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Abstract— When designing modern digital components and 
systems it is often desirable to know how the circuit performs 
when a logic fault occurs.  There are numerous custom 
simulators that allow this exploration.  Current digital 
components and systems are designed using modern HDLs.  
Being able to conduct fault simulation using the HDL of design, 
allows for this evaluation to be done without additional 
translation to the design input required by a custom simulator.  
VHDL allows for the creation of custom logic systems packages.  
fbit and fsim_logic_package are logic system packages that allow 
for fault injection at the gate level.  The packages allow the 
threshold for fault injection to be adjusted from very high fault 
injection rates, 1 in 10 gate evaluations, to very low fault injection 
rates, 1 in 1,000,000,000 or more gate evaluation.  Additionally, 
this logic type is essential when designing fault tolerant circuits 
where the design can only be verified through the random 
injection of faults into the circuit.  It can also be very useful in 
evaluating the actions and performance of a system when a low 
level fault occurs. 
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I.  INTRODUCTION  
Fault tolerant circuit research was one focus of digital 

circuit design and digital VLSI in the 1980s.  In the 1970s and 
80s there was much interest in fault simulators, programs that 
would simulate circuits and no fault conditions and under fault 
conditions [1].  At that time, and prior to the era of HDLs, 
custom fault simulators were built.  Even today custom 
simulators are being built to study the performance of a 
processor under fault.  On such simulator is the SESC 
simulator [2]. 

Modern circuits are designed in HDLs and it would be nice 
if minimal additional effort was needed to inject faults into the 
architecture at the lowest level.  fbit and fsim_logic are VHDL 
logic systems that provide a logic types that allows for random 
injection of faults at the gate level.  This logic system was 
developed to test fault tolerant circuits being developed and 
was essential for verification of that work.  The alternative is to 
create a large number of instances of the design, each with a 
different injected hard error. Each of these instances must then 
be simulated.  Many possible locations of where the fault will 
occur are overlooked in this approach.  fsim_logic provides the 
capability to have random injection of faults into the DUT and 
significantly reduces the workload of doing the fault 
simulation. 

The package also has application to modern design.  The 
focus of some work today is on redundant computation paths 
and lowering the operating voltage until faults just start to 
occur.  What is the action of the system when a fault does 
occur?  Occurrence of a fault requires the computation to be 
rolled back as done in many modern systems.  This is occurring 
more frequently as we strive for minimal energy computation 
and reliable computation. [3,4] 

II. BACKGROUND 
Early work on the use of VHDL for fault simulation 

concentrated on development of CAD tools that generated 
duplicates of the original HDL description with a given “gate” 
in error [5,6].  This HDL description would then be simulated 
to observe the behavior under fault.  By nature this 
methodology modeled the circuit containing stuck-on-faults.  If 
the circuit contained 100,000 logic nodes, 100,000 models 
would need to be created to fully evaluate the circuit and 
100,000 simulations would need to be run.  This approach was 
not viable previously and today’s systems are now at a point 
where this approach is beyond viable. 

An alternative to creating the many thousands of instances 
of the HDL circuit description is to inject error into the 
evaluation and generation of the output from a gate during 
simulation.  VHDL offers this capability though the use of 
packages and custom types.  The type names chosen for the 
fault injection type is fbit and fsim_logic.  This is much like 
type bit and type std_logic of VHLD, only in this package 
when the output of a logic operation is being evaluated, the 
output could be in error.  Whether an error occurs of not is 
determined by generation of a random number.  If the random 
number exceeds a threshold, an error is injected, i.e., the output 
of the gate will be in error, i.e., it will the complement of the 
expected value for fbit and when using fsim_logic, a table for 
determination of the value under error is used.  For example if 
the value should be high impedance, Z, it could be a capacitive 
high, H, under error. 

