
 

Fully Automated Functional Coverage 

Closure  
 

Manohar Kodi, +917675020009, Nvidia Graphics Pvt Ltd, Hyderabad, India (mkodi@nvidia.com) 

Sagar Sudam Patil, +918123172587, Nvidia Graphics Pvt Ltd, Hyderabad, India (sagarsudamp@nvidia.com) 

 Ranjith Nair, +917893955664, Nvidia Graphics Pvt Ltd, Hyderabad, India (ranjithn@nvidia.com) 
 

 Abstract— Functional coverage is the main metric for measuring stimulus quality in a metric driven verification (MDV). 

Verification engineers use it to sign off the complex design verification features. Constraint random tests are more 

comprehensive than traditional directed tests. To get coverage closure, large numbers of simulations are required. It is then 

necessary to merge the coverage data from those simulations which can take a significant amount of time and effort, only to 

realize that total coverage is still not 100%. This becomes an iterative process where coverage is analyzed, constraints updated, 

and tests rerun till the target is achieved.  

  

This paper covers automated functional coverage closure by regenerating constraints based on uncovered functional coverage 

points from previous functional coverage runs. This is achieved using system functions to get the merged coverage numbers from 

each run. Coverage points are also written in a systematic way which will be further explained in detail in this paper.  

 
 Keywords— Functional Coverage, UVM, Coverage Convergence, System Verilog. 

 

I. INTRODUCTION 
 

Today’s RTL is growing in complexity but due to faster time to market needs verification cycle is shrinking. 

Functional coverage is a very important and key metric in verification closure. Verification engineers write 

constraint random sequences to drive the design and collect coverage to ensure early convergence. Despite domain 

specific language support, advanced analysis tools and over 15 years of functional coverage history in HVLs, many 

engineers still find it difficult to develop functional coverage models effectively for today’s projects. Even using 

methodologies such as the UVM, and the built-in System Verilog features for functional coverage, implementation 

can be inconsistent and error-prone. Sometimes, little or no consideration is given to results analysis. This results in 

un planned project delays due to delay in coverage closure. 

 

The solution is not simply to add, or fix, functional coverage features in whatever language is being used, nor is it 

to develop new tools. The real solution is for our developers to better understand the actual requirements and come 

up with techniques needed for the correct modeling of functional coverage. They must recognize and understand the 

different kinds of functional coverage, from basic coverage of operational states, through complex use-cases, all the 

way to the mapping of results to a plan/specification. Given the trust we put in functional coverage results for tape 

out decisions, this is an oddly overlooked requirement. An essential component of modeling is to make the review 

and accurate analysis of results as painless as possible. 

 

Implementing coverage has probably never been more straightforward. Cover groups allow a high degree of 

automated bin generation, and we’re even offered essentially free coverage from register packages and the like. The 

reality, though, is that behind every coverage definition there is a cost. It takes time and effort to design coverage, 

collection, reach coverage goals, as well as to check and analyze the results. 

 

 This paper outlines the method to automate functional coverage closure with fast convergence, efficient 

verification resources (LSF slots, simulation time and disk space) and controllability. The focus of this paper is on a 

method to reduce the number of random test runs required to hit the 100% functional coverage. 
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II. AUTOMATIC FUNCTIONAL COVERAGE CLOSURE METHOD 
 

Getting functional coverage closure in a short time is hard. There are several challenges in getting functional 

coverage closure. We have created many constraint random tests to cover a more comprehensive verification than 

traditional directed tests. To reach 100% functional coverage with a large regression, we must run each test with 

several different seeds (the number is usually difficult to quantify). This will lead to a huge number of test threads in 

the regression, and then it needs more server LSF slots, regression time, disk space and will generate huge coverage 

databases which will slow down database. In most cases, the total functional coverage still might not reach 100%. 

We must override the constraints and rerun a specific test to cover the holes based on manual coverage analysis. 

And finally, we have to merge the coverage again. This definitely wastes a lot of time, LSF slots and additional 

effort, all of which are costly. In this paper, to address this challenge, we propose an automatic functional coverage 

closure method which will speed up the process. 

 

The verification team needs to identify which design features needs functional coverage points, determine 

functional coverage goals, develop coding guidelines used to instrument functional coverage points, and determine a 

methodology for running tests and gathering functional coverage metrics to determine if their functional coverage 

goal has been met. 

