage code and the Remote Control example.

10. REFERENCES
[1] Aynsley, J.A., Exploiting Advances in Functional Verification
Methodology from VHDL and Verilog, 2008, Doulos Ltd, Unpublished
[2] Cadence IUS 9.2 Documentation file cveref.pdf
[3] IEEE Standard for Property Specification Language (PSL), 2005, The
Institute of Electrical and Electronic Engineers, ISBN 0-7381-4780-X
[4] IEEE Standard for SystemVerilog, 2005, The Institute of Electrical and
Electronic Engineers, ISBN 0-7381-4811-3
[5] IEEE Standard SystemC Language Reference Manual, 2005, The Institute
of Electrical and Electronic Engineers, ISBN 0-7381-4871-7
[6] IEEE Standard VHDL Language Reference Manual, 2009, The Institute
of Electrical and Electronic Engineers, ISBN 978-0-7381-5800-6
[7] Open Verification Library http://www.accellera.org/activities/ovl/
[8] Open Verification Methodology http://www.ovmworld.org/
[9] PERL http://www.perl.org
[10] Tool Control Language http://www.tcl.tk
[11] UCIS http://www.accellera.org/activities/ucis/
[12] Verification Methodology Manual http://www.vmmcentral.org/

