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ABSTRACT 
This paper investigates the implementation of functional coverage in 
languages such as VHDL and SystemC®1, when for some reason the 
use of SystemVerilog is not possible.
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1. INTRODUCTION 
Functional  Coverage  has  become  a  key  part  of  verification 
methodology  in  the  ASIC  world.  Used  together  with  testbench 
automation /  constrained random verification,  it  provides  a closed 
loop from test planning through simulation (and formal verification) 
via coverage measurement, back to the test plan. Over recent years, 
complete re-usable verification methodologies have been developed, 
using  the  object-orientated  features  of  SystemVerilog  [4]  for 
implementation  [8][12].  However  programmable  devices  (FPGAs 
and CPLDs) have also grown in size and complexity; and for reasons 
that are not completely clear, much design and  verification of these 
devices is carried out in VHDL [6]. Meanwhile, at the system level, 
there is use of SystemC [5] primarily for Virtual Prototyping but also 
for high level synthesis. This paper looks at the implementation of 
functional  coverage  in  VHDL,  and  then  briefly  at  implementing 
functional coverage in SystemC.
  
Section  2  reviews  coverage  and  specifically  functional  coverage. 
Some  of  the  key  features  of  the  implementation  of  functional 
coverage in SystemVerilog are shown, together with some example 
code. Assertions are also discussed briefly, though these are not the 
main focus of the paper.

Section 3 describes a simple approach to collecting coverage data 
using  concurrent  procedure  calls  in  VHDL.  This  relies  on  post-
processing  of  potentially  large  data  files,  but  is  very  easy  to 
implement. A similar approach to that used in the Open Verification 
Library  (OVL)  [7]  is  used  to  easily  enable  and  disable  coverage 
collection.

Section  4  shows  a  more  complex  VHDL  implementation  using 
design entities. The issue of cross coverage is also addressed. Code 
examples are written for maximum portability to the VHDL 1076-
1993 standard, but we also show how VHDL 1076-2008 provides 
some  very  useful  features  which  would  significantly  simply  and 
improve the code.
Section 5 provides a brief summary of the performance and ease-of-
use of the approaches shown. Section 6 provides an overview of how 
functional coverage can be implemented SystemC.

Section 7 describes  recent  developments  in  a  standard for  storing 
coverage being developed by the Accellera UCIS activity.

Finally, section 8 draws some conclusions from the work carried out, 
and suggests recommended approaches.

2. From Coverage to Functional Coverage 

2.1 Kinds of Coverage
One simple classification for kinds of coverage is 

• Structural coverage
• Property coverage
• Sample-based coverage

Structural  coverage relates  specifically  to  code,  and the execution 
paths that may be taken through that code. Examples include code 
coverage  (has  every  line  of  code  been  executed?),  Finite  State 
Machine  coverage  (have  all  allowed  transitions  and  states  been 
exercised?),  and  expression  coverage  (have  all  elements  of  an 
expression been exercised?).

Properties are Boolean statements about a design, which may include 
temporal aspects (that extend in time). For instance a property might 
state  that  if  signal  X  is  true  at  a  particular  clock  cycle  (the 
antecedent) then signal B must be true within 10 to 20 clock cycles 
(the consequent). Assertions are statements that require properties to 
hold in some way: for instance a property must always hold; or must 
never hold. Properties and assertions may be written in the Property 
Specification  Language  (PSL)  [3]  or  SystemVerilog  Assertions 
(SVA). Note that a property is considered to hold if the antecedent 
never occurs (i.e. X is never true in the example above). Hence it is 
useful to cover properties and assertions to check if a property was 
never exercised, as well as measuring how many times it held, or 
failed to hold.

Modern verification languages such as SystemVerilog allow 
measurement of the range of values that occurred during simulation 
for a particular object. We have referred to this above as "sample-
based" coverage. The description of sample-based coverage in the 
SystemVerilog Language Reference Manual (LRM) [4] is quite 
extensive – but the essential idea is to sample values and sort them 
into ranges or "bins". 

For instance, a design might be sending three sorts of packet, and the 
verification engineer might want to check that all three types of 
packet have been generated at the input, and received at the output.

