DESIGN AND VERIFICATION™

DVCOON

CONFERENCE AND EXHIBITION

Functional-Coverage Sampling in UVM RAL

Use of 2 Obscure Methods

Muneeb Ulla Shariff, Mirafra Technologies Pvt Ltd, Bangalore, Karnataka, India
(muneebullashariff@mirafra.com)

Ravi Reddy, Roche Sequencing Solutions, Santa Clara, California, USA
(ravi.reddy@roche.com)

Abstract—The Universal Verification Methodology (UVM) Register Abstraction Layer (RAL) is a very powerful
feature to model the memory-mapped behavior of the registers and memories in the DUT. Based on the user's input
the register-model-generators automatically generate the covergroup for the RAL functional-coverage. Depending on
whether the covergroup needs to be sampled automatically on register access or as the result of an external call, two
different methods need to be implemented; sample() and sample_values(). Due to the lack of information about these
methods, they are rarely and improperly used. Thus, in this paper, the focus is to answer the following questions:
which of the 2 methods to be used, when to be used and how to implement. Additionally, the methods are compared
and contrasted, and there will be suggestions about which method could be used and their advantages in a given
situation.

Keywords—UVM; RAL; Functional Coverage; sample; sample_values

I. INTRODUCTION

The UVM register model is used to mimic the design hardware register contents at the TestBench (TB) side
and to abstract accesses to registers and memories. The register model is constructed from the classes that
describe the memory regions or registers of the Design Under Test (DUT). These classes encapsulate the bit
fields within registers and registers within blocks. The registers and memory blocks are allocated address offsets
within an address map model inside the block. The UVM RAL provides tasks, read() and write(), which can be
called from a UVM sequence to access the registers. The RAL model is kept up to date with the DUT state,
either with the help of auto-prediction or explicit prediction, by using a register predictor component.

uvm_reg_bus_op

Protocol seq_item

Register
Predictor
$’
Agent)
Monitor
DuT

Hardware

w Registers
Sequencer Driver J s >

vy

Y

Reg Sequence Register Register
reg.read() Model Map
reg.write()

wm_ml.,us_o,l

Register
Adaptor

reg2bus()

A
\

Protocol seq_item

D Shaded items VIP provider
deliverables

Figure 1. UVM Register Model Integration [1]

To integrate a register model into a UVM TB, we have to create the register model, implement and use the
adapter class, a predictor and hook them into the TB structure. The detailed procedure is explained in the UVM
Cookbook[2]., and in the UVM User's Guide[3][4]. Figure. 1 is a pictorial representation of the TB integration
of the UVM register model.

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

The functional coverage of the RAL model is usually created by the register model generators. However, the
sampling of the covergroup requires attentive work.

1I. PROCEDURE

In order to sample the RAL functional coverage the following steps have to be followed:

1. The covergroup and coverpoints must be defined. This is done using the register assistant tools, as
shown in Figure 2.

class dp _deac_enginel threshl extends uwvm_reg;
‘uvm object utils(dp deac enginel threshl)

uvm_reg_field reserved; // Reserved
rand uvn_reg_field vote_ thresh;
rand uvm_reg_field compb_thresh;
rand uvm_reg field compa_ thresh;

// Function: coverage
covergroup cg wvals;

vote thresh : coverpoint vote thresh.value[7:8];

compb_thresh : coverpoint compb_thresh.wvalue[8:8];

compa_ thresh : coverpoint compa thresh.value[8:0];
endgroup

Figure 2. Covergroup definition

2. The coverage model needs to be constructed conditionally, as shown in Figure 3.

// Function: new
function new(string name = "dp_deac_enginel_threshl1");
super.new(name, 32, build_coverage(UVM_CVR_FIELD_VALS));
add_coverage(build_coverage(UVM_CVR_FIELD_VALS));
if(has_coverage(UVM_CVR_FIELD_VALS)) begin
cg_vals = new();
cg_vals.set_inst_name(name);
end
endfunction

Figure 3. Covergroup construction [5]

3. Before building the reg model you need to set uvm_reg::include_coverage(...) to indicate which models
to be constructed, as depicted in Figure 4.

