
Functional Coverage Collection for Analog 
Circuits – Enabling Seamless Collaboration 

between Design and Verification 
 

Z. Ye, H. Lin and A. M. Khan 
Texas Instruments 

12500 TI Blvd,  
Dallas, TX  75243 

 

 
Abstract-In this paper, Analog Coverage Collector (ACC) is proposed to serve as a tool that analog designers can 

utilize to pass the analog design information, even when this information is deep inside the schematic hierarchy, to 

verification engineers who would handle chip level AMS/functional testbench for mixed signal designs. Based on that 

information, verification engineers are able to construct meaningful covergroups at the top level testbench in order to 

measure the chip-level functional coverage as accurately as possible. We show that analog designers can easily use ACC, 

and an example is presented to demonstrate the flow to collect analog coverage.    

 

I.   INTRODUCTION 

“When are we really done with verification?” This is one of the questions often asked by management to the 

verification engineers when it comes to scoping the completion percentage of an assigned task. In the meantime, 

more and more analog designers start asking verification engineers tough questions such as “Are my blocks being 

verified thoroughly at top level?” and “When will my block be verified 100%?”. Without a proper coverage 

methodology, these questions become tough to answer. 

Historically, there have been two kinds of verification coverage in digital domain, code coverage and functional 

coverage. Code coverage is one useful way to measure verification progress since it doesn’t require additional 

manual work on part of the user, and is collected automatically by the simulation tool.  Through this code coverage, 

we can measure how many lines of code have been executed (line coverage), which paths through the code and 

expressions have been executed (path coverage), which single-bit variable took the values 0 or 1 (toggle coverage), 

and which states and transitions in a state machine were exercised (FSM coverage) [1]. However, in the analog 

domain, this luxury is not available due to the schematic nature of analog circuits.  

Functional coverage on the other hand measures what design features are covered through the test suites. 

Covergroups need to be constructed by verification engineers to collect functional coverage from simulation 

regression. The quality of covergroups directly impacts the accuracy of the collected coverage. For example, in a 

design with ten features if the covergroups are only built to cover six of the ten features, even if 100% functional 

coverage is achieved, the other four features may not work because of the fact that they may never get verified at all.  

The concept of functional coverage is well known in the digital verification arena; however, it is relatively new 

to analog verification. This is mainly due to the complex nature of analog design and design implementation 

practices. For example, each device in the analog schematic may have its unique voltage or current thresholds. In 

additional, multiple thresholds may need to be checked for one device. Usually this kind of information is not 

openly documented or is innate to the designers’ implementation. In addition, the coverage collection needs to be 

applied to selected devices to avoid information overload. Therefore usually it requires deep design knowledge or 

tedious information alignment sessions with the designer to gather this critical information. As a result, it is hard for 

the verification engineers to construct high quality covergroups at the top level testbench for analog circuits. On the 

other hand, there are few straight forward ways for the analog designers, who have full knowledge of their design, to 

pass this information to the verification engineers, which is a verification challenge. 

In light of this challenge, there needs to be a flow or a method which is both design-friendly and verification-

friendly that would allow analog designers to pass this essential information to verification engineers so that a 

complete set of covergroups can be built at top level testbench. 

This paper addresses above challenge and provides a solution to enable seamless collaboration between design 

and verification. Following is a quick overview of the upcoming sections: In section II the concept of analog 

coverage is introduced and discussed. In section III ACC is presented as an efficient method that analog designers 



can utilize to pass the knowledge needed to build analog covergroups for verification engineers. In section IV the 

analog coverage collection flow is discussed with section V demonstrating an example to show the power of ACC. 

Finally we draw some conclusions in Section VI.  

II.   Analog Coverage 

The target of Analog coverage is to measure whether the voltage on a certain net or the current on a certain node has 

reached all the expected pre-defined thresholds. The concept of cross coverage applies when more than one signal 

needs to be sampled at the same time. Following four reasons make analog coverage collection complex and not 

trivial.  

 
 A. Identifying proper nets and nodes 

  Even in a relatively simple analog circuit there are many nets and nodes, therefore, design knowledge is needed 

to identify which nets or nodes need to be monitored in order to collect coverage. For example, in a level shifter 

circuit shown in Fig.1 there are eight nets and even more nodes in the circuit. Collecting coverage on each of these 

may not be necessary and we definitely want to identify all the critical ones. 