                                                                                                   
1 SystemC® is a registered trademark of Open SystemC Initiative



2.2 Functional Coverage

To quote from the SystemVerilog LRM 

"Functional  coverage  is  a  user-defined  metric  that  measures  how 
much of the design specification, as enumerated by features in the 
test plan, has been exercised."

Functional coverage relates  to  design intent,  that  is  the  user must 
work out manually which coverage measurements demonstrate that 
each  specification  point  has  been  met;  however  all  the  kinds  of 
coverage mentioned above may be used. Typically different kinds of 
coverage measurement are combined into a common database, which 
may then be related back to the test plan; and the test plan is derived 
from the design specification.

2.3 Functional Coverage Example

A simple example [1] shows how various kinds of coverage may be 
implemented.  This  example assumes that  PSL and SystemVerilog 
are available, and uses the SystemVerilog bind construct to connect 
SystemVerilog  to  existing  VHDL code.  The  design  example  is  a 
remote  control  such  as  might  be  used  for  a  TV,  consisting  of  a 
keyboard scanner and a frequency generator circuit. Figure 1. shows 
a block diagram.

Certain sequences of events must happen as a consequence of button 
presses.  These  are  easily  captured  as  assertions.  Figure  2  below 
shows an example of one of those assertions, written as embedded 
PSL within VHDL code.

To measure property coverage using PSL, we may specifically use 
the cover directive. Figure 3 shows an example but written outside 
VHDL in a PSL vunit (verification unit).

vunit slot_coverage ( FreqGen(RTL) )
{
  cvg: cover { SlotNum = 0 [+]; 
               SlotNum = 1 [+]; 
               SlotNum = 2 [+]; 
               SlotNum = 3 [+]; 
               SlotNum = 0} 
                   @ rising_edge(Clock);
}

Figure 3. PSL cover In A vunit

Next let us look at an example of sample-based coverage. The code 
in  Figure  4  declares  a  SystemVerilog covergroup,  containing  two 
coverpoints and a cross coverpoint.

covergroup testremote_cg 
                     @(posedge SlowClock); 

  coverpoint RowB
  {
    ignore_bins ignore = {3'b000,
          3'b001, 3'b010, 3'b100};
    option.at_least = 100;
  }

  coverpoint ColB
  {
    ignore_bins ignore = {3'b000, 3'b001,
           3'b010, 3'b100, 3'b111};
    option.at_least = 100;
  }
    
  cross_row_col: cross RowB, ColB;
       
endgroup

Figure 4. SV covergroup

There are many features of SystemVerilog coverage, only some of 
which are shown here – for full details the reader should refer to the 
SystemVerilog LRM, chapter 18. Here we use the concept of ignore 
bins (values  that  should  be  ignored);  and  cross  coverpoints –  a 
coverpoint that samples when two values occur at the same sample 
instant (the positive edge of the signal SlowClock in the code above).
The cross results in a count of the number of occurrences of rowB 
and colB in the following 12 combinations:
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Figure 1. TV Remote Control Example Block Diagram

-- psl B1_1: assert 
     (always  rose(Button(1)) -> 
         next_e[20 to 50](Found = "1000")) 
                 @ rising_edge(SlowClock);

Figure 2. PSL Assertion Example



Table 1 Cross Coverage Example
RowB ColB

011 011, 101, 110

101 011, 101, 110

110 011, 101, 110

111 011, 101, 110

The covergroup and its coverpoints are declared in a module, which 
is bound to the VHDL. Figure 5 shows  the binding code

module sv_top;
  TestRemote top ();
  bind TestRemote cvg_TestRemote cvg1 (
    .SlowClock, .Button, .rowB,
    .ColB, .Found);

endmodule

Figure 5. The SystemVerilog bind statement

The module  cvg_TestRemote above contains the covergroup and a 
set  of  port  declarations,  which  are  mapped  to  the  signals  to  be 
monitored by the covergroup.

Let us now look at some ways of achieving coverage in VHDL.

3. VHDL Coverage with Concurrent Procedures

This  section  looks  at  a  simple  approach  to  storing  coverage 
information. To minimize the amount of effort  to collect coverage 
information,  we  will  simply  store  data  directly  in  a  file  (i.e.  no 
attempt is made to process the data during simulation). This will be a 
single file declared in a package, which may be made available at 
any point in the design or verification environment hierarchy.

