

Functional-Coverage Sampling in UVM RAL
Use of 2 Obscure Methods

Muneeb Ulla Shariff, Mirafra Technologies Pvt Ltd, Bangalore, Karnataka, India
(muneebullashariff@mirafra.com)

Ravi Reddy, Roche Sequencing Solutions, Santa Clara, California, USA
(ravi.reddy@roche.com)

Abstract—The Universal Verification Methodology (UVM) Register Abstraction Layer (RAL) is a very powerful
feature to model the memory-mapped behavior of the registers and memories in the DUT. Based on the user's input
the register-model-generators automatically generate the covergroup for the RAL functional-coverage. Depending on
whether the covergroup needs to be sampled automatically on register access or as the result of an external call, two
different methods need to be implemented; sample() and sample_values(). Due to the lack of information about these
methods, they are rarely and improperly used. Thus, in this paper, the focus is to answer the following questions:
which of the 2 methods to be used, when to be used and how to implement. Additionally, the methods are compared
and contrasted, and there will be suggestions about which method could be used and their advantages in a given
situation.

Keywords—UVM; RAL; Functional Coverage; sample; sample_values

I. INTRODUCTION

The UVM register model is used to mimic the design hardware register contents at the TestBench (TB) side

and to abstract accesses to registers and memories. The register model is constructed from the classes that
describe the memory regions or registers of the Design Under Test (DUT). These classes encapsulate the bit
fields within registers and registers within blocks. The registers and memory blocks are allocated address offsets
within an address map model inside the block. The UVM RAL provides tasks, read() and write(), which can be
called from a UVM sequence to access the registers. The RAL model is kept up to date with the DUT state,
either with the help of auto-prediction or explicit prediction, by using a register predictor component.

Figure 1. UVM Register Model Integration [1]

To integrate a register model into a UVM TB, we have to create the register model, implement and use the
adapter class, a predictor and hook them into the TB structure. The detailed procedure is explained in the UVM
Cookbook[2]., and in the UVM User's Guide[3][4]. Figure. 1 is a pictorial representation of the TB integration
of the UVM register model.

1

The functional coverage of the RAL model is usually created by the register model generators. However, the
sampling of the covergroup requires attentive work.

II. PROCEDURE

In order to sample the RAL functional coverage the following steps have to be followed:

1. The covergroup and coverpoints must be defined. This is done using the register assistant tools, as
shown in Figure 2.

Figure 2. Covergroup definition

2. The coverage model needs to be constructed conditionally, as shown in Figure 3.

Figure 3. Covergroup construction [5]

3. Before building the reg model you need to set uvm_reg::include_coverage(...) to indicate which models
to be constructed, as depicted in Figure 4.

Figure 4. Enabling building and sampling of coverage [5]

2

4. Eventually, you need to tell the compiler to enable coverage collection (The below options qualifies for
Cadence Incisive Simulator)

-uvm -write_metrics -covfile cov_config_file -coverage All

Figure 5. The contents of cov_config_file

5. Finally we need to sample the coverage using the 2 methods, uvm_reg::sample() and

uvm_reg::sample_values(). We need prediction to update the RAL model and based on either
auto-prediction mode or explicit-prediction mode, the uvm_reg::sample() or uvm_reg::sample_values()
methods are used and implemented.

III. PREDICTION

In UVM Register Modelling, a prediction is an art of keeping the Register Model up-to-date with expected

results for the design registers. This allows us to compare the expected results from the Register Model with
actual register values from the DUT.

A. Auto-Prediction Mode (implicit)

Figure 6. Auto-Prediction Model

In this prediction mode, the sequences using the UVM register API update the RAL model automatically. On

every register access, the uvm_reg::sample() method is called, as shown in Figure 7.

Figure 7. uvm_reg::sample() function call

3

The default uvm_reg::sample() function is empty, as shown in Figure 8.

Figure 8. uvm_reg::sample() function definition

Thus, to sample the coverage after each register access we need to implement the uvm_reg::sample()

function, as depicted in Figure 9.

Figure 9. uvm_reg::sample() function implementation

As shown in Figure 7, the register-field values are updated after sampling the coverage because the

uvm_reg::sample() is called before the uvm_reg::do_predict (which updates the register fields in RAL model).

