
Fully Automated Functional Coverage
Closure

1

Manohar Kodi, Nvidia Graphics India Pvt Ltd.
Sagar Sudam Patil, Nvidia Graphics India Pvt Ltd.

Ranjith Nair, Nvidia Graphics India Pvt Ltd.

Agenda

2

• Functional Coverage
• Methodology Introduction
• Details of the Methodology
• Scripts
• Results

Functional Coverage

3

• Functional coverage is the main metric for measuring the stimulus
quality in metric driven verification.

• Verification engineers use it to sign off complex design verification
features.

4

Define Functional
Coverage

Code Functional
Cover Groups

Code Constraints

Running
Simulations

Generating
Reports

Coverage Closure

Tweak Constraints Identify Coverage
holes

Cov
100%

?
Yes

No

Man Power

LSF, Memory ,
Man Power ,etc

Functional Coverage As We Know

Need
More
runs?

Yes No

Traditional Functional Coverage

5

• Significant amount of time and effort is spent only to reach the total
coverage which may still not be 100%.

• Need to analyze the coverage and override the constraints, rerun the
tests and merge again.

• Lot of resources like LSF(Load Sharing Facility), memory, man power
etc.

6

Define Functional
Coverage

Code Functional
Cover Groups

Code Constraints

Running
Simulations

Generating
Reports

Coverage Closure

Tweak Constraints

Identify Coverage
holes

Cov
100%

?

Yes

No

Generated
from Scripts

Automated by this
methodology

Automated Functional Coverage

Introduction to Methodology

7

• The main contributions of the method is a way to reduce the number of LSF
and remove manual effort required to hit the 100% functional coverage.

• Automatic functional coverage closure using a systematic way of writing
functional coverage points.

• Leveraging the system functions provided by SV LRM to tweak the
constraints based on the coverage DB.

Traditional way of coding cover group

8

class sample_coverage_monitor extends uvm_monitor;
bit var_1;
bit [1:0] var_2;
bit [2:0] var_3;

covergroup TraditionalSampleCovGrp;
option.per_instance = 1;
cov_var_1 : coverpoint var_1 {bins b0 = {0}; bins b1 = {1};}
cov_var_2 : coverpoint var_2 {bins b0 = {0}; bins b1 = {1}; bins b2 = {2}; bins b3 = {3}; }
cov_var_3 : coverpoint var_3 {bins b0 = {0}; bins b1 = {1}; bins b4 = {4}; bins b5 = {5};

bins b6 = {6};}
cross_cov_var_1_cov_var_2 : cross cov_var_1,cov_var_2;

endgroup
endclass

Systematic way of coding cover group

9

class sample_coverage_monitor extends uvm_monitor;
bit var_1;
bit [1:0] var_2;
covergroup SampleCovGrp;
option.per_instance = 1;
cov_0_var_1 : coverpoint var_1 {bins b = {0};} cov_1_var_1 : coverpoint var_1 {bins b = {1};}
cov_0_var_2 : coverpoint var_2 {bins b = {0};} cov_1_var_2 : coverpoint var_2 {bins b = {1};}
cov_2_var_2 : coverpoint var_2 {bins b = {2};}
cross_cov_0_var_1_cov_0_var_2 : cross cov_0_var_1,cov_0_var_2;
cross_cov_0_var_1_cov_1_var_2 : cross cov_0_var_1,cov_1_var_2;
cross_cov_0_var_1_cov_2_var_2 : cross cov_0_var_1,cov_2_var_2;

endgroup
endclass

Coverage System Tasks

10

• $load_coverage_db (name) — Load from the given filename the
cumulative coverage information for all coverage group types.

• $get_coverage () — Returns as a real number in the range 0 to 100
the overall coverage of all coverage group types. This number is
computed as described above.

• get_coverage() — Calculates type coverage number (0...100) for each
cover group or cover point or cross.

Random Test Example

11

int array_cov_value[1][$];
if(env.cov_10g.SampleCovGrp.cross_cov_0_var_1_cov_0_var_2.get_coverage() == 100) begin //{

var12_val[2] = 0; var12_val[1:0] = 0;
idx_ar = array_cov_value[0].find_first_index(x) with (x == var12_val);
array_cov_value[0].delete(idx_ar[0]);
array_num_point[0] = array_num_point[0] - 1;
cfg_1.var_1 = 0;
cfg_1.var_2 = 0;

end //}
if(array_cov_value[0].size() != 0) begin //{

randomize(var_1_2) with {var_1_2 inside {array_cov_value[0]}; };
cfg_1.var_1 = var_1_2[2];
cfg_1.var_2 = var_1_2[1:0];
end //}

Scripts

12

• Generate functional cover group and logic inside the random test from
the xls cover points.

• Script to run regression and break running the regression after
achieving 100% functional coverage.

Table with cover group and runs for
coverage closure

13

Cover Group Name Number of Bins Number of Runs for 100% using algorithm

CoverGroup1 7867 1600

CoverGroup2 10410 1600

CoverGroup3 260 200

CoverGroup4 860 700

CoverGroup5 13902 6000

CoverGroup6 8017 7500

Results

0

10

20

30

40

50

60

70

80

90

100

100 500 1000 2000 2500 5000 6000 7500 10000 10200

Co
ve

ra
ge

 p
er

ce
nt

ag
e

Number of Runs

Random Vs Algorithm
Random Algorithm

14

Results

15

0

10

20

30

40

50

60

70

80

90

100

Covergroup1 Covergroup2 Covergroup3 Covergroup4 Covergroup5 Covergroup6

Comparison of coverage Random Vs Algorithm

Random Algorithm

Conclusion
• Adopting a fully automated functional coverage closure method

can substantially reduce the number of tests in regression.
• Practically speaking, the traditional coverage closure takes

several days as it involves lot of manual intervention, report
generation, changing constraints and rerunning regressions, But
in this fully automated functional coverage closure approach we
will get 100% coverage in one or two days based on the
complexity of the module, LSF and Queue availability and with out
manual intervention.

16

Q & A

17

	Fully Automated Functional Coverage Closure
	Agenda
	Functional Coverage
	Functional Coverage As We Know
	Traditional Functional Coverage
	Automated Functional Coverage
	Introduction to Methodology
	Traditional way of coding cover group
	Systematic way of coding cover group
	Coverage System Tasks
	Random Test Example
	Scripts
	Table with cover group and runs for coverage closure
	Results
	Results
	Conclusion
	Q & A