3.1 Global Declarations

To share declarations across many files, we declare a package which 
sets  various  global  parameters.  Part  of  this  package  is  shown  in 
Figure  6  below.  The  package  opens  a  file.  A  separate  package 
configpack is used to read global configuration data from a file. The 
configuration  file  is  copied  into  place  using  an  external  Tcl  [10] 
script,  which  means  that  different  sets  of  parameters  can  be  set 
without re-compilation.

 
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.configpack;

package coverpack is 
  
  constant coverageEnable : BOOLEAN := 
       configpack.get("coverageEnable");
  constant coverageFileName   : STRING :=
       configPack.get("coverageFileName");
  constant testID : STRING :=
       configPack.get("testID");
  constant openMode : FILE_OPEN_KIND :=
       configPack.get("openMode");
  
  file coverageFile : text open openMode 
                is coverageFileName;

Figure 6. Global Coverage Declarations

Note that the open_mode is also set from the configuration file – this 
means that the first test can be set to open the file in  write_mode, 
while subsequent tests open the file in  append_mode, allowing all 
coverage data from multiple test runs to be collected in the same file.

3.2 Concurrently-called Coverage Procedure

To collect coverage, we use concurrent procedure calls. In VHDL, a 
procedure may be called from a process sequentially; or it may be 
called concurrently within an architecture. If a procedure is called 
concurrently, it is equivalent to calling the procedure from a process 
which is sensitive to the procedure signal inputs.

procedure cover(
  signal s : in std_logic_vector; 
  constant path : in string;
  file F : text;
  signal t : in BIT ; 
  constant eventsOnly : BOOLEAN := false) 
                                       is 
    variable L : LINE;
  begin 
    if eventsOnly and not S'EVENT then
      return;
    end if;
    write(L, path & " : ");
    write(L,s);
    write(L, " : " & testID & " : ");
    write(L, NOW);
    writeline(F, L);
  end;

Figure 7. Coverage Procedure Definition

Figure  7 above  shows the  code of  such a  procedure,  suitable  for 
monitoring changes in the value of a  std_logic_vector, the standard 
VHDL  logic  vector  type.  The  signal  t is  used  to  trigger  the 
procedure: it is declared as type  bit to allow the use of the VHDL 
'transaction attribute. The constant testID is declared in the package 
and is intended to uniquely identify the test run.

The procedure call is shown in Figure 8:



cpgen: if coverageEnable generate
  cover(RowB, RowB'instance_Name,
        coverageFile, RowB'TRANSACTION,
        true);
end generate;

Figure 8. Coverage Procedure Concurrent Call

 

The  use  of  a  generate  statement  allows  coverage  to  easily  be 
disabled.

The  VHDL  'instance_name attribute  returns  the  full  path  to  the 
object in question. This is an example of what is sometimes called 
"data introspection" – the ability of a programming language to know 
information about itself.

The use of the 'transaction attribute and the final Boolean parameter 
allows the user  to  choose if  coverage data  should be written out 
whenever  RowB is assigned (even if its value does not change) or 
only when RowB's value changes. It can be useful in transaction level 
verification environments to store data whenever it is assigned – for 
instance you might want to transmit the same packet consecutively.

Note that neither of these attributes behave as you might expect if 
you call them from within the procedure: this is why they are passed 
in as arguments.

:testremote(bench):colb : 011 : test1 : 20000000 ns
:testremote(bench):rowb : 111 : test1 : 20000000 ns
:testremote(bench):found : 0000 : test1 : 20000000 ns
:testremote(bench):colb : 101 : test1 : 40000000 ns
:testremote(bench):rowb : 111 : test1 : 40000000 ns
:testremote(bench):found : 0000 : test1 : 40000000 ns

Figure 9. Extract of raw coverage data

After running the testbench, the output file contains lines of data as 
shown in Figure 9 above. This data must be post-processed to create 
coverage information. Each line contains information about the full 
path to the covered object, the object's value, the test identifier, and 
the  time  it  was  assigned  or  changed.  This  is  enough to  compute 
coverage or cross-coverage information, for instance using a Perl [9] 
script.

It is relatively easy to write overloaded cover procedures for all the 
different data types you wish to cover – even for user-defined types.