There is also interest in creating circuit models that are 
representative of the occurrence of errors in circuits.  This 
requires the use of complex probability density functions to 
accurately model the occurrence of errors. [7,8]  The 
probability density function used in the fbit and fsim_logic 
packages does not have that requirement.  In this work the 
objective is to observe the circuit’s performance under fault 
and to do so in reasonable simulation time.  Through use of a 



-------------------------------------------------------------------------------------- 
-- Fault Simulation Package – TYPE fbit (non-resolved) 
-------------------------------------------------------------------------------------- 
PACKAGE fbit_logic IS 
 
TYPE fbit IS (‘0’,  -- low 
                        ‘1’   -- high  ); 
-------------------------------------------------------------------------------------- 
--unconstrained array of fbit 
-------------------------------------------------------------------------------------- 
TYPE fbit_vector IS ARRAY (NATURAL RANGE <>) of fbit; 
-------------------------------------------------------------------------------------- 
--Declare logic functions 
-------------------------------------------------------------------------------------- 
FUNCTION “AND” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “OR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “NAND” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “NOR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “XOR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “XNOR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “NOT” (l:fbit) RETURN fbit; 
-------------------------------------------------------------------------------------- 
FUNCTION “AND” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “OR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “NAND” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “NOR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “XOR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “XNOR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “NOR” (l:fbit_vector) RETURN fbit_vector; 
-------------------------------------------------------------------------------------- 
CONSTANT threshold : REAL := -.999999; 
impure FUNCTION getrand RETURN real; 
 
END fbit logic; 

LIBRARY ieee; 
USE ieee.math_real.ALL; 
PACKAGE BODY fbit_logic IS 
-------------------------------------------------------------------------------------- 
--Local types 
-------------------------------------------------------------------------------------- 
TYPE fbit_1d IS ARRAY (fbit) of fbit; 
TYPE fbitlogic_table IS ARRAY (fbit,fbit) of fbit; 
shared VARIABLE seed1 : INTEGER := 500045; 
shared VARIABLE seed2 : INTEGER := 100001; 
-------------------------------------------------------------------------------------- 
--TABLE for error return 
-------------------------------------------------------------------------------------- 
CONSTANT error_table : fbit_1d := (‘1’,’0’); 
-------------------------------------------------------------------------------------- 
--AND FUNCTION 
-------------------------------------------------------------------------------------- 
CONSTANT and_table : fbitlogic_table := ( 
    --      ----------------------------------------- 
    --     |   0        1 
    --      ----------------------------------------- 
            (‘0’,    ‘0’), 
            (‘0’,    ‘1’)       ); 
 
FUNCTION “AND” (l : fbit, r : fbit) RETURN fbit IS 
   VARIABLE val : fibt; 
   VARIABLE rnd : REAL; 
BEGIN 
   val := and_table (l,r); 
   rnd := getrand; 
   IF (rnd > threshold) THEN val := (error_teble(val)); END IF; 
   RETURN (val); 
END “AND”; 
*** 
-------------------------------------------------------------------------------------- 
-- Function to return random number 
impure FUNCTION getrand RETURN real IS 
   VARIABLE vrandval : REAL; 
BEGIN 
   UNIFORM (seed1,seed2,vrandval); 
   RETURN (vrandval); 
END getrand; 
*** 
END fbit_logic; 

uniform distribution for generation of the random number and 
adjustment of the threshold, the injection rate of errors into the 
circuit can be controlled to enable evaluation of operation of 
the circuit under fault in a modest amount of simulation time.  
Results have shown this methodology to be effective. 

III. THE FUALT SIMULATION TYPES 

A. Package fbit_logic 
Package fbit_logic contains types fbit and fbit_vector.  The 

package declarative design unit is shown in Figure 1.  The 
package contains a declaration for type fbit and fbit_vector.  
This type would be used to test designs done using bit and 
bit_vector.  By simply pre-pending the ‘f’ in front of the bit and 
bit_vector in the declarations, the modification is complete.  As 
is seen in the package, the basic logic functions are overloaded 
for the new type so no further change is needed to the design.  
To be complete, the relational operators such as <, >, =, etc. 
also need to be overloaded. [9] 

At the end of the package declaration is the declaration of 
the threshold and the random number generator function.  The 
random number generator function could have been moved to 
the package body but was placed here for visibility reasons.  
The threshold CONSTANT is the value that needs to be 
changed to modify the number of errors injected into a design.  

 

Figure 1.  Example of a figure caption. (figure caption) 

In the body of the fsim_logic package are the routines that 
determine the output of a gate evaluation.  In Figure 2 a portion 
of the fbit_logic package is shown.  Space precludes including 
the complete package.  All of the functions are evaluated using 
tables.  After the logic function is evaluated and a result 
determined from the table, a random number is generated using 
the VHDL UNIFORM random number generation function.  
This random number is then compared to the threshold.  If 
greater than the threshold then the output is complemented, 
again using table lookup. 

 

Figure 2.  Package fbit_logic package body design unit. 

