
Functional-Coverage Sampling in UVM RAL:
Use of 2 Obscure Methods

Muneeb Ulla Shariff, Mirafra Technologies Pvt Ltd,
Bangalore

Ravi Reddy, Roche Sequencing Solutions, Santa Clara

© Accellera Systems Initiative 1

Agenda
• UVM RAL (Register Abstraction Layer)
• UVM RAL Functional Coverage
• Implementation
• Prediction

– Auto Prediction
– Explicit Prediction

• Role of Register Code Generator
• Comparison
• Results

© Accellera Systems Initiative 2

UVM RAL
• Mimics the design hardware register contents at the TestBench (TB) side.

• Provides the abstract accesses to registers and memories.

Figure 1. UVM Register Model Integration [1]

© Accellera Systems Initiative 3

UVM RAL Functional Coverage
• Functional Coverage is a measure of what functionalities/features of the

design have been exercised by the stimulus/tests.

• UVM RAL Functional Coverage is helpful in providing the metrics used
for gauging all register accesses including individual register bits.

© Accellera Systems Initiative 4

UVM RAL Functional Coverage (contd..)
• The functional coverage of the RAL model is usually created by the

register model generators. However, the sampling of the covergroup
requires attentive work.

• sample() and sample_values() methods are used for sampling.

• Due to the lack of information about these methods, they are rarely and
improperly used.

© Accellera Systems Initiative 5

Implementation Steps
1. The covergroup and coverpoints must be defined. This is done using

the register assistant tools.

Figure 2. Covergroup definition

© Accellera Systems Initiative 6

Implementation Steps (contd..)
2. The coverage model needs to be constructed conditionally.

Figure 3. Covergroup construction [2]

© Accellera Systems Initiative 7

Implementation Steps (contd..)
3. Before building the reg model, we need to set the include_coverage(...)

to indicate which models to be constructed.

Figure 4. Enabling building and sampling of coverage [2]

© Accellera Systems Initiative 8

Implementation Steps (contd..)
4. Eventually, you need to tell the compiler to enable coverage collection

(The below options qualifies for Cadence Incisive Simulator)

-uvm -write_metrics -covfile cov_config_file -coverage All

© Accellera Systems Initiative 9

Implementation Steps (contd..)
5. Finally we need to sample the coverage using the 2 methods,

uvm_reg::sample() and uvm_reg::sample_values().

• We need prediction to update the RAL model.

• Based on either auto-prediction mode or explicit-prediction mode, the
sample() or sample_values() methods are used and implemented.

© Accellera Systems Initiative 10

UVM RAL Prediction
• In UVM Register Modelling, a prediction is an art of keeping the Register

Model up-to-date with expected results for the design registers.

• This allows us to compare the expected results from the Register Model
with actual register values from the DUT.

• There are 2 modes:
– Auto-Prediction Mode
– Explicit-Prediction Mode

© Accellera Systems Initiative 11

Auto-Prediction Mode
• In this prediction mode, the sequences using the UVM register API

update the RAL model automatically.

Figure 5. Auto-Prediction Model

© Accellera Systems Initiative 12

Auto-Prediction Mode (contd..)
• On every register access, the uvm_reg::sample() method is called.

Figure 6. uvm_reg::sample() function call

© Accellera Systems Initiative 13

Auto-Prediction Mode (contd..)
• The default uvm_reg::sample() function is empty.

Figure 7. uvm_reg::sample() function definition

© Accellera Systems Initiative 14

Auto-Prediction Mode (contd..)
• Thus, to sample the coverage after each register access we need to

implement the uvm_reg::sample() function.

Figure 8. uvm_reg::sample() function implementation

© Accellera Systems Initiative 15

Explicit-Prediction Mode
• This prediction mode updates the register model on all monitored

transactions. It uses a predictor component and the UVC adapter.

Figure 9. Explicit Prediction Model

© Accellera Systems Initiative 16

Explicit-Prediction Mode (contd..)
• With an explicit predictor, when register access is performed, the

monitor sends out a transaction to the analysis port which is connected
to uvm_reg_predictor and this triggers uvm_reg_predictor::write()

• This method updates the RAL model. After the update, we can explicitly
call the uvm_reg::sample_values() method.

• The default uvm_reg::sample_values() function is empty.

© Accellera Systems Initiative 17

Explicit-Prediction Mode (contd..)
• Thus, in-order to sample the coverage we need to implement the

uvm_reg::sample_values() function.

Figure 10. uvm_reg::sample_values() function implementation

© Accellera Systems Initiative 18

Explicit-Prediction Mode Example

© Accellera Systems Initiative 19

Role Of Register Model Generators
• The sample() and sample_values() method implementations could be

done by the register model generators.

• If the generator is unable to do so, the user can write a wrapper script
to include the implementations.

• Since the sample() is implicitly called, the user doesn’t have to do
anything

© Accellera Systems Initiative 20

Role Of Register Model Generators (contd..)
• However, the sample_values() method has to be called explicitly by the

user.

• This is imperative because the place at which to call the
sample_values() method is based on the user’s need, hence this cannot
be generalized and included by the register generators.

© Accellera Systems Initiative 21

Comparison

© Accellera Systems Initiative 22

Results
• Without the implementation of either uvm_reg::sample() or

uvm_reg::sample_values() the RAL functional coverage will only be
created but not sampled.

© Accellera Systems Initiative 23

Results
• Thus, we need to implement the uvm_reg::sample() for auto-prediction

and uvm_reg::sample_values() for explicit-prediction in order to sample
the coverage successfully.

© Accellera Systems Initiative 24

Conclusion
• Since the user is oblivious of the 2 obscure methods, uvm_reg::sample()

and uvm_reg::sample_values(), they are rarely used.

• Here, we have shown how to use these methods, along with their
implementations, when to use them and their effect on coverage
sampling.

© Accellera Systems Initiative 25

References

1) M. Peryer, D. Aerne, "A New Class Of Registers," -DVCon US
2016

1) Verification Academy Coverage Cookbook:
https://verificationacademy.com/cookbook/coverage

© Accellera Systems Initiative 26

Questions?

© Accellera Systems Initiative 27

	Functional-Coverage Sampling in UVM RAL:
Use of 2 Obscure Methods
	Agenda
	UVM RAL
	UVM RAL Functional Coverage
	UVM RAL Functional Coverage (contd..)
	Implementation Steps
	Implementation Steps (contd..)
	Implementation Steps (contd..)
	Implementation Steps (contd..)
	Implementation Steps (contd..)
	UVM RAL Prediction
	Auto-Prediction Mode
	Auto-Prediction Mode (contd..)
	Auto-Prediction Mode (contd..)
	Auto-Prediction Mode (contd..)
	Explicit-Prediction Mode
	Explicit-Prediction Mode (contd..)
	Explicit-Prediction Mode (contd..)
	Explicit-Prediction Mode Example
	Role Of Register Model Generators
	Role Of Register Model Generators (contd..)
	Comparison
	Results
	Results
	Conclusion
	References
	Questions?

