

Fully Automated Functional Coverage

Closure

Manohar Kodi, +917675020009, Nvidia Graphics Pvt Ltd, Hyderabad, India (mkodi@nvidia.com)

Sagar Sudam Patil, +918123172587, Nvidia Graphics Pvt Ltd, Hyderabad, India (sagarsudamp@nvidia.com)

 Ranjith Nair, +917893955664, Nvidia Graphics Pvt Ltd, Hyderabad, India (ranjithn@nvidia.com)

 Abstract— Functional coverage is the main metric for measuring stimulus quality in a metric driven verification (MDV).

Verification engineers use it to sign off the complex design verification features. Constraint random tests are more

comprehensive than traditional directed tests. To get coverage closure, large numbers of simulations are required. It is then

necessary to merge the coverage data from those simulations which can take a significant amount of time and effort, only to

realize that total coverage is still not 100%. This becomes an iterative process where coverage is analyzed, constraints updated,

and tests rerun till the target is achieved.

This paper covers automated functional coverage closure by regenerating constraints based on uncovered functional coverage

points from previous functional coverage runs. This is achieved using system functions to get the merged coverage numbers from

each run. Coverage points are also written in a systematic way which will be further explained in detail in this paper.

 Keywords— Functional Coverage, UVM, Coverage Convergence, System Verilog.

I. INTRODUCTION

Today’s RTL is growing in complexity but due to faster time to market needs verification cycle is shrinking.

Functional coverage is a very important and key metric in verification closure. Verification engineers write

constraint random sequences to drive the design and collect coverage to ensure early convergence. Despite domain

specific language support, advanced analysis tools and over 15 years of functional coverage history in HVLs, many

engineers still find it difficult to develop functional coverage models effectively for today’s projects. Even using

methodologies such as the UVM, and the built-in System Verilog features for functional coverage, implementation

can be inconsistent and error-prone. Sometimes, little or no consideration is given to results analysis. This results in

un planned project delays due to delay in coverage closure.

The solution is not simply to add, or fix, functional coverage features in whatever language is being used, nor is it

to develop new tools. The real solution is for our developers to better understand the actual requirements and come

up with techniques needed for the correct modeling of functional coverage. They must recognize and understand the

different kinds of functional coverage, from basic coverage of operational states, through complex use-cases, all the

way to the mapping of results to a plan/specification. Given the trust we put in functional coverage results for tape

out decisions, this is an oddly overlooked requirement. An essential component of modeling is to make the review

and accurate analysis of results as painless as possible.

Implementing coverage has probably never been more straightforward. Cover groups allow a high degree of

automated bin generation, and we’re even offered essentially free coverage from register packages and the like. The

reality, though, is that behind every coverage definition there is a cost. It takes time and effort to design coverage,

collection, reach coverage goals, as well as to check and analyze the results.

 This paper outlines the method to automate functional coverage closure with fast convergence, efficient

verification resources (LSF slots, simulation time and disk space) and controllability. The focus of this paper is on a

method to reduce the number of random test runs required to hit the 100% functional coverage.

mailto:mkodi@nvidia.com
mailto:sagarsudamp@nvidia.com
mailto:ranjithn@nvidia.com

II. AUTOMATIC FUNCTIONAL COVERAGE CLOSURE METHOD

Getting functional coverage closure in a short time is hard. There are several challenges in getting functional

coverage closure. We have created many constraint random tests to cover a more comprehensive verification than

traditional directed tests. To reach 100% functional coverage with a large regression, we must run each test with

several different seeds (the number is usually difficult to quantify). This will lead to a huge number of test threads in

the regression, and then it needs more server LSF slots, regression time, disk space and will generate huge coverage

databases which will slow down database. In most cases, the total functional coverage still might not reach 100%.

We must override the constraints and rerun a specific test to cover the holes based on manual coverage analysis.

And finally, we have to merge the coverage again. This definitely wastes a lot of time, LSF slots and additional

effort, all of which are costly. In this paper, to address this challenge, we propose an automatic functional coverage

closure method which will speed up the process.