The fbit_logic package first needed to be verified for 
correctness and for the rate of error injection.  Only one error 
which was found in the initial version of fbit_logic and that 
was in one of the relational functions where one of the results 
was in error. 

 



--truth table for “and” function 
CONSTANT and_table : fsimlogic_table := ( 
-- --------------------------------------------- 
--| U   X   0   1   Z   W   L   H   -  
--  --------------------------------------------- 
  (‘U’,‘U’,‘0’,‘U’,‘U’,‘U’,‘0’,‘U’,‘U’),  -- U 
  (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’),  -- X 
  (‘0’,‘0’,‘0’,‘0’,’0’,’0’,’0’,’0’,’0’),  -- 0 
  (‘U’,‘X’,‘0’,‘1’,’X’,’X’,’0’,’1’,’X’),  -- 1 
  (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’),  -- Z 
  (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’),  -- W 
  (‘0’,‘0’,‘0’,‘0’,’0’,’0’,’0’,’0’,’0’),  -- L 
  (‘U’,‘X’,‘0’,‘1’,’X’,’X’,’0’,’1’,’X’),  -- H 
  (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’)); -- - 
 

CONSTANT error_table : fsimlogic_1d := ( 
-- --------------------------------------------- 
--| U   X   0   1   Z   W   L   H   -  
--  --------------------------------------------- 
  (‘U’,‘X’,‘1’,‘0’,‘Z’,‘W’,‘H’,‘L’,‘-’);   
 

B. Package fsim_logic 
fsim_logic is a package that for the most part mirrors the 

standard package, std_logic.  As with std_logic it provides for 
resolved types.  Once again the standard operators are 
overloaded and the operations are specified in tables as 
illustrated in Figure 3. 

Figure 3.  Table for ‘AND’ logic operation 

 

The “and_table” shown in Figure 3, and the other logic 
tables, mirror those in std_logic.  The one significant difference 
in the package is the error_table which specified the injected 
error.  In the package for type fbit the error table simple 
inverted the output of the gate.  As there are only two values in 
the logic value system the choice is easy.  For fsim_logic there 
are many choices for the value to be injected.  One of the goals 
of this work was to have the ability to evaluate a circuit’s 
performance under fault conditions.  Choosing a value such as 
‘X’ would result in the permeation of the ‘X’ value throughout 
the circuit and the simulation results, although useful, would 
not necessarily reflect the most meaningful information.  For 
this reason only the driven high and low and capacitive high 
and low are inverted under error as shown in Figure 4. 

Figure 4.  Error table for type fsim_logic 

This package was also verified and two error were found.  
The first was that in the and_table, shown in Figure 3, the 
operation of ‘1’ AND ‘H’ should result in a ‘1’ as is the case 
for the corrected table here.  In the original version of the 
package the result was an ‘X’ and erroneous.   The other error 
was in the type conversion function.  In the original version of 
the type conversion function “to_bit” which allows conversion 
from fsim_logic to bit, a ‘0’ resulted in a ‘1’ and a ‘1’ resulted 
in a ‘0’.  These errors were corrected, allowing characterization 
of the fault injection rates. 

C. Characterization of the fault injection 
The threshold for error injection is set though the value set 

on the CONSTANT threshold.  Setting the threshold to 1.0 
results in no error ever being injected into the circuit.  Setting a 
value of 0.9 would result in 1 of 10 gate evaluations resulting 
in an error.  As part of the verification of the packages for fbit 
and fsim_logic, the error injection rate was also verified. 

When the threshold is set to 1.0 no errors were ever injected 
as should be.  Table 1 shows the result of testing for the AND 
and OR logic functions.  As these reflect simulation starting 
with the same random number seed, they should produce the 
same results.  (That is a side benefit in that the results of error 
injection simulations are repeatable.)  As can be seen in the 
table when the threshold is set to 0.999 an error injection rate 
of ~0.1% should result.  The results of 0.07% for 10,000 
instances and 0.095% for 100,000 instances correspond nicely 
to expectations.  When the threshold is set to 0.9 the injection 
rate should be approximately 1 in 10 gate evaluations.  As 
expected errors are injected approximately 10% of the time. 