// Building the register model

If(fpgadp_regs == null) begin
// Specify which coverage model that must be included in various blocks,
// register or memory abstraction class instances.
uvm_reg:include_coverage("*",UVM_CVR_ALL);

this.fpgadp_regs =fpgadp_register_pkg uvm::fpgadp_cfg::itype id::icreate("fpgadp_regs”,this);
fpgadp_regs.build();

// Enables sampling of coverage
fpgadp regs.set coverage(UVM_CVR_ALL);

fpgadp regs.lock model();
end

Figure 4. Enabling building and sampling of coverage [5]

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

4. Eventually, you need to tell the compiler to enable coverage collection (The below options qualifies for
Cadence Incisive Simulator)

-uvm -write_metrics -covfile cov_config_file -coverage All

cov config file
set_covergroup -per_instance_default_one

Figure 5. The contents of cov_config_file

5. Finally we need to sample the coverage using the 2 methods, uvm_reg::sample() and
uvm_reg::sample values(). We need prediction to update the RAL model and based on either
auto-prediction mode or explicit-prediction mode, the uvm_reg::sample() or uvm_reg::sample values()
methods are used and implemented.

I11. PrEDICTION

In UVM Register Modelling, a prediction is an art of keeping the Register Model up-to-date with expected
results for the design registers. This allows us to compare the expected results from the Register Model with
actual register values from the DUT.

A. Auto-Prediction Mode (implicit)

Register Model
, | memory
register
sequences e
. U R —— registers
[& F —
5
| adapter |
DUT
e memory
agent o
mon S
y 5 :
| seqr | drv = registers

Figure 6. Auto-Prediction Model

In this prediction mode, the sequences using the UVM register API update the RAL model automatically. On
every register access, the uvm_reg::sample() method is called, as shown in Figure 7.

if (system_map.get_auto_predict()) begin
uvm_status_e status;
if (rw.status != UVM_NOT_OK) begin
sample(value, -1, 0, rw.map);
m_parent.XsampleX(map_info.offset, 0, rw.map};
end

status = rw.status; // do_predict will override rw.status, so we save it here
do_predict{rw, UVM_PREDICT WRITE);
rw.status = status;

end

Figure 7. uvm_reg::sample() function call

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

The default uvm_reg::sample() function is empty, as shown in Figure 8.

protected virtual function void sample(uvm_reg_data_t data,
uvm reg data t byte en,
bit is_read,
uvm_reg map map);

endfunction

Figure 8. uvm_reg::sample() function definition

Thus, to sample the coverage after each register access we need to implement the uvm_reg::sample()
function, as depicted in Figure 9.

// Function: sample
protected virtual function void sample{uvm_reg_data_t data,
uvm_reg_data_t byte_en,
bit is_read,
uvm_reg_map map);
super.sample(data,byte_en,is_read,map);

foreach (m_fields]i])
m_fields[il.value = ({data >> m_fields[i].get_Isb_pos(]) & A
((1 << m_fields[i].get_n_bits()) - 1));

if (get_coverage(UVM_CVR _FIELD VALS))

cg_vals.sample(); B
endfunction

Figure 9. uvm_reg::sample() function implementation

As shown in Figure 7, the register-field values are updated after sampling the coverage because the
uvm_reg::sample() is called before the uvm_reg::do_predict (which updates the register fields in RAL model).

Thus to make sure the register-field values are updated before sampling the coverage the register-fields are
updated manually(Marker A) and then coverage sampling is done(Marker B), Figure 9.

B. Explicit prediction

This prediction mode updates the register model on all monitored transactions. It uses a predictor component
and the UVC adapter.

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

iR EesmSTRER RS SR e a Register Model
Predictor o
updates model ’._."' memory
It Conversion to | |
Rt register -
..... = model registers
---- | |
’ b
Predictor adapter
ry . -
. sl DUT
uwvc e
s memory
agent b5
mon RS
=
- isters
regis
| sedqr | drv = s]

Figure 10. Explicit Prediction Model

With an explicit predictor, when register access is performed, the monitor sends out a transaction to the
analysis port which is connected to uvm_reg predictor and this triggers uvm_reg_predictor::write. This method
updates the RAL model. After the update, we can explicitly call the uvm_reg::sample_values() method.