The verification team needs to identify which design features needs functional coverage points, determine

functional coverage goals, develop coding guidelines used to instrument functional coverage points, and determine a

methodology for running tests and gathering functional coverage metrics to determine if their functional coverage

goal has been met.

Traditional functional coverage closure involves below steps:

1. Identifying cover groups and points.

2. Coding Cover groups and bins.

3. Running regressions.

4. Generating reports and analyze.

5. Modifying constraints manually and rerun the regressions.

6. Repeat steps 4 and 5 until we hit 100%.

Fully automated functional coverage closure method involves below steps:

1. Identifying cover groups and points.

2. Generate the cover points and algorithm.

3. Running regression which makes coverage 100%.

With Fully Automated functional coverage closure method we are avoiding few steps which involves more

manual intervention, LSF slots and inefficient simulation runs.

Identifying cover groups and points:

 Based on the feature list, verification engineer identifies the cover groups and corresponding cover points that

are to be coded as part of functional coverage. These cover groups, corresponding cover points and bins are added in

an excel sheet.

Generate the cover points and algorithm:

 Excel sheet containing information about cover groups, cover points and bins is used to code cover points such

that each cover point has only one bin. We have a script which takes the excel sheet as input and generates the code

in the formatted needed.

First let’s see the differences in the writing the functional cover points in the traditional method vs Automated

functional coverage closure method. In traditional functional coverage closure, we have to write the functional cover

points in a cover group as shown in the below figure1, but in the Automated functional coverage closure method we

have to write each bin corresponds to a particular variable as separate cover point in a cover group like the code

shown below in the figure2.

Figure-1: Example cover group.

 In the test, coverage database is accessed using system tasks provided in system Verilog LRM. We have defined

two-dimensional array of cover groups and corresponding cover point values. For normal cover points

corresponding bin value is stored in the array and for cross cover points combined value of both the bin values

contributing to the cross point is stored as single value in the array.

A target coverage number above which the fully automated coverage closure method is to be applied is defined by

the user. Before starting any sequence run in the test, the merged coverage database is analyzed and gets the data on

how much percentage has been covered. If coverage percentage is less than targeted number defined to apply this

method, the configuration class is randomized among all possible values based on initially defined constraints. If

analyzed coverage percentage is more than or equal to the target percentage then the algorithm of fully automated

coverage closure starts.

In this algorithm each cover point is checked to see if it is hit or not using the system task. If it is hit then cover

point value is deleted from the array containing the cover points values. Then configuration is randomized among

the remaining uncovered cover point values in the array. This algorithm runs for each run of the random test and

keeps deleting the covered bins from the array and randomizes among the remaining values.

We developed a script that generates the task which is used to modify constraints in the test based on coverage

database loaded and individual bin coverage.

Running regression which makes coverage 100%:

We developed a script which runs regression, and analyzes the logfile of the latest test run and breaks the

regression once it sees 100% functional coverage. After each set of test command line runs the script merges the

coverage data base of all the previous runs.

class sample_coverage_monitor extends uvm_monitor;

 bit var_1;

 bit [1:0] var_2;

 bit [2:0] var_3;

covergroup TraditionalSampleCovGrp;

 option.per_instance = 1;

 cov_var_1 : coverpoint var_1 {bins b0 = {0};

 bins b1 = {1};}

 cov_var_2 : coverpoint var_2 {bins b0 = {0};

 bins b1 = {1};

 bins b2 = {2};

 bins b3 = {3}; }

 cov_var_3 : coverpoint var_3 {bins b0 = {0};

 bins b1 = {1};

 bins b2 = {2};

 bins b3 = {3};

 bins b4 = {4};

 bins b5 = {5};

 bins b6 = {6};

 bins b7 = {7};}

 cross_cov_var_1_cov_var_2 : cross cov_var_1,cov_var_2;

 endgroup

endclass

Figure-2: Example cover group for automated coverage closure.

The coverage system tasks used in the random test:

$load_coverage_db (name) — Load from the given filename the cumulative coverage information for all

coverage group types.