 

Traditional functional coverage closure involves below steps: 

1. Identifying cover groups and points. 

2. Coding Cover groups and bins. 

3. Running regressions. 

4. Generating reports and analyze. 

5. Modifying constraints manually and rerun the regressions. 

6. Repeat steps 4 and 5 until we hit 100%. 

 

Fully automated functional coverage closure method involves below steps: 

1. Identifying cover groups and points. 

2. Generate the cover points and algorithm. 

3. Running regression which makes coverage 100%. 

 

With Fully Automated functional coverage closure method we are avoiding few steps which involves more 

manual intervention, LSF slots and inefficient simulation runs. 

 

Identifying cover groups and points: 

  Based on the feature list, verification engineer identifies the cover groups and corresponding cover points that 

are to be coded as part of functional coverage. These cover groups, corresponding cover points and bins are added in 

an excel sheet.  

 

Generate the cover points and algorithm:  

  Excel sheet containing information about cover groups, cover points and bins is used to code cover points such 

that each cover point has only one bin. We have a script which takes the excel sheet as input and generates the code 

in the formatted needed. 

 

First let’s see the differences in the writing the functional cover points in the traditional method vs Automated 

functional coverage closure method. In traditional functional coverage closure, we have to write the functional cover 

points in a cover group as shown in the below figure1, but in the Automated functional coverage closure method we 

have to write each bin corresponds to a particular variable as separate cover point in a cover group like the code 

shown below in the figure2. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-1: Example cover group. 

 

  In the test, coverage database is accessed using system tasks provided in system Verilog LRM. We have defined 

two-dimensional array of cover groups and corresponding cover point values. For normal cover points 

corresponding bin value is stored in the array and for cross cover points combined value of both the bin values 

contributing to the cross point is stored as single value in the array. 

 

A target coverage number above which the fully automated coverage closure method is to be applied is defined by 

the user. Before starting any sequence run in the test, the merged coverage database is analyzed and gets the data on 

how much percentage has been covered. If coverage percentage is less than targeted number defined to apply this 

method, the configuration class is randomized among all possible values based on initially defined constraints. If 

analyzed coverage percentage is more than or equal to the target percentage then the algorithm of fully automated 

coverage closure starts.  

 

In this algorithm each cover point is checked to see if it is hit or not using the system task. If it is hit then cover 

point value is deleted from the array containing the cover points values. Then configuration is randomized among 

the remaining uncovered cover point values in the array. This algorithm runs for each run of the random test and 

keeps deleting the covered bins from the array and randomizes among the remaining values. 

 

We developed a script that generates the task which is used to modify constraints in the test based on coverage 

database loaded and individual bin coverage. 

 

Running regression which makes coverage 100%: 

We developed a script which runs regression, and analyzes the logfile of the latest test run and breaks the 

regression once it sees 100% functional coverage. After each set of test command line runs the script merges the 

coverage data base of all the previous runs.    

 

 

class sample_coverage_monitor extends uvm_monitor; 

  bit var_1; 

  bit [1:0] var_2; 

  bit [2:0] var_3; 

covergroup TraditionalSampleCovGrp; 

    option.per_instance = 1; 

    cov_var_1                   : coverpoint var_1 {bins     b0 = {0};  

                                                    bins     b1 = {1};} 

    cov_var_2                   : coverpoint var_2 {bins     b0 = {0};  

                                                    bins     b1 = {1};  

                                                    bins     b2 = {2};  

                                                    bins     b3 = {3}; } 

    cov_var_3                   : coverpoint var_3 {bins     b0 = {0};  

                                                    bins     b1 = {1};  

                                                    bins     b2 = {2};  

                                                    bins     b3 = {3};   

                                                    bins     b4 = {4};  

                                                    bins     b5 = {5};  

                                                    bins     b6 = {6};  

                                                    bins     b7 = {7};} 

    cross_cov_var_1_cov_var_2 : cross cov_var_1,cov_var_2; 

  endgroup 

endclass 



 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2: Example cover group for automated coverage closure. 

 

The coverage system tasks used in the random test: 

$load_coverage_db ( name ) — Load from the given filename the cumulative coverage information for all 

coverage group types. 

 

$get_coverage ( ) — Returns as a real number in the range 0 to 100 the overall coverage of all coverage group 

types. This number is computed as described above. 

 

get_coverage() — Calculates type coverage number (0...100) for each cover group or cover point or cross. 