 

Fig. 1 Generic Level Shifter Circuit [2] 

B. Determining proper threshold(s) 

For digital signals the threshold is usually fixed because the expected values are often either “0” or “1”. On the 

other hand in analog domain things are more complicated. For example, in order to fully exercise a particular circuit, 

the threshold for a voltage signal can be anywhere between ground and power supply, and sometimes even beyond 

the limitation of ground or power supply. In addition, usually more than one threshold may need to be defined for a 

certain net or node; therefore, smart decisions have to be made to determine proper thresholds for analog signals. 

 

C. More than one signal may need to be monitored at the same time 

      Just as the concept of cross coverage for digital signals, more than one analog signal may need to be monitored 

simultaneously in order to create interesting covergroups. As an example, for the circuit shown in Fig.1, VDD1 and 

VDD0 may be combined to collect the coverage of power up sequencing.   

 

D. Documentation about analog circuit design is often times lacking details 

     When writing covergroups for digital signals, verification engineers can reference to the register map, product 

specification and digital design specification, since most of the digital signals are function related and the standards 

of documenting digital signals are more mature. On the other hand, due to the nature of the analog circuits, the 

documentation is not in such detail since implementation specifics are mostly retained by designers at block level. 

One of the reasons is that historically analog designer is the verifier of the circuit he/she designed and there hasn’t 



been any standardized practice in place to share this information. Therefore it is hard for verification engineers to 

extract similar information that is needed to build proper covergroups. 

 

        All the four issues mentioned above can be easily addressed if the analog designers have an efficient way to 

pass the design knowledge to the verification engineers. Documenting everything is one way to do it. But we have 

found out that most of the analog designers prefer to work on their designs in schematic editor than documenting 

separately. In light of these, we propose a schematic way to transfer analog design knowledge from analog designers 

to verification engineers – a seamless and efficient approach of handling such information. 

 
III.   ANALOG COVERAGE COLLECTOR 

        All of the ACCs are implemented with three views, symbol, VerilogAMS and VerilogA.  The source code is 

implemented in both VerilogAMS and VerilogA so that users can have options to choose from depending on where 

the analog circuit is being simulated, i.e. in pure analog block level or at top level mixed signal environment. The 

symbol view is for analog designers to place them into the schematics, just like any other cells that are instantiated in 

schematics.   

The symbol and its object properties of an absolute voltage ACC are shown in Fig. 2 as an example below. By 

editing its CDF parameters, information such as net name, checking conditions, thresholds and error tolerance can 

be specified. The output “condition” becomes high when a specified trigger condition is met, which can then be 

utilized to collect coverage. 

 
Fig.2 Absolute Voltage ACC along with its Properties 

The pseudo code for the implementation of the absolute voltage ACC is shown in Table.1. 

Table 1 Pseudo Code for Absolute Voltage ACC 

module voltage_condition(condition); 

    //******************************************** 

//Declare output 

//******************************************** 

output condition; 

logic   condition; 

//******************************************** 

//Declare user configurable CDF parameters 

//******************************************** 

parameter string vnet = “”; 

parameter string symbol = “<” from '{"<", ">", "="}; 

… 

//******************************************** 

//Initialization  

//******************************************** 



initial begin 

    //Convert the format of hierarchical path 

    H = … 

  //Construct the full path of the signal to be monitored, H_full = H.vnet 

  H_full = …;    

  //determine the threshold checking direction from symbol entered by user 

  if (symbol == “>”) 

    dir = 1; 

  else if … 

    … 

end 

//******************************************** 

//Main Program to Calculate output “condition” 

//******************************************** 

always @ (above <threshold 1>) 

  cond1 = 1’b1; 

always @ (above <threshold 2>) 

  cond1 = 1’b0; 

//other always blocks to calculate cond2 and cond3 

… 

//******************************************** 

//Construct output “condition” 

//******************************************** 

assign condition = <combination of cond1, cond2 and cond3>. 

//******************************************** 

//Obtain analog value of the monitored signal 

//******************************************** 

analog begin 

  v_val = $cds_get_analog_value(H_full, “potential”); 

end 

endmodule 

         

Similarly a repository of ACCs including current ACCs, relative voltage ACCs etc. can be implemented also.  