$get_coverage () — Returns as a real number in the range 0 to 100 the overall coverage of all coverage group

types. This number is computed as described above.

get_coverage() — Calculates type coverage number (0...100) for each cover group or cover point or cross.

The sample code snippet in Figure-3 is the algorithm used in the random test to delete the covered cover bin

values from the array and randomize the remaining bin values.

class sample_coverage_monitor extends uvm_monitor;

 bit var_1;

 bit [1:0] var_2;

 bit [2:0] var_3;

 covergroup SampleCovGrp;

 option.per_instance = 1;

 cov_0_var_1 : coverpoint var_1 {bins b = {0};}

 cov_1_var_1 : coverpoint var_1 {bins b = {1};}

 cov_0_var_2 : coverpoint var_2 {bins b = {0};}

 cov_1_var_2 : coverpoint var_2 {bins b = {1};}

 cov_2_var_2 : coverpoint var_2 {bins b = {2};}

 cov_3_var_2 : coverpoint var_2 {bins b = {3};}

 cov_0_var_3 : coverpoint var_3 {bins b = {0};}

 cov_1_var_3 : coverpoint var_3 {bins b = {1};}

 cov_2_var_3 : coverpoint var_3 {bins b = {2};}

 cov_3_var_3 : coverpoint var_3 {bins b = {3};}

 cov_4_var_3 : coverpoint var_3 {bins b = {4};}

 cov_5_var_3 : coverpoint var_3 {bins b = {5};}

 cov_6_var_3 : coverpoint var_3 {bins b = {6};}

 cov_7_var_3 : coverpoint var_3 {bins b = {7};}

 cross_cov_0_var_1_cov_0_var_2 : cross cov_0_var_1,cov_0_var_2;

 cross_cov_0_var_1_cov_1_var_2 : cross cov_0_var_1,cov_1_var_2;

 cross_cov_0_var_1_cov_2_var_2 : cross cov_0_var_1,cov_2_var_2;

 cross_cov_0_var_1_cov_3_var_2 : cross cov_0_var_1,cov_3_var_2;

 cross_cov_1_var_1_cov_0_var_2 : cross cov_1_var_1,cov_0_var_2;

 cross_cov_1_var_1_cov_1_var_2 : cross cov_1_var_1,cov_1_var_2;

 cross_cov_1_var_1_cov_2_var_2 : cross cov_1_var_1,cov_2_var_2;

 cross_cov_1_var_1_cov_3_var_2 : cross cov_1_var_1,cov_3_var_2;

 endgroup

endclass

Figure-3: Example Random test code snippet.

class nitro_ether_cov_test extends nitro_ether_base_test;

 `uvm_component_utils(nitro_ether_cov_test)

 class_cfg_1 cfg_1;

 int directed_t; // 0 -> complete rand , 1 --> directed random , 2 --> directed

 int array_num_point[$] ;

 int array_cov_value[1][$];

 rand bit [2:0] var_1_2;

 real target_coverage_for_automation_start;

 function new(string name, uvm_component parent = null);

 super.new(name, parent);

 cfg_1 = new("cfg_1");

 array_num_point.push_back(8);

 for(int i = 0; i < array_num_point[0] ; i++) begin

 array_cov_value[0].push_back(i);

 end

 endfunction

 task main_phase(uvm_phase phase);

 // Load coverage from DB

 $load_coverage_db("test");

 $display("coverage percentage = %f",$get_coverage());

 if(target_coverage_for_automation_start > $get_coverage()) begin

 rand_vars();

 end

 else begin

 directed_rand();

 end

 // Start sequence here

 endtask: main_phase

 virtual task rand_vars();

 cfg_1.randomize();

 endtask //}

 virtual task directed_rand();

 int idx_ar[$];

 bit [2:0] var12_val;