3.3 Pros and Cons

Concurrent procedures are easy to implement, and have little impact 
on the monitored code; also they are easily applicable to monitoring 
user defined data types (for instance records). 

Disadvantages are that the technique creates large files – the example 
created an 18MByte text file (compared to less than 30kBytes in the 
proprietary SystemVerilog coverage database format); and of course 
the user must write a script to post-process the data.

4. Coverage using Design Entities

4.1 Why Use Design Entities?

Using concurrent procedures generally limits coding to one of two 
styles: either the concurrent procedure is effectively "combinational" 

(i.e. it runs from top to bottom in zero time); or it is possible to use 
an  "implicit  state  machine"  style  using  multiple  wait  statements. 
These restrict the user in writing complex behavior because any state 
(or memory) has to be held outside the procedure and accessed as an 
inout parameter.

Alternatively Design Entities make it easy to create local variables to 
hold  local  state  –  for  instance  to  count  occurrences  in  bins  for 
sample-based coverage.

The  next  example  shows  how  we  can  emulate  some  of 
SystemVerilog's  sample-based  coverage  functionality  –  but  with 
some limitations.

4.2 Limitations of Using Design Entities

The example we will show implements ignore bins and illegal bins; 
but does not implement automatic bins. Also for technical reasons 
with VHDL 2002 and earlier, it is difficult to handle arbitrary width 
vectors (because records may not contain unconstrained fields), so 
the particular implementation assumes limited range vectors of less 
than 32 bits width. This limitation could easily be removed by using 
VHDL  2008,  but  at  the  time  of  writing  that  would  compromise 
portability.

A second limitation is that we have to write one design entity per 
data type we wish to cover – of course we may use good software 
engineering  practice  to  factor  out  common  code,  but  there  will 
necessarily be repetition. 

Again  this  can  be  removed  by  using  VHDL  2008,  due  to  the 
introduction of type and subprogram generics.

4.3 Example Design Entity

To investigate the feasibility of using Design Entities, a coverpoint 
Design  Entity  was  written:  this  does  not  use  the  concurrent 
procedure calls at all, instead it encapsulates a process which collects 
samples when triggered and sorts the samples into a specified set of 
bins. Because we are now using Design Entities,  it  is  possible  to 
provide constant information (such as the bin specifications) using 
VHDL generics. First let  us  look at  the generics of the coverage 
design entity, shown in Figure 10.

entity coverStdLogicVector is
  generic (path : string;                 
           h    : histIntegerArrayT;
           default : boolean  
           );

Figure 10. Coverpoint Design Entity Generics

The first generic,  path, is  the path returned by  `instance_name, as 
used  before  in  the  procedure-based  approach.  The  last  generic, 
default,  tells the code to implement a default bin if set to true.

The middle generic, h, is the interesting one. This allows us to supply 
a set of bin specifications to the coverpoint. We do not have to know 
how many  bins  in  advance  because  VHDL allows  unconstrained 
array generics and ports. 

The declaration of the type histIntegerArrayT is shown in Figure 11 
below; it is an unconstrained array of records.



type histIntegerT is  
  record
   min : natural;
   max : natural;
   count : integer; -- -1 => illegal bin, 
                    -- -2 => ignore bin
   atLeast : natural;
  end record;

  type histIntegerArrayT is array 
       (natural range <>) of histIntegerT;

Figure 11. Bin Specification Data Types

To use the array, we take advantage of the ability to declare items 
within the VHDL generate statement. Figure 12 shows the use of the 
coverpoint defined above:

cpgen4: if coverageEnable generate
  constant RowBHist : histIntegerArrayT :=
 --       min   max  count atLeast 
   (0 => (0,    2,   -2,   0),
    1 => (4,    4,   -2,   0),
    2 => (3,    3,    0,   100),
    3 => (5,    5,    0,   100),
    4 => (6,    6,    0,   100),
    5 => (7,    7,    0,   100));
  
  signal rowBOut : natural;
  signal Trigger : std_logic;
begin
  Trigger <= '0', '1' after 1 ns, '0'
    after 2 ns when rising_edge(slowclock);
    
  cprowB: coverStdLogicVector generic map 
     (path => RowB'Instance_name,
      h => rowBHist,
      default => false)
    port map ( s=> rowB,
               valout => rowBOut,
               doLog => stopTest,
               trigger => Trigger);
end generate;

Figure 12. Coverpoint Instantiation

 
The constant RowBHist specifies the bins we wish to use. The signal 
rowBOut is used to implement cross coverage. The trigger signal is 
used to indicate when the input s should be sampled. The input port 
doLog is used to trigger logging of the coverage data at the end of 
simulation.