IV.   ANALOG COVERAGE COLLECTION FLOW 

        With a repository of coverage collectors available, the analog designers can then instantiate them in the design schematics by 

pointing them to the signals of interest and specifying correct threshold voltage and other pertinent information. A flow chart 

describing this process is shown in Fig. 3 below indicating seamless collaboration between analog designers and verification 

engineers thereby allowing robust execution.  
 



 

Fig.3 Analog Coverage Collection Flow 

Once this flow is setup, it benefits both design and verification engineers.  From analog designer’s point of view, the question 

of “whether my design block is being verified exhaustively at top level” can be answered. If the answer is yes, he/she would be 

confident that the block would work at chip level in terms of functionality. From verification engineer’s point of view, 

comprehensive covergroups for analog blocks can be easily established with the help of ACCs. If the coverage result is less than 

expected, more interesting stimulus need to be identified and added. 
V.   EXAMPLE 

        An example level shifter design along with the ACCs shown in Fig.4, where I1 and I2 are the absolute voltage ACCs, I3 is 

the absolute current ACC and I4 is the relative voltage ACC.   
 

 

Fig.4 Example Design along with Coverage Collectors 



        In the top level schematic, two level shifters are instantiated, as shown in Fig. 5. As a result, cross-coverage 

across these two cells can be monitored, if required.   

 

Fig.5 Example Top Level Design 

        Partial code for the Verilog-AMS based top level testbench is shown in Table 2. In the testbench, Design Under 

Test (DUT), covergroup and other drivers/monitors are instantiated.  

         
Table 2 Partial Code For Testbench in VerilogAMS 

module tb_sample_design(); 

    //******************************************** 

//Declare signals 

//******************************************** 

electrical vddldo; 

electrical vdd1p8v; 

… 

logic       c_in1; 

logic       c_in2; 

… 

    //******************************************** 

//Instantiate Design 

//******************************************** 

sample_design (*integer library_binding = “<library>”*) DESIGN 

  (.vddldo(vddldo), 

   .vdd1p8v(vdd1p8v), 

   … 

  ); 

     //******************************************** 

//Instantiate Covergroup 

//******************************************** 

sample_cov (*integer library_binding = “<library>”*) _covergroup 

  (.in1(c_in1), 

   .in2(c_in2), 

   … 

  ); 

    //******************************************** 



//Obtain coverage signals 

//******************************************** 

assign c_in1 = DESIGN.I1.I1.condition; 

assign c_in2 = DESIGN.I1.I2.condition; 

… 

    //******************************************** 

//Instantiate other driver/monitors 

//******************************************** 

… 

endmodule 

 

Since ACCs are embedded within the schematic, a script can be written to grab all the ACCs in design from the 

top level netlist for large designs. Once all the ACCs are identified, covergroups can be written around the ACCs to 

collect analog coverage. An example code for covergroup implementation is shown in Table 3. 

Table 3 Partial Code for Covergroup in SystemVerilog 

module sample_cov(in1, in2, …); 

     //******************************************** 

//declare inputs 

//******************************************** 

input in1; 

input in2; 

… 

     //******************************************** 

//Construct Covergroups 

//******************************************** 

covergroup sample_cg_in; 

    option.per_instance = 1;   

    cov_in1 : coverpoint in1; 

    cov_in2 : coverpoint in2; 

    cov_cross: cross cov_in1, cov_in2; 

endgroup 

… 

     //******************************************** 

//Declare the covergroups and sample them 

//******************************************** 

initial begin 

sample_cg_in cg_in; 

... 

cg_in = new(); 

… 

forever begin 

fork 

    begin 

        @(in1 or in2) 

        cg_in.sample(); 

    end 

… 

join 

end 

endmodule 

        An example analog verification coverage result is shown in Fig.6 using IMC tool from Cadence. It can be seen 

that we can easily identify coverage holes in the target test suite. For example, in covergroup cg_r0, coverpoint 

cov_i2 is not fully exercised yet. 



 

Fig.6 Example Coverage Results 

VI.   CONCLUSIONS 

In this paper, ACC is proposed as an efficient method to pass information from analog designers to verification 

engineers. As a result, meaningful covergroups can be constructed for collecting the coverage information of analog 

circuits. Another benefit for the ACC is that since it stays with the design schematic, it is reusable and portable 

without any overhead of environment management. 
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