Full Flow Clock Domain Crossing
- From Source To Sí

Mark Litterick, Verilab, Germany
Introduction

• Overview
 – pre-silicon flow, metastability & MTBF, timing analysis for CDC & synchronizers

• Physical Requirements
 – 2FF, parallel, handshake & phase-detect synchronizers
 – timing requirements & failure modes

• Continuity & Closure
 – pragmatic solutions for encapsulation
 – SVA timing checks for continuity
 – closure using gate-level CDC analysis, constraints management & CDC review
Pre-Silicon Flow

Physical implementation goals
- transform RTL to GL & GDS
- optimize area, power & speed
- timing & routing closure
- enable manufacture & test

back-end processes can compromise CDC effectiveness and break synchronizers

Even with clean RTL CDC signoff

RTL CDC Verification
- structural analysis
- synchronizer protocol
- operation of rest of DUT in presence of synchronizers

relatively early in flow
less complex than netlist
most defects observable

RTL

specification
concept
design
verification

constraints

logic synthesis
low-power clk-gate
design-for-test
floor planning
place & route
clock-tree synthesis
physical synthesis
static timing analysis
physical verification

back-end

GDSII

CE

D

V

CE

design

D

V

verification

LS

LP

DFT

FP

P&R

CTS

PS

STA

PV

GDSII

2016
DVCON

Conference and Exhibition
United States

02/03/16
Mark Litterick, Verilab
Metastability & MTBF

• **Violation** of setup or hold times causes **metastability**
 – *unstable* state eventually decays to 0 or 1, but *unpredictable*!
 – *real-life* transistor effect, not observable in simulations or formal
 – *cannot be avoided*, must be designed around & managed

• **Mean Time Between Failures** (MTBF)
 – *probability* of metastability *not decaying* to stable legal value in time for the next sampling event => catastrophic failure

\[
\text{MTBF} = \frac{e^{T_s/T_c}}{T_w F_c F_d}
\]

- \(T_s\) = settling window
- \(T_c\) = settling time constant
- \(T_w\) = window of susceptibility
- \(F_c\) = clock frequency
- \(F_d\) = data update rate
Timing Arcs & CDC Paths

Equations

- **MTBF**: $\text{MTBF} = e^{\frac{Ts}{Tc}} \frac{T_w}{F_c F_d}$
- **Tw**: $T_w = T_{setup} + T_{hold}$
- **Tc**: T_c
- **Ts**: $Ts = T_{period} - T_{ck_skew} - T_{setup} - T_{ck_q} - T_{path}$
2FF Synchronizer

RTL CDC Requirements
- **no logic** on CDC path
- **no glitches** on D input
- **D stability** > 2 clock

PHY CDC Requirements
- **sub-cycle timing** on \(m \)
- fast transition time at \(d_{\text{in}} \)
- fast metastability damping
- no scan insertion 2nd FF
- tight clock-skew tolerance

\[
\text{glitch} = \text{unsampled narrow pulse (}\approx\text{many src clks)}
\]

RTL or **GL sim**

\[
\text{Generation} \quad \text{Filtering} \quad \text{Uncertainty & Jitter}
\]

\[
\text{clk} \quad \text{d}_{\text{in}} \quad \text{m} \quad \text{d}_{\text{out}} \quad \text{clk}
\]

sim: \(m \)

real: \(m \)

real: \(d_{\text{out}} \)

\[
\text{narrow pulse filtered out (2 clk edges!)}
\]
Failure: Sub-Cycle Timing

Max delay for metastable net must be much less than the clock period (even though both FFs in same domain).

- **Ts** = \(T_{period} - T_{ck_skew} - T_{setup} - T_{ck_q} - T_{path} \)

MTBF = \(e^{\frac{T_{s}/T_{c}}{T_{w}F_{c}F_{d}}} \)

Exponential effect on MTBF
Parallel Synchronizer

RTL CDC Requirements
• **bus is gray-coded** at source (only one bit change per clock)

PHY CDC Requirements
• **relative timing for all bits** must ensure bus is gray-coded **on arrival** at 1st FFs

only 1 bit can go metastable per clk

slow-to-fast (all codes transported)

fast-to-slow (some codes dropped)
Failure: Path Variance

CDC bus under-constrained, e.g.
- marked as **false-path** (unconstrained)
- marked as **multi-cycle path** (either clk)
- using slow **destination clock** period
- **default constraints** (slow-speed scan)