Inside the coverpoint,  we keep an array of bins,  and update them 
whenever a new value is sampled. The data is again written out to a 
common file, declared in the package as before.

The process for the coverpoint which covers type std_logic_vector is 
shown in Figure 13. Note how this is much more complicated than 
the  code  for  the  concurrent  procedure  call  (Figure  7)  because  it 
processes the data into bins during simulation.

(Note: the code for the helper procedures computeMaxCoverage and 
writeCoverageResults is not shown). 

process
  variable vH : 
    histIntegerArrayT(h'range) := h;
  variable bvint : natural;
  variable uncategorised : natural;
  variable categorised : natural;
  variable found : boolean;
  variable nIgnoreBins, nIllegalBins :
                      natural;
  variable maxCoverage : real := 0.0;
begin
  wait until rising_edge(trigger) or 
          (doLog'event and dolog = '1');
  if rising_edge(trigger) then
    bvint := to_integer(unsigned(s));
    valout <= bvint;
    found := false;
    for i in vH'range loop
      if (bvint >= vH(i).min) and 
         (bvint <= vH(i).max) then
        if (vH(i).count = -1) then 
          report "Illegal bin " & path & 
          " " & integer'IMAGE(bvint)
          severity ERROR;
        elsif vh(i).count = -2 then
        else
          vH(i).count := vH(i).count + 1;
          categorised := categorised + 1;
        end if;
        found := true;
      end if;
      exit when found;
    end loop;
  end if;
  if not found then
    uncategorised := uncategorised + 1;
  end if;
  if doLog'event and dolog = '1' then
    computeMaxCoverage(vh,s'length,
            default,  nIllegalBins,
            nIgnoreBins,maxCoverage);
    writeCoverageResults(vh, maxCoverage, 
        path, categorised, uncategorised, 
        coverageFile);
  end if;
end process;

Figure 13. Coverpoint Process

This implementation was simulated and the results compared to the 
original SystemVerilog – fortunately the results were the same. 

Figure 14 shows a sample of the output in the coverage file (a single 
line representing one coverpoint for the Button signal): to clarify the 
values, each field has been put on a separate line, joined by the line 
continuation character “\”  and annotations (which do not appear in 
the file) have been added in bold:



 

9 : \                          number of bins
min  max  count at least  percent of target
256 256 781  10    7810.00 : \ bin 1
128 128 993 10 9930.00 : \     
64 64 945 10 9450.00 : \
32 32 1920 10 19200.00 : \
16 16 1717 10 17170.00 : \
8 8 666 10 6660.00 : \
4 4 1528 10 15280.00 : \
2 2 471 10 4710.00 : \
1 1 321 10 3210.00 : \         bin 9
 :testremote(bench):button : \ object path
test1 : \                      test ID
14227 : \                      Uncategorized
9342 : \                       Categorized
100.00                         Coverage

Figure 14. Annotated Example of Coverpoint Output

An advantage of this file format is that it is very small.

4.4 Implementation of Cross Coverage

The coverpoint implementation outputs each value as detected. This 
makes it possible to design a cross coverpoint. The cross coverpoint 
samples  the  output  of  two  coverpoints,  takes  in  two  histograms 
describing  bins,  and  collates  cross  coverage  data.  The  processing 
code is not shown, but it is similar to the basic coverpoint code in 
Figure  13.  The  entity  declaration  and  instantiation  are  shown  in 
Figure 15:

entity crossCover is 
  generic (path1, path2 : string;
           h1, h2 : histIntegerArrayT;
           atLeast : natural := 0);
  port (i1, i2 : in natural;
        trigger : std_logic;
        doLog : std_logic);
end entity;

-- instance
cpRowBColB : crossCover 
generic map (path1 => rowb'instance_name,
             path2 => colb'instance_name,
             h1 => rowBHist, 
             h2 => colBHist,
             atLeast => 1)
  port map (i1 => rowBout, i2 => colBout,
            trigger => Trigger,
            doLog => stopTest);

Figure 15. Cross Coverpoint Entity and Instantiation

Again the results were correlated with the SystemVerilog original. 
The total text file size was 9kBytes.