The default uvm_reg::sample values() function is empty. (See Figure 11)

[/ Function: sample_values

virtual function void sample_values();
endfunction

Figure 11. uvm_reg::sample values() function definition

Thus, in-order to sample the coverage we need to implement the uvm_reg::sample values() function. (Refer
Figure 12)

// Function: sample_values
virtual function void sample_values();
super.sample_values();
if (get_coverage(UVM_CVR_FIELD _VALS))
cg vals.sample();
endfunction

Figure 12. uvm_reg::sample_values() function implementation

B.1 Example

Let us consider an example of how to call the sample_values() method. The sample values() method can be
called when the user wants to capture the coverage. In this example, the custom predictor class is created
in-order to override the write() method and to explicitly call the sample values() method. We can explicitly call
the uvm_reg::sample values() after every register-access, as depicted in Figure 13.

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

class uvm_reg_predictor_custom #{type BUSTYPE=int) extends uvm_reg_predictor #{BUSTYPE);
‘'uvm component param utilsiuvm reg predictor#{BUSTYPE))

/[Function : new

function new (string name, uvm_component parent);
super.new(names, parent);

endfunction

/I Function : write
/[Over-riding the function to explicitly call the sample values method
virtual function void write(BUSTYPE tr);

uvm_reg rg;

uvm_reg_bus_op rw;

// Calling the parent function
super.write(tr);

/! Getting the register handle
adapter.bus2reg(tr, rw);
rg = map.get_reg_by offset{rw.addr, (rw.kind == UVM_READ));

// Sampling the coverage
rg.sample_values();
endfunction
endclass

Figure 13: Custom reg_predictor class with overridden write function.

With the use of uvm reg::sample() and uvm_reg::sample values() we will be able to sample the RAL
functional coverage.

IV. RoLE OF REGISTER MODEL (GENERATORS

The sample() and sample values() method implementations, as depicted in Figure 9 and Figure 12, can be
done by the register model generators. If the generator is unable to do so, the user can write a wrapper script to
include the implementations.

Since the sample() is implicitly called, the user doesn’t have to do anything. However, the sample values()
method has to be called explicitly by the user, as depicted in Figure 13. This is imperative because the place at
which to call the sample values() method is based on the user’s need, hence this cannot be generalized and
included by the register generators.

V. COMPARISON AND SUGGESTIONS

The sample() method is a protected virtual function, hence it cannot be called explicitly. On the other hand,
the sample values() method is just a virtual function and can be called by the user at the desired place,
explicitly.

The sample() method is called implicitly on every register access, hence the user doesn’t have to worry about
calling the sample() method. However, the sample values() task needs to be explicitly called.

Thus, when the auto-prediction scheme is used, the sample() method has to be used and in the
explicit-prediction scheme, it is much more convenient and flexible to use sample_values() method.

(
DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

||] VAN
VL REsuLTs

Without the implementation of either uvm_reg::sample() or uvm_reg::sample values() the RAL functional
coverage will only be created but not sampled. (See Figure 14)

@ If) instances o B LR 21980 / 1058123 (2
W usermave_dhg 0/ 0 taval
o 3w _phy — 07550 (%)
b i wen_test top | | s Y o/3 0%
b wven_test_top fpga_base_req_test foga_base_test m_env fpgado_regs DP_FPGA_ID. cg_vals s os ! 56 10%)

| 6 0%
/B4 10%)

b wen_test_top fpga_bane_req_test fpga_base_test m_env fpgalvds_regs (VDS _BASK_ENABLED cg_vals 3 os

b B wven_tewt_top fpga_base_reg_test fpge_bas m_eme tpgabeds_rege LvDS_BANK_ENABLE] «y_vais — %

]

]