No absolute path delay requirement, but **relative timing** for all **parallel paths** must ensure **in-order** and **variance > Tw**

Pragmatic: **delay** for all **paths** must be **less** than one **source clock** period

Normal failure: **signal reorder** (visible in GLS)

Corner case: **close together** but in-order

Received **value** was **not sent**

\[[(T_{period1} + T1) - (T_{ck_skew1} + T0)] > (T_{setup2} + T_{hold2}) \]
Handshake Synchronizer

RTL CDC Requirements
• full handshake protocol
• D stable until ack in src

PHY CDC Requirements
• max delay on data relative to req and dest_clk

sample data
Failure: Slow Path

CDC data under-constrained, e.g.
- marked as **false-path** (unconstrained)
- marked as **multi-cycle path** (src_clk)
- using slow **source clock** period
- **default constraints** (slow-speed scan)

Data has **path delay** requirement, relative to req and destination clock

Pragmatic: **MCP of 2 x dest_clk** periods
(slight over-constrained if \(T_{req} > T_{hold2} \))

\[
(T_{data} + T_{ck_skew}) < [T_{req} + (2 \times T_{period2}) - T_{hold2}]
\]

src_clk

req'

data'

data'

T_{req}

T_{data}

T_{mcp}

dest_clk

m

req_i

multi-cycle path relative to **dest_clk**

CDC control no path delay requirement

CDC FAIL

sample data (earliest)

CDC PASS
Phase-Detect Synchronizers

Digital delay line

d1

c1

d2

c2

Conflict detect

Ctrl

PHY CDC Requirements
• sub-cycle timing on CDC data

Mesochronous
(phase offset)

Plesiochronous
(phase changes)
Pragmatic Solutions

- **Synthesize** to *meta-hard* FF or (better) 2FF *macro-cell*
 - hard to map all RTL to desired circuits (e.g. no reset, no scan)
 - manageable with internal blocks, difficult with third-party IP
- **Instantiate** *meta-hard* FF or 2FF *macro-cell* into RTL
 - compromises portability and flexibility of the RTL
 (RTL becomes technology and frequency dependent)
 - manageable for internal designs and technology derivatives
 - inappropriate or impossible if using or supplying third-party IP
SVA Timing Checks

• SVA allows *time* and *EventExpression* formal arguments
• Actual arguments are supplied by *assert property* statement

```
property p_max_time(start, stop, duration);
    time start_time;
    @(start)
        (1, start_time = $time) |=>
    @(stop)
        (($time - start_time) <= duration);
endproperty

a_meta_sub_cycle: assert property (p_max_time(posedge clk, m, 300ps));
```

maximum delay from *posedge clk* to any change on *m* must be less than 300ps

• Use *assertions* for both RTL and gate-level

Provides good *safety net* for validating *closure* on some *timing*-based *intent* ...

... but *be aware* that assertion *binding* to *optimized netlist* can be *non-trivial!*

02/03/16

Mark Litterick, Verilab
Tools & Methodology

• **Gate-level CDC analysis**
 – some formal CDC analysis tools can handle GL complexity
 – add structural checks, clock-tree aware, reuse RTL intent
 – complement, but do not eradicate CDC-aware STA

• **Constraints management**
 – evolution and refinement of constraints is major issue
 – especially with multiple tool vendors in the flow
 – tools emerging to manage & validate equivalence of constraints

• **Multi-discipline CDC reviews**
 – recognize that CDC is not just an RTL problem...
 – review CDC functional operation and synchronizer physical implementation with a multi-discipline multi-talented team!
Conclusion

• Presented an overview of the problem
 – RTL verification of CDC is necessary but not sufficient
 – additional requirements need to be understood front & back-end

• Illustrated detailed hazards for some common synchronizers
 – intra-domain operation within synchronizers
 – inter-domain CDC requirements and relationships

• Discussed some pragmatic solutions & tool advances
 – anything which closes the gap is good!

Primary goal: raise multi-discipline CDC awareness

mark.litterick@verilab.com