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• UVM RAL (Register Abstraction Layer)
• UVM RAL Functional Coverage
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UVM RAL
• Mimics the design hardware register contents at the TestBench (TB) side.

• Provides the abstract accesses to registers and memories.

Figure 1. UVM Register Model Integration [1]
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UVM RAL Functional Coverage
• Functional Coverage is a measure of what functionalities/features of the 

design have been exercised by the stimulus/tests. 

• UVM RAL Functional Coverage is helpful in providing the metrics used 
for gauging all register accesses including individual register bits.
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UVM RAL Functional Coverage (contd..)
• The functional coverage of the RAL model is usually created by the 

register model generators. However, the sampling of the covergroup 
requires attentive work.  

• sample() and sample_values() methods are used for sampling.

• Due to the lack of information about these methods, they are rarely and
improperly used.
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Implementation Steps
1. The covergroup and coverpoints must be defined. This is done using

the register assistant tools.

Figure 2. Covergroup definition
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Implementation Steps (contd..)
2. The coverage model needs to be constructed conditionally.

Figure 3. Covergroup construction [2]
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Implementation Steps (contd..)
3. Before building the reg model, we need to set the include_coverage(...)

to indicate which models to be constructed.

Figure 4. Enabling building and sampling of coverage [2]
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Implementation Steps (contd..)
4. Eventually, you need to tell the compiler to enable coverage collection

(The below options qualifies for Cadence Incisive Simulator)

-uvm -write_metrics -covfile cov_config_file -coverage All
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Implementation Steps (contd..)
5. Finally we need to sample the coverage using the 2 methods,

uvm_reg::sample() and uvm_reg::sample_values().

• We need prediction to update the RAL model.

• Based on either auto-prediction mode or explicit-prediction mode, the
sample() or sample_values() methods are used and implemented.
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UVM RAL Prediction
• In UVM Register Modelling, a prediction is an art of keeping the Register 

Model up-to-date with expected results for the design registers. 

• This allows us to compare the expected results from the Register Model 
with actual register values from the DUT.

• There are 2 modes:
– Auto-Prediction Mode
– Explicit-Prediction Mode 
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Auto-Prediction Mode
• In this prediction mode, the sequences using the UVM register API 

update the RAL model automatically. 

Figure 5. Auto-Prediction Model
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Auto-Prediction Mode (contd..)
• On every register access, the uvm_reg::sample() method is called.

Figure 6. uvm_reg::sample() function call
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Auto-Prediction Mode (contd..)
• The default uvm_reg::sample() function is empty.

Figure 7. uvm_reg::sample() function definition
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Auto-Prediction Mode (contd..)
• Thus, to sample the coverage after each register access we need to

implement the uvm_reg::sample() function.

Figure 8. uvm_reg::sample() function implementation
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Explicit-Prediction Mode
• This prediction mode updates the register model on all monitored 

transactions. It uses a predictor component and the UVC adapter.

Figure 9. Explicit Prediction Model
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Explicit-Prediction Mode (contd..)
• With an explicit predictor, when register access is performed, the 

monitor sends out a transaction to the analysis port which is connected 
to uvm_reg_predictor and this triggers uvm_reg_predictor::write()

• This method updates the RAL model. After the update, we can explicitly 
call the uvm_reg::sample_values() method.

• The default uvm_reg::sample_values() function is empty.
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Explicit-Prediction Mode (contd..)
• Thus, in-order to sample the coverage we need to implement the 

uvm_reg::sample_values() function.

Figure 10. uvm_reg::sample_values() function implementation
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Explicit-Prediction Mode Example

© Accellera Systems Initiative 19



Role Of Register Model Generators
• The sample() and sample_values() method implementations could be 

done by the register model generators. 

• If the generator is unable to do so, the user can write a wrapper script 
to include the implementations. 

• Since the sample() is implicitly called, the user doesn’t have to do
anything
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Role Of Register Model Generators (contd..)
• However, the sample_values() method has to be called explicitly by the

user.

• This is imperative because the place at which to call the
sample_values() method is based on the user’s need, hence this cannot
be generalized and included by the register generators.
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Comparison
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Results
• Without the implementation of either uvm_reg::sample() or 

uvm_reg::sample_values() the RAL functional coverage will only be 
created but not sampled.
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Results
• Thus, we need to implement the uvm_reg::sample() for auto-prediction 

and uvm_reg::sample_values() for explicit-prediction in order to sample 
the coverage successfully.
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Conclusion
• Since the user is oblivious of the 2 obscure methods, uvm_reg::sample() 

and uvm_reg::sample_values(), they are rarely used. 

• Here, we have shown how to use these methods, along with their 
implementations, when to use them and their effect on coverage 
sampling. 
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Questions?
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