Thus to make sure the register-field values are updated before sampling the coverage the register-fields are
updated manually(Marker A) and then coverage sampling is done(Marker B), Figure 9.

B. Explicit prediction

This prediction mode updates the register model on all monitored transactions. It uses a predictor component
and the UVC adapter.

4

Figure 10. Explicit Prediction Model

With an explicit predictor, when register access is performed, the monitor sends out a transaction to the
analysis port which is connected to uvm_reg_predictor and this triggers uvm_reg_predictor::write. This method
updates the RAL model. After the update, we can explicitly call the uvm_reg::sample_values() method.

The default uvm_reg::sample_values() function is empty. (See Figure 11)

Figure 11. uvm_reg::sample_values() function definition

Thus, in-order to sample the coverage we need to implement the uvm_reg::sample_values() function. (Refer

Figure 12)

Figure 12. uvm_reg::sample_values() function implementation

B.1 Example

Let us consider an example of how to call the sample_values() method. The sample_values() method can be

called when the user wants to capture the coverage. In this example, the custom predictor class is created
in-order to override the write() method and to explicitly call the sample_values() method. We can explicitly call
the uvm_reg::sample_values() after every register-access, as depicted in Figure 13.

5

Figure 13: Custom reg_predictor class with overridden write function.

With the use of uvm_reg::sample() and uvm_reg::sample_values() we will be able to sample the RAL
functional coverage.

IV. ROLE OF REGISTER MODEL GENERATORS

The sample() and sample_values() method implementations, as depicted in Figure 9 and Figure 12, can be
done by the register model generators. If the generator is unable to do so, the user can write a wrapper script to
include the implementations.

Since the sample() is implicitly called, the user doesn’t have to do anything. However, the sample_values()
method has to be called explicitly by the user, as depicted in Figure 13. This is imperative because the place at
which to call the sample_values() method is based on the user’s need, hence this cannot be generalized and
included by the register generators.

V. COMPARISON AND SUGGESTIONS

The sample() method is a protected virtual function, hence it cannot be called explicitly. On the other hand,
the sample_values() method is just a virtual function and can be called by the user at the desired place,
explicitly.

The sample() method is called implicitly on every register access, hence the user doesn’t have to worry about
calling the sample() method. However, the sample_values() task needs to be explicitly called.

Thus, when the auto-prediction scheme is used, the sample() method has to be used and in the
explicit-prediction scheme, it is much more convenient and flexible to use sample_values() method.

6

VI. RESULTS

Without the implementation of either uvm_reg::sample() or uvm_reg::sample_values() the RAL functional
coverage will only be created but not sampled. (See Figure 14)

Figure 14: Coverage (0%) without the implementation of uvm_reg::sample() and uvm_reg::sample_values() methods

Thus, we need to implement the uvm_reg::sample() for auto-prediction and uvm_reg::sample_values() for
explicit-prediction in order to sample the coverage successfully. (See Figure 15)

Figure 15: Coverage after the uvm_reg::sample() implementation for auto-prediction and uvm_reg::sample_values() for explicit prediction

VII. CONCLUSION

Since the user is oblivious of the 2 obscure methods, uvm_reg::sample() and uvm_reg::sample_values(), they
are rarely used. In this paper, we have shown as to how to use them, along with their implementations, when to
use them and their effect on coverage sampling.

 ACKNOWLEDGMENT

I would like to gratefully acknowledge the critical feedback and support that I received on the content of this
paper from my colleagues, Mayukh Majumdar, Vishwanath Anathakrishnan, Manjunatha P.N, Ajay Sharma,
Shveta Basavaraj Totad.

 REFERENCES

[1] M. Peryer, D. Aerne, "A New Class Of Registers," - DVCon US 2016
[2] Verification Academy – UVM Cookbook: https://verificationacademy.com/cookbook/registers/integrating
[3] Universal Verification Methodology (UVM) 1.1 Users Guide – Accellera, May 18, 2011
[4] Universal Verification Methodology (UVM) 1.2 Users Guide – Accellera, October 8, 2015
[5] Verification Academy Coverage Cookbook: https://verificationacademy.com/cookbook/coverage

7

https://verificationacademy.com/cookbook/registers/integrating
https://verificationacademy.com/cookbook/coverage

