
Functional Coverage of Register Access
via Serial Bus Interface using UVM

D. M. Tomušilović

Abstract-While the UVM Register Abstraction Layer provides support for functional coverage collection, the available
elements  are not  adequate for the coverage of  complex register access  scenarios.  The usage of  the Serial  Peripheral
Interface  for  register  access  brings  a  whole  new  set  of  challenges,  as  bit-resolution  access  level  and  low-level
communication parameters become essential parts of functional coverage. The External Functional Coverage Subscriber
facilitates the handling of these items, while also offering the option of including the additional factors which affect the
register access, such as power management, into the coverage metric.

I.   INTRODUCTION

One of the critical tasks in the process of verification is the verification of register space. Any bug within the
register implementation will manifest itself through a faulty device operation. Complexity of the verification process
rises in case that the Serial Peripheral Interface (SPI) is used for register access. The main challenge comes from the
fact that it is necessary to break the byte-resolution, thoroughly covered in UVM documentation, in order to support
bit-by-bit  access.  Additional  parameters,  such  as  low-level  communication  timing,  need  to  be  taken  into
consideration. Therefore, the functional coverage of register access via a serial bus interface contains a set of very
specific items not applicable to parallel interfaces.

UVM Register Abstraction Layer (UVM_REG) with certain modifications described in [1] proved very suitable
for the modeling of the device register space. However, even though the author had initially planned to use the
UVM_REG built-in  coverage  collection  elements,  it  turned  out  that  they  have  certain  limitations  that  are  not
straightforward to overcome. Furthermore, the register model would have become aware of some low-level protocol
attributes, breaking its modularity.

Much  more  appropriate  is  the  usage  of  a  separate  coverage  collection  component,  which  observes  the  SPI
communication as a subscriber, while also referencing the register model and other components of interest, such as
the power monitor.

II.  VERIFICATION ENVIRONMENT

A. SPI Monitor
According to the Universal Verification Methodology, the interface monitor has a passive role of observing the

bus interface lines, extracting information from a bus and creating a transaction that can be processed by the rest of
the environment. 

A typical monitor is a class extended from uvm_monitor, which is a part of UVM library. It contains a virtual
interface  through  which  the  bus  information  is  accessed.  Data  collection  is  performed  within  the  predefined
run_phase task and the collected transaction is published via a TLM analysis port, as represented in Figure 1.

The monitor can also perform checks and basic coverage collection at low-level protocol layer, as well as be used
to handle protocol specific requirements, such as frequency measurement.

B. Layer Monitor
 In  order to overcome UVM_REG limitations regarding partial register access,  an intermediate component is

placed between the interface monitor and the register model predictor. While the UVM documentation does provide
support  of  partial  register  access  through the  field  supports_byte_enable  of  uvm_adapter class,  it  recommends
maintaining byte-level  granularity.  To  handle bit-level  access,  the layer  monitor  subscribes  to  the SPI monitor
analysis port and references the register model. The prediction mechanism is shown in Figure 2. The calculated
value is provided to the predictor for further processing. The solution is applicable regardless of the register size and
can be extended to support other requirements, such as bit-level or byte-level strobe.



Figure 1. SPI monitor

Figure 2. Partial access prediction mechanism in the layer monitor

C. Predictor
The primary role of the predictor component is to perform updates of the register model. When the predictor gets

an observed transaction via predefined  bus_in  analysis  export,  it  invokes  bus2reg  method of the corresponding
adapter, which converts the transaction into a suitable generic format. If check on read is enabled, the read value is
compared against the mirrored value of the register being accessed. The predefined sample method is called upon
register and register block level. Finally, the prediction of the new mirrored value is done, taking the defined register
access policy into account. 

III.   UVM_REG COVERAGE API
D. Overview

As the register coverage model is very dependent upon the implemented registers  and fields, UVM does not
provide any implicit coverage. It does, however, propose usage of functional coverage type identifiers, in order to
determine whether certain covergroups are to be instantiated or not [2]. 

There are several predefined identifiers, presented in Table 1. User-defined and vendor-defined identifiers may be
added to handle coverage models which are not natively supported by the UVM documentation. 

To include coverage models, a testcase writer may use the static method include_coverage of the uvm_reg class.
Multiple coverage models can be included, as the symbolic values use a one-hot encoding. Additionally, a concrete
path specifying the register or the block to which the command applies can be provided as the first argument to the
method. Various options are demonstrated in Figure 3.