5. Summary of Results with VHDL

The methods described both gave the same results. Using concurrent 
procedures  created  large  files  (18Mbytes  storing  changes). 
Implementing some coverpoint design entities in VHDL created a 
small 9kByte file. 

Simulation speed was surprisingly similar between SystemVerilog, 
VHDL  concurrent  procedures,  and  VHDL  Design  Entities  – 
probably  limited  by  the  performance  of  the  NFS  (Network  File 
System) disk being used. 

Table 2 Simulation Speed Measurements
Test User Time (s) Kernel Tme (s)

Procedures 23.0 0.66

Procedures + 
events

23.3
0.65

Entities 21.9 0.59

Original Code 22.83 0.52

For  ease-of-use,  concurrent  procedures  are  good  as  they  are  very 
easy to implement and use, but of course require post-processing of 
large files.  Design entities  required more development  effort,  and 
were  limited  to  covering  essentially  32  bit  integers,  whereas 
concurrent  procedures  can  easily  handle  any  data  type  (including 
records).

VHDL  2008  would  make  the  design  entities  considerably  more 
flexible  –  type  generics  would  allow  commonality  of  code;  and 
records of unconstrained arrays would remove the 32 bit limit in the 
implementation of the binning.

In  conclusion,  for  a  modern  transaction-based  verification 
environment, where data is processed at a high level of abstraction, 
concurrent  procedures  are  the  best  approach  as  they  can  handle 
abstract data types, and would not create very large files. For sample-
based  coverage  of  data  types  less  than  32  bits  wide,  the  design 
entities can be used, at the cost of some development effort.

Of  course  SystemVerilog  is  still  a  much  more  powerful  and 
expressive language, but the point of this paper is to see what can be 
done without SystemVerilog!

6. Overview of Coverage using SystemC

One  of  the  authors  of  this  paper  created  a  simplified  coverage 
implementation during a consultancy activity. This activity showed 
that an experienced SystemC/C++ coder can write something useful 
in about 3 days. While the code cannot be shown, the key features 
were

• Use  of  the  SystemC  Verification  Library  (SCV)  to 
implement  data  introspection,  creating  generic  print 
routines to dump information.

• Use of the SystemC hierarchy code to create as a unique 
identifier for each covered object.

• Storage of  coverage data in a singleton class  which can 
then be dumped at end of simulation.

• Simplified coverage sampling based on a "sample" method 
and  the  use  of  identical  timestamps  to  detect  cross 
coverage.

6.1 Other SystemC Implementations 



There are two other possibilities. Firstly PSL supports SystemC, so it 
is possible to implement property coverage with SystemC by using 
PSL.

Secondly,  if  the  reader  has  Cadence  simulation  tools,  there  is  a 
thorough  implementation  of  sample-based  coverage  within  the 
Cadence extensions to the SystemC Verification Library. 

6.2 Cadence Verification Extensions Example

The  Cadence  Verification  Extensions  (CVE)  to  the  SystemC 
Verification  Library  (SCV)  provide  C++  classes  to  implement 
coverage.  The  starting  point  is  the  use  of  SCV smart  pointers  – 
namely  the  template  class  scv_smart_ptr<T>.  scv_smart_ptr<T> 
takes  a  template  data  type  which  has  been  extended  using  SCV 
Extensions. The process of adding extensions allows extended data 
types to support data introspection amongst other things – an object 
(even  a  plain  C++ integer)  can  be  extended  so  that  it  has  a  full 
hierarchical name. The use of SCV extensions is beyond the scope of 
this paper: for the purpose of demonstrating SystemC coverage code, 
we will assume that the data types used have been extended. 

First,  Figure  16  shows  the  declaration  of  a  smart  pointer  and  a 
coverpoint. Note the inclusion of the Cadence “cve.h” header.

#include "cve.h"
void f() {
  scv_smart_ptr< sc_uint<4> > ptr("ptr");
  scv_coverpoint SCV_COVERPOINT_CTOR(cov);

  // automatic binning
  cov.cover(ptr, scv_coverbin::AUTO);

  // sample on every change
  cov.sample_at(&ptr);
}

Figure 16 Basic CVE Coverpoint

At the end of simulation, coverage data is saved by making a call to 
the function cve_coverage_save_nc().