TABLE I.  ERROR INJECTION RATES 

Threshold Gates Errors Error Rate(%) 

‘AND’ 
0.999 

100 0 0 

10000 7 0.07% 

100000 95 0.095% 

‘AND’ 
.90 

100 11 11% 

10000 998 9.98% 

100000 9924 9.924% 

‘OR 
0.999 

100 0 0 

10000 7 0.07% 

100000 95 0.095% 

OR 
.90 

100 11 11% 

10000 998 9.98% 

100000 9924 9.924% 

 

Verifying each function one at time has merit and is needed 
for a verification of the package, but a more complete 
verification is required.  For this case a small circuit was 
simulated, a 1-bit full adder.  Frist the threshold was set to 1 to 
verify that the adder was coded correctly.  After this simulation 
the threshold was readjusted to 0.9999.  A full adder has 6 logic 
gate evaluations that take place during execution.  Exhaustive 
simulation generated 10 instances of evaluation.  With the 
threshold set to this level not all run will result in any error 
being generated.  As shown in Figure 5, the simulation results 
resulted in no error. 

Resetting the threshold to a setting of 0.9099 resulted in 
error being injected into the simulation.  As there are 6 gate 
evaluations that take place for each input vector most vectors 
will likely have an error.  As can be seen when comparing 
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Figure 5 and Figure 6, many of the vector evaluations result in 
an error.   

Figure 5.  Table for ‘AND’ logic operation – threshold 0.9999 

Figure 6.  Table for ‘AND’ logic operation –threshold 0.9099 

IV. APPLICATION OF FBIT AND FSIM_LOGIC 
The packages were used to test and verify the design of a 

fault tolerant adder recently developed.  Without these 
packages these designs could only be verified under fault 
operation by physically modifying the design to have a stuck-at 
fault.  This would only verify the design for that one specific 
fault such that the methodology of manually injecting the faults 
does a poor job of verifying the design.  The use of fbit or 
fsim_logic allows for the more rigorous evaluation of the 
design.  As the designs indicate when an internal error is 
present but corrected it is possible to evaluate the ability to 
inject errors into the design even though the data output is 
correct.  This is correct operation of the design and the aspect 
that requires these packages. 

The design evaluated was a Single Error Correction/Dual 
Error Detection adder (SEC/DED).  This design is capable of 
correcting any single error (on a bit-by-bit basis) and detecting 
dual errors (on a bit-by-bit basis).  As the design uses a 
duplicated dual-rail logic implementation the error 
detection/correction takes place on each bit position so there 
could be multiple errors across a multiple but logic unit.  The 
unit is very tolerant of errors.  The design of a 2-bit SEC/DED 
is shown in Figure 7.  There is significant circuit overhead but 
any SEC/DED architecture has this.  The Five-way-redundant 
architecture for the computer systems of the space shuttle 
actually has more circuit overhead and provides slightly less 
protection that this methodology [].  The advantage of this 
methodology is that the protection is ingained into the design at 
a very fine level of granularity, whereas the five-way-
redundant methodology is implemented at a much high level of 
granularity. [10,11,12] 

 

 

Figure 7.  2-bit SEC/DED adder 

Various SEC/DED adder architectures were implemented 
up to an 8-bit version.  All the adder were synthesized and 
synthesized cleanly.  Figure 8, with multiple simulation 
waveforms, shows the waveform from the simulation of an 8-
bit SEC/DED adder [13].  The waveforms illustrate the change 
in the number of errors injected as the threshold is adjusted 
from no error injection to a threshold of 0.70 where 30% of the 
gate level evaluations result in error.  These waveform were 
extracted from a student report from my fall HDL Design and 
Verification class.  The final project was to work on 
verification of the fault simulation packages fbit and fsim_logic 
and the use that package to verify the fault tolerant adder 
design. 

 
a) Simulation with no error 



 
b) Simulation with tolerance = 0.99 

 
b) Simulation with tolerance = 0.90 

 
b) Simulation with tolerance = 0.70 

Figure 8.  Simulartion of 8-bit SEC/DED adder [13] 

The students were provided with the code for the 8-bit 
SEC/DED adder design.  The original VHDL had been written 
using TYPE BIT and all agreed that the modification need to 
use the fault simulation package was minimal. 

 

V. CONCLUSIONS 
The packages fbit_logic and fsim_logic have been 

presented.  The need for such packages was presented.  The 
packages have been used for the verification of fault tolerant 
digital circuit design and have shown these packages to be very 

effective for the verification of such designs.  The packages can 
also be of significant benefit in the evaluation of the behavior 
of the performance of conventional designs under fault and aid 
in designing circuits that are more tolerant of intermittent 
faults. 
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