The register model developer lists all supported coverage models using  build_coverage as an argument to the
register or register block constructor new(). Finally, the has_coverage method checks whether a coverage model is
supported and included, in which case a dedicated covergroup is instantiated. 



Table 1. Functional coverage identifiers

Identifier Coverage model

UVM_NO_COVERAGE No covergroups built

UVM_CVR_REG_BITS Read and written data covergroups built

UVM_CVR_ADDR_MAP Accessed addresses covergroups built

UVM_CVR_FIELD_VALS Field values covergroups built

UVM_CVR_ALL All covergroups built

Figure 3. Include coverage models

On the register level, UVM documentation proposes usage of two covergroups dedicated to field values coverage
and the coverage of register access in terms of read and written data bits. Their instantiation is shown in Figure 4,
while the definition of implemented cover items is given in Figure 5.

Figure 4. Register level covergroups instantiation



Figure 5. Register level covergroups definition

On the register block level, UVM documentation also proposes usage of two covergroups dedicated to field values
coverage  and  the  coverage  of  register  access  in  terms  of  accessed  addresses.  The former  is  quite  similar  to  a
covergroup implemented on the register level, but on the block level it facilitates cross coverage between values of
fields in different registers. The instantiation is shown in Figure 6, while the definition of implemented cover items
is given in Figure 7.

Figure 6. Register block level covergroups instantiation



Figure 7. Register block level covergroups definition

By default, the sampling of all covergroups in the register model should be disabled. To enable the sampling of a
certain coverage model, set_coverage method is used, as displayed in Figure 8. If invoked for a register block, it will
also be recursively called for all subcomponents. 

Figure 8. Coverage sample enable

Two predefined virtual methods are provided to perform covergroup sampling at the register  and the register
block level. Method sample is automatically invoked by the predictor prior to the prediction. Method sample_values
should be explicitly called from the environment. Within the methods, method get_coverage, which checks whether
a certain model is included and supported and whether its sampling is enabled, is used to condition sampling of
implemented covergroups. The implementation at the register and the register block level is shown in Figures 9 and
10, respectively.

Figure 9. Register level coverage sampling



Figure 10. Register block level coverage sampling

Figure 11 summarizes all the steps in the process of functional coverage collection using UVM_REG API. 

   1. SPI transaction is collected by the SPI monitor
   2. the collected transaction is published through a TLM analysis port
   3. partial access is handled by the layer monitor
   4. the method bus2reg of the adapter is invoked 
   5. the transaction provided to the predictor in a suitable generic format
   6. the read value checking
   7. register level and register block level covergroups sampling
   8. prediction

Figure 11. UVM_REG coverage collection diagram

By following the proposed guidelines, the coverage of some simple items, such as transaction direction, data,
address or current register state can be successfully performed. However, the experience of working with engineers
who use UVM_REG shows that the feature is very error-prone. Some typical mistakes include:

1. using value of uvm_reg_field class in place of written or read data
2. using value of uvm_reg_field class in place of mirrored value
3. failing to understand the order of predictor operation – sampling occurs before prediction



4. failing to understand the meaning of API methods – the role of include_coverage, build_coverage, 
has_coverage, set_coverage, get_coverage can be confusing

5. forgetting to enable coverage sampling
6. only partially following the guidelines – for example, sampling is done unconditionally
7. failing to understand the usage model of sample and sample_values methods – sample_values is not called 

automatically
8. providing references to the rest of the environment in a register, affecting reusability

Another drawback is that the covergroups defined within a register class reduce code readibility.  Finally,  any
scenario  involving consecutive accesses  to  various registers,  the remaining transaction  fields  or  the nonregister
content creates an undesired dependency between the register model and the rest of the testbench.

Having all these limitations in mind, it turns out that the usage of the external coverage collection subscriber is a
much more convenient solution. 

IV. EXTERNAL FUNCTIONAL COVERAGE SUBSCRIBER

E. Basic coverage
In addition to the benefits mentioned in [3], a development of an external component, which structure is given in

Figure 12, proves very advantageous in the case that a serial bus interface is used for register access. In that case,
other than the very basic register access and field value coverage, the coverage model can include a number of
crucial  register  access  related  items.  All  implemented  covergroups  are  wrapped within uvm_object  in  order  to
support  covergroup creation  on demand,  shown in Figure  13.  The displayed  covergroup performs field  values
coverage.  The  covergroup  presented  in  Figure  14  performs  register  access  coverage,  by  collecting  accessed
addresses and transaction data. It can also include the information about the current register content. That is essential
for read-only status registers, for which write access should be unobtrusive, regardless of the value in the register.