 //Sample code for deleting covered coverpoint from the array

 if(env.cov_10g.SampleCovGrp.cross_cov_0_var_1_cov_0_var_2.get_coverage() == 100) begin

 var12_val[2] = 0; var12_val[1:0] = 0;

 idx_ar = array_cov_value[0].find_first_index(x) with (x == var12_val);

 array_cov_value[0].delete(idx_ar[0]);

 array_num_point[0] = array_num_point[0] - 1;

 cfg_1.var_1 = 0; cfg_1.var_2 = 0;

 end

 //Randomizing amoung remaining coverpoint values

 if(array_cov_value[0].size() != 0) begin

 randomize(var_1_2) with {var_1_2 inside {array_cov_value[0]}; };

 cfg_1.var_1 = var_1_2[2]; cfg_1.var_2 = var_1_2[1:0];

 end

 endtask

endclass: nitro_ether_cov_test

III. RESULTS

Fully automated coverage closure performs better than traditional coverage closure because of

following reasons

• In traditional method where large number of variables are to be randomized the probability of

hitting all the bins in a cover point decreases, as number of bins for that cover point increases

• Probability of hitting crosses between variables decreases as number of variables in the same

cross increases.

• Verification engineer needs keep on tweaking the constraints for each run of regression based

on the analysis of previous merged coverage database.

We have simulated coverage collection for traditional cover group and cover group needed for fully

automated coverage closure. There was no difference in the run time in both the cases even though

number of cover points present in this method are more than compared to the traditional cover group.

Table -1: Table with cover group and runs for coverage closure

We have implemented this fully automated coverage closure method for six different cover groups

containing different number of bins. Table-1 shows number of bins in each cover group and number of

runs which gave 100% coverage closure.

Below bar charts in Figure - 4 show percentage of coverage given by random runs vs fully automated

coverage closure methods based on number of runs needed for 100% closure using this method.

Cover group Name Number of Bins Number of Runs for 100% using algorithm

CoverGroup1 7867 1600

CoverGroup2 10410 1600

CoverGroup3 260 200

CoverGroup4 860 700

CoverGroup5 13902 6000

CoverGroup6 8017 7500

Figure-4: Figure with bar charts for 100% coverage closure

With the same number of runs which gives 100% percentage coverage in the case of fully automated

functional coverage closure, traditional random runs gave coverage of less than 100%. To close this

iteration of report analysis, manual constraint modification and regression rerun are needed which end up

consuming LSF slots, memory and engineering effort.

The differences in percentages of different cover group runs is due to different type of crosses, number

of individual bins.

When there are large number of bins for particular random variable and so many crosses are present in

the cover group which is usually the case in our complex verification environments, then fully automated

functional coverage closure gives very good results compared to traditional coverage closure method.

In Practical the traditional coverage closure takes several days as it involves lot of manual intervention,

report generation, changing constraints and rerunning regressions, but in this fully automated functional

coverage closure approach we will get 100% coverage in one or two days based on the complexity of the

module, LSF, Queue availability and without manual intervention.

IV. CONCLUSION

Adopting the fully automated functional coverage closure method can substantially reduce the number

of tests in regression. In our experiments with cover groups containing large number of bins and different

type of crosses, fully automated functional coverage closure method gave better performance than

traditional coverage closure for all the cases. Thus, the functional coverage closure could reach faster than

ever before, and we need not to analyze the coverage reports manually and saves all the resources.

V. FUTURE WORK AND IMPROVEMENTS

Fully automated functional coverage method gives better performance over traditional coverage closure

method after a certain amount of coverage is achieved. This number needs to be properly defined by

verification engineer based on his previous experience of the functional coverage closure.

For fully automated coverage closure the functional cover points should be defined properly and ignore

bins must be mentioned. If verification engineer is not aware of a particular bin which is illegal then this

method goes into an infinite loop. We are planning to add a safeguard against this case. One solution to

this problem is to break the loop of regression after certain fixed percentage of coverage is reached

instead of 100%.

The algorithm for fully automated coverage closure is complex, we are working on making it simple so

that it can be easily implemented by the users.

ACKNOWLEDGEMENTS

 We would like to thank Suresh Atmakuri for help in developing scripts and our managers and

colleagues for continued support.

REFERENCES

[1] IEEE 1800-2009 SystemVerilog

[2] http://www.accellera.org/apps/org/workgroup/uvm/