The example of Figure 16 created bins automatically. However bins 
may be created manually using expressions as shown in Figure 17.

scv_smart_ptr< short int > ptr("ptr");
scv_coverpoint SCV_COVERPOINT_CTOR(cov);
// explicit binning
cov.cover(ptr, scv_coverbin::EXPLICIT);
cov.bin("negative", ptr() < 0 );
cov.bin("small", 
        ptr() >= 0 && ptr() < 256 );
cov.bin("medium",
          ptr() >= 256 && ptr() < 1024 );
cov.bin("large", ptr() >= 1024 );

cov.ignore_bins( ptr() > 32000 );
cov.illegal_bins( ptr() == -32767 ); 
cov.sample_at(&ptr); 

Figure 17 CVE Coverpoint with Explicit Bins

This uses the same expression evaluation code that is used by SCV 
constraint  expressions – note the empty parentheses when a smart 
pointer  is  referenced  in  an  expression:  this  is  used  to  build 
expressions which are stored within the SCV code.

Cross  coverage  is  also  possible.  Figure  18  shows  how  a  cross 
coverpoint  may  be  declared,  given  two  existing  coverpoints 
cov_rowB and cov_colB:

scv_covercross SCV_COVERCROSS_CTOR(cross);

cross.cover(cov_rowB, cov_colB);
cross.sample_at(&colB);

// ... exercise coverage

cout << "Cross coverage = " 
     << cross.coverage() << "%" << endl;

Figure 18 CVE Cross Coverage

If the reader is using Cadence tools, this provides a very extensive 
coverage implementation in SystemC – for more details refer to the 
full documentation [2].

7. Combining Coverage Data
 
All the VHDL implementations described so far have used text files. 
This section briefly  describes  developments in creating a standard 
coverage format.

Within Accellera there is an activity to create a standard approach to 
storing  coverage  data  using  a  standard  application  programming 
interface  (API).  The  standard  under  development  is  the  Unified 
Coverage  Interoperability  Standard  (UCIS)  [11].  This  is  being 
developed after technology donations from the main EDA vendors. 
At the time of writing, a draft header file is available. Of course an 
implementation of the API will also be needed by any user.

When this standard is finalized, it will be straightforward to combine 
coverage data from SystemC (since it is a C++ class library).



Historically  VHDL simulators  had proprietary C APIs  –  with the 
advent of the VHPI (VHDL Programming Interface) [6] the C API of 
VHDL has been standardized, and tool support is maturing. This will 
allow portable interface code to the UCIS API to be written.

Although  the  UCIS  header  is  not  yet  published,  a  draft  may  be 
obtained by registering with the UCIS working group at Accellera. 
An earlier superceded example of the basis  of UCIS may also be 
downloaded from the OVM website in the Contributions section (the 
contribution  called  “UCDB  API  and  XML  Interchange  Format 
Description”). This contains an example C application demonstrating 
how such an API may be used.

The UCIS API allows for specification and capture of coverage data 
(statement,  assertion,  and  sample-based);  creation  of  multiple 
database  files;  traversal  of  scopes  (hierarchy)  in  a  design;  and 
merging of coverage from different simulations.

This last point is perhaps the most significant: it will be possible to 
merge coverage data from multiple simulation runs in different 
simulation languages, using different tools.

8. Conclusions
 
This paper has surveyed the possibilities for implementing coverage 
without using SystemVerilog. 

For VHDL, the simplest and most flexible method is to dump data 
into a file for post-processing. This may be implemented in a flexible 
and re-usable why by writing a package of procedures and calling 
them concurrently. An implementation using design entities has also 

been  shown  which  greatly  reduces  file  size,  slightly  increases 
simulation speed, but has limitations in the data types it can handle 
using current widely implemented VHDL versions.

For SystemC, a competent C++/SystemC programmer can create a 
basic  coverage  system  with  some  effort,  but  by  far  the  easiest 
solution (if available) is to use the Cadence extensions to SCV.

Finally  a  brief  overview of  the  forthcoming  Accellera  UCIS  was 
given, and its key features outlined. 
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