Figure 12. External coverage subscriber structure



Figure 13. A covergroup wrapped within a covergroup wrapper

Figure 14. Register access coverage

F. Partial access coverage
By using  an  SPI  interface  to  access  the  registers,  bit-level  access  can  be  supported.  Therefore,  partial  and

overflow scenarios become a key component of the coverage model. An external subscriber offers a simple way of
incorporating transaction length into coverage metrics, as shown in Figure 15. 

Figure 15. Partial access coverage



G. Low-level communication coverage
As the low-level SPI communication timings should not impact the register access as long as the protocol is not

violated, dedicated timing-related cover items are implemented. Figure 16 shows coverage of SPI clock frequency at
which a register is accessed. The frequency measurement is done by the SPI monitor.

Figure 16. SPI access clock frequency coverage

H. Power management
In order to reduce the power consumption, multiple power domains may be used. The global power monitor

observes the input signals, such as voltage level and reset pin and determines whether a certain register is powered
on. A locking field callback technique elaborated in [4]  is  utilized to prevent  access  to registers  within power
domains that are turned off. The implemented callback is shown in Figure 17. A critical scenario that the verification
side needs to cover is that the registers whose power is shut off act as read-only. A read attempt results in read value
isolation. Figure 18 shows the dedicated covergroup.

I. Register interaction
An important aspect of functional coverage is the coverage of the scenarios that include the interaction between

several registers. For example, to handle the interrupt logic, a set of registers used to enable, clear or indicate the
interrupt status flags is implemented. Of particular interest is the proper implementation of priority handling logic,
which includes the triggering of an interrupt while the interrupt  clear  register  is  being accessed.  The necessary
metrics can be obtained by using transition bins, given in Figure 19. The bin in the first coverpoint will be covered if
consecutive  access  to  address  `REG1_O  and  `REG2_O  is  sampled.  The  second  coverpoint  contains  the  bin
expression (READ, WRITE => READ, WRITE), which expands to 4 transition bins dedicated to transitions (READ
=> READ), (READ => WRITE), (WRITE => READ) and (WRITE => WRITE) [5]. Since the bins array construct
TRAN_RW[] is used, an individual bin will be associated with each of the 4 created transitions. Finally,  cross
coverage between the two conditions is implemented.

Figure 17. Power supply modeling callback



Figure 18. Power supply coverage

Figure 19. Transition coverage

Figure 20 summarizes all the steps in the process of functional coverage collection using an external component.
The wrapped covergroups are instantiated within the component rather than within the register model and step (9)
represents their sampling.

Figure 20. Coverage collection using an external component diagram

V SUMMARY

Using the aforementioned solution, the register modeling and the functional coverage of registers are decoupled.
The main benefits of UVM Register Abstraction Layer, such as generation of abstract and reusable stimulus through
register sequences and built-in checking mechanism are maintained. However, rather than relying upon the built-in
UVM_REG elements, the external component that references the register model is used for coverage collection.
This facilitates the coverage of some complex scenarios, such as register interaction and power management impact.



Also, the register model is not polluted by low-level communication details while the coverage of these elements is
performed.

ACKNOWLEDGMENT

The author would like to thank the entire Veriest Vtool Serbia d.o.o. organization for their support during the
implementation of aforementioned solutions. The code extracts have been generated using the in-house developed
Vtool tool [6]. The tool, which is currently under development, supports automatic generation of registers and the
register functional coverage, using a PDF file as the input. As the output, the user is provided with the register
description in the IP-XACT format, as well as with a UVM/SystemVerilog file. The tool handles a set of register
access policies that is a subset of definitions according to the IP-XACT standard, therefore making the solution
described  in  the paper  scalable.  What  is,  however,  outside of  the  scope is  the coverage  of  policies  which are
currently not supported, leaving the implementation of these elements to the user. 

REFERENCES
[1] D. Tomušilović, “Extending UVM Register Abstraction Layer for Verification of Register Access via Serial Bus Interface” DVCon Europe 

2016.
[2] Accellera, UVM User Guide, v1.1, p87, http://www.accellera.org/
[3] Mentor Graphics, UVM Cookbook, https://verificationacademy.com/cookbook/uvm
[4] M. Litterick and M. Harnisch, “Advanced UVM register modeling – There’s more than one way to skin a reg”, Verilab & DVCon Europe

2014.
[5]    IEEE Std 1800-2012, section 19.15.2, p527-528
[6] Vtool, thevtool.com