 

The sample code snippet in Figure-3 is the algorithm used in the random test to delete the covered cover bin 

values from the array and randomize the remaining bin values. 

class sample_coverage_monitor extends uvm_monitor; 

 

 bit var_1; 

 bit [1:0] var_2; 

 bit [2:0] var_3; 

 

 covergroup SampleCovGrp; 

 

   option.per_instance = 1; 

   cov_0_var_1                   : coverpoint var_1 {bins b = {0};} 

   cov_1_var_1                   : coverpoint var_1 {bins b = {1};} 

   cov_0_var_2                   : coverpoint var_2 {bins b = {0};} 

   cov_1_var_2                   : coverpoint var_2 {bins b = {1};} 

   cov_2_var_2                   : coverpoint var_2 {bins b = {2};} 

   cov_3_var_2                   : coverpoint var_2 {bins b = {3};} 

   cov_0_var_3                   : coverpoint var_3 {bins b = {0};} 

   cov_1_var_3                   : coverpoint var_3 {bins b = {1};} 

   cov_2_var_3                   : coverpoint var_3 {bins b = {2};} 

   cov_3_var_3                   : coverpoint var_3 {bins b = {3};} 

   cov_4_var_3                   : coverpoint var_3 {bins b = {4};} 

   cov_5_var_3                   : coverpoint var_3 {bins b = {5};} 

   cov_6_var_3                   : coverpoint var_3 {bins b = {6};} 

   cov_7_var_3                   : coverpoint var_3 {bins b = {7};} 

   cross_cov_0_var_1_cov_0_var_2 : cross cov_0_var_1,cov_0_var_2; 

   cross_cov_0_var_1_cov_1_var_2 : cross cov_0_var_1,cov_1_var_2; 

   cross_cov_0_var_1_cov_2_var_2 : cross cov_0_var_1,cov_2_var_2; 

   cross_cov_0_var_1_cov_3_var_2 : cross cov_0_var_1,cov_3_var_2; 

   cross_cov_1_var_1_cov_0_var_2 : cross cov_1_var_1,cov_0_var_2; 

   cross_cov_1_var_1_cov_1_var_2 : cross cov_1_var_1,cov_1_var_2; 

   cross_cov_1_var_1_cov_2_var_2 : cross cov_1_var_1,cov_2_var_2; 

   cross_cov_1_var_1_cov_3_var_2 : cross cov_1_var_1,cov_3_var_2; 

 

 endgroup 

 

endclass 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3: Example Random test code snippet. 

 

class nitro_ether_cov_test extends nitro_ether_base_test; 

   `uvm_component_utils(nitro_ether_cov_test) 

   class_cfg_1 cfg_1; 

   int directed_t; // 0 -> complete rand , 1 --> directed random , 2 --> directed 

   int array_num_point[$] ; 

   int array_cov_value[1][$];  

   rand bit [2:0] var_1_2; 

   real target_coverage_for_automation_start; 

   function new(string name, uvm_component parent = null); 

       super.new(name, parent); 

       cfg_1 = new("cfg_1"); 

       array_num_point.push_back(8); 

       for(int i = 0; i < array_num_point[0] ; i++) begin  

          array_cov_value[0].push_back(i); 

       end  

   endfunction 

   task main_phase(uvm_phase phase); 

        // Load coverage from DB 

       $load_coverage_db("test");  

       $display("coverage percentage = %f",$get_coverage()); 

       if(target_coverage_for_automation_start > $get_coverage()) begin 

         rand_vars(); 

       end 

       else begin 

         directed_rand(); 

       end 

       // Start sequence here 

   endtask: main_phase 

   virtual task rand_vars();  

     cfg_1.randomize();  

   endtask //} 

   virtual task directed_rand();  

     int idx_ar[$]; 

     bit [2:0] var12_val; 

     //Sample code for deleting covered coverpoint from the array 

     if(env.cov_10g.SampleCovGrp.cross_cov_0_var_1_cov_0_var_2.get_coverage() == 100) begin  

       var12_val[2] = 0; var12_val[1:0] = 0; 

       idx_ar = array_cov_value[0].find_first_index(x) with (x == var12_val); 

       array_cov_value[0].delete(idx_ar[0]); 

       array_num_point[0] = array_num_point[0] - 1; 

       cfg_1.var_1 = 0; cfg_1.var_2 = 0; 

     end 

     //Randomizing amoung remaining coverpoint values 

     if(array_cov_value[0].size() != 0) begin  

       randomize(var_1_2) with {var_1_2 inside {array_cov_value[0]}; };  

       cfg_1.var_1 = var_1_2[2];  cfg_1.var_2 = var_1_2[1:0];  

     end  

   endtask  

endclass: nitro_ether_cov_test 



 
 