0/
" ; uvn_test_top fpga_base_req_test foga et m_ere fpgabeda_rege LvDS_SERDESS RESETO cg_vals = os 0/ 8% 1w
B v tedt top fpga Bane_reg lest fpga Basa lest m_phv fpgabeds_regh LVDS_MERDESD RESET] (g wals 0" o 0/ &4 0%
P 5 wvn_test 1op fpge_beve_reg_test foge_ bave_test m_env fpgelvds_rege LVDS_ISERDES BITSUIPO cg_vels 10— 0% 0/ 64 10%)
b & wen_tent_top fpge_bave_reg_test foge_bave_test m_em Spgaleds_rege LVDS_ISERDESE BITSLIEL cg vels - I 0% 0764 10N
b 5 e test top fpge_base_reg test fops base test m_env fpgaleds_regs LVDS GELATEZ OB i v o 0/ 52 0%
b we_test_top Fpge_be: % 076 %)
§ e test_top Fpge_ b o e 5 o™ D/ 2m ow)
0 g RAL Registers Coverage Collected T
™ e | 070 tved

Figure 14: Coverage (0%) without the implementation of uvm_reg::sample() and uvm_reg::sample_values() methods

Thus, we need to implement the uvm_reg::sample() for auto-prediction and uvm_reg::sample values() for
explicit-prediction in order to sample the coverage successfully. (See Figure 15)

s - Matrics]

™ Load... = i o

Context Source
i Map

= Aall_metrics

vds_iserdesZ_bnslipl —s12% 2764 (3.12%)

beds_dma_desc_ct! =1 57.71% & 7 6B (8. 82%)
hvds_dma_desc_wr_addr | | e— N 3 /64 (4 65%)
Ivds dma desc wr_addr h [] 1.56% 17 64 {1.56%)

r =

P & Ivas_ideiayeZ_cnt_value_in 1— o% 0 7 32 (O%)

» = lvds_idelayveZ cnt_loadOd I— 0% 0 s &4 (O%)

» & Ivds_idelayez_cnt_loadl I— o a 7 64 (O%)

» & Ivds_frame_errD 1 35.12% 2 7 64 (3.12%)
» = lvds_frame_errl C—131% 2 7 84 (3.12%)
» ¥ vds_controlo) 53.57% 8 / 16 (50%)

» & Ivds_frame_window C—11.56% 27128 (1.56%)
» &= lvds_idle_=ync_pattern C—1 1 56% 17 €4 (1 SE%N)
» & Ivds_header_sync_patterm C—]1.56W% 1764 (1.56%)
» B¢ Ivds_dbg_ctl I 0% Q 7 196 (0%)

» & lvds_dbg_data 1 0% 0 / €4 (O%)

» BF vds_chip_ctl 1 sow% 1 7 2 (S0%)

P F Ivds_dma_ct) 51.56% 4 / 66 (6.06%)
b B lvds_timestamp_| I 0% Q s &3 (O%)

» & hvds_vbmestamp_h I— 0% 0 s 64 (O%)

» = Ivds_record_map_ctil) 40.54% 7 /196 (3.57%)
v =

r =

>

Figure 15: Coverage after the uvm_reg::sample() implementation for auto-prediction and uvm_reg::sample_values() for explicit prediction

VIIL. CONCLUSION

Since the user is oblivious of the 2 obscure methods, uvm_reg::sample() and uvm_reg::sample_values(), they
are rarely used. In this paper, we have shown as to how to use them, along with their implementations, when to
use them and their effect on coverage sampling.

ACKNOWLEDGMENT

I would like to gratefully acknowledge the critical feedback and support that I received on the content of this
paper from my colleagues, Mayukh Majumdar, Vishwanath Anathakrishnan, Manjunatha P.N, Ajay Sharma,
Shveta Basavaraj Totad.

REFERENCES

[1] M. Peryer, D. Aerne, "A New Class Of Registers," - DVCon US 2016

[2] Verification Academy — UVM Cookbook: https://verificationacademy.com/cookbook/registers/integrating
[3] Universal Verification Methodology (UVM) 1.1 Users Guide — Accellera, May 18, 2011

[4] Universal Verification Methodology (UVM) 1.2 Users Guide — Accellera, October 8, 2015

[5] Verification Academy Coverage Cookbook: https:/verificationacademy.com/cookbook/coverage

https://verificationacademy.com/cookbook/registers/integrating
https://verificationacademy.com/cookbook/coverage