III. RESULTS 

 

Fully automated coverage closure performs better than traditional coverage closure because of 

following reasons 

• In traditional method where large number of variables are to be randomized the probability of 

hitting all the bins in a cover point decreases, as number of bins for that cover point increases  

• Probability of hitting crosses between variables decreases as number of variables in the same 

cross increases.  

• Verification engineer needs keep on tweaking the constraints for each run of regression based 

on the analysis of previous merged coverage database. 

 

We have simulated coverage collection for traditional cover group and cover group needed for fully 

automated coverage closure. There was no difference in the run time in both the cases even though 

number of cover points present in this method are more than compared to the traditional cover group.   

 

 
 

 

 

 

 

 

 

 

 

Table -1: Table with cover group and runs for coverage closure  

 

We have implemented this fully automated coverage closure method for six different cover groups 

containing different number of bins. Table-1 shows number of bins in each cover group and number of 

runs which gave 100% coverage closure.  

 

Below bar charts in Figure - 4 show percentage of coverage given by random runs vs fully automated 

coverage closure methods based on number of runs needed for 100% closure using this method.  
 

 

 

 

 

 

 

 

 

 

 

 

 

       

   

 

Cover group Name  Number of Bins  Number of Runs for 100% using algorithm 

CoverGroup1 7867 1600 

CoverGroup2 10410 1600 

CoverGroup3  260 200 

CoverGroup4  860 700 

CoverGroup5  13902 6000 

CoverGroup6  8017 7500 

   



 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure-4: Figure with bar charts for 100% coverage closure 
 

With the same number of runs which gives 100% percentage coverage in the case of fully automated 

functional coverage closure, traditional random runs gave coverage of less than 100%. To close this 

iteration of report analysis, manual constraint modification and regression rerun are needed which end up 

consuming LSF slots, memory and engineering effort. 

 

The differences in percentages of different cover group runs is due to different type of crosses, number 

of individual bins.  

 

When there are large number of bins for particular random variable and so many crosses are present in 

the cover group which is usually the case in our complex verification environments, then fully automated 

functional coverage closure gives very good results compared to traditional coverage closure method. 

 

In Practical the traditional coverage closure takes several days as it involves lot of manual intervention, 

report generation, changing constraints and rerunning regressions, but in this fully automated functional 

coverage closure approach we will get 100% coverage in one or two days based on the complexity of the 

module, LSF, Queue availability and without manual intervention. 

 

 

 

 

 

 

     
 

     



 
 

IV. CONCLUSION 

 

Adopting the fully automated functional coverage closure method can substantially reduce the number 

of tests in regression. In our experiments with cover groups containing large number of bins and different 

type of crosses, fully automated functional coverage closure method gave better performance than 

traditional coverage closure for all the cases. Thus, the functional coverage closure could reach faster than 

ever before, and we need not to analyze the coverage reports manually and saves all the resources. 

 

 

 

V. FUTURE WORK AND IMPROVEMENTS 

 

Fully automated functional coverage method gives better performance over traditional coverage closure 

method after a certain amount of coverage is achieved. This number needs to be properly defined by 

verification engineer based on his previous experience of the functional coverage closure.  

 

For fully automated coverage closure the functional cover points should be defined properly and ignore 

bins must be mentioned. If verification engineer is not aware of a particular bin which is illegal then this 

method goes into an infinite loop. We are planning to add a safeguard against this case. One solution to 

this problem is to break the loop of regression after certain fixed percentage of coverage is reached 

instead of 100%.  

 

The algorithm for fully automated coverage closure is complex, we are working on making it simple so 

that it can be easily implemented by the users. 
 

ACKNOWLEDGEMENTS 

 

  We would like to thank Suresh Atmakuri for help in developing scripts and our managers and 

colleagues for continued support.  
  

REFERENCES 

 
[1] IEEE 1800-2009 SystemVerilog  

[2] http://www.accellera.org/apps/org/workgroup/uvm/  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


