
fsim_logic – A VHDL type for testing of FLYTRAP

Joanne E. DeGroat, Ph.D.
Department of Electrical and Computer Engineering

The Ohio State University
Columbus, OH USA
degroat.1@osu.edu

Abstract— When designing modern digital components and
systems it is often desirable to know how the circuit performs
when a logic fault occurs. There are numerous custom
simulators that allow this exploration. Current digital
components and systems are designed using modern HDLs.
Being able to conduct fault simulation using the HDL of design,
allows for this evaluation to be done without additional
translation to the design input required by a custom simulator.
VHDL allows for the creation of custom logic systems packages.
fbit and fsim_logic_package are logic system packages that allow
for fault injection at the gate level. The packages allow the
threshold for fault injection to be adjusted from very high fault
injection rates, 1 in 10 gate evaluations, to very low fault injection
rates, 1 in 1,000,000,000 or more gate evaluation. Additionally,
this logic type is essential when designing fault tolerant circuits
where the design can only be verified through the random
injection of faults into the circuit. It can also be very useful in
evaluating the actions and performance of a system when a low
level fault occurs.

Keywords—fault simulation; digital fault, faut tolerant circuits.

I. INTRODUCTION
Fault tolerant circuit research was one focus of digital

circuit design and digital VLSI in the 1980s. In the 1970s and
80s there was much interest in fault simulators, programs that
would simulate circuits and no fault conditions and under fault
conditions [1]. At that time, and prior to the era of HDLs,
custom fault simulators were built. Even today custom
simulators are being built to study the performance of a
processor under fault. On such simulator is the SESC
simulator [2].

Modern circuits are designed in HDLs and it would be nice
if minimal additional effort was needed to inject faults into the
architecture at the lowest level. fbit and fsim_logic are VHDL
logic systems that provide a logic types that allows for random
injection of faults at the gate level. This logic system was
developed to test fault tolerant circuits being developed and
was essential for verification of that work. The alternative is to
create a large number of instances of the design, each with a
different injected hard error. Each of these instances must then
be simulated. Many possible locations of where the fault will
occur are overlooked in this approach. fsim_logic provides the
capability to have random injection of faults into the DUT and
significantly reduces the workload of doing the fault
simulation.

The package also has application to modern design. The
focus of some work today is on redundant computation paths
and lowering the operating voltage until faults just start to
occur. What is the action of the system when a fault does
occur? Occurrence of a fault requires the computation to be
rolled back as done in many modern systems. This is occurring
more frequently as we strive for minimal energy computation
and reliable computation. [3,4]

II. BACKGROUND
Early work on the use of VHDL for fault simulation

concentrated on development of CAD tools that generated
duplicates of the original HDL description with a given “gate”
in error [5,6]. This HDL description would then be simulated
to observe the behavior under fault. By nature this
methodology modeled the circuit containing stuck-on-faults. If
the circuit contained 100,000 logic nodes, 100,000 models
would need to be created to fully evaluate the circuit and
100,000 simulations would need to be run. This approach was
not viable previously and today’s systems are now at a point
where this approach is beyond viable.

An alternative to creating the many thousands of instances
of the HDL circuit description is to inject error into the
evaluation and generation of the output from a gate during
simulation. VHDL offers this capability though the use of
packages and custom types. The type names chosen for the
fault injection type is fbit and fsim_logic. This is much like
type bit and type std_logic of VHLD, only in this package
when the output of a logic operation is being evaluated, the
output could be in error. Whether an error occurs of not is
determined by generation of a random number. If the random
number exceeds a threshold, an error is injected, i.e., the output
of the gate will be in error, i.e., it will the complement of the
expected value for fbit and when using fsim_logic, a table for
determination of the value under error is used. For example if
the value should be high impedance, Z, it could be a capacitive
high, H, under error.

There is also interest in creating circuit models that are
representative of the occurrence of errors in circuits. This
requires the use of complex probability density functions to
accurately model the occurrence of errors. [7,8] The
probability density function used in the fbit and fsim_logic
packages does not have that requirement. In this work the
objective is to observe the circuit’s performance under fault
and to do so in reasonable simulation time. Through use of a

--
-- Fault Simulation Package – TYPE fbit (non-resolved)
--
PACKAGE fbit_logic IS

TYPE fbit IS (‘0’, -- low
 ‘1’ -- high);
--
--unconstrained array of fbit
--
TYPE fbit_vector IS ARRAY (NATURAL RANGE <>) of fbit;
--
--Declare logic functions
--
FUNCTION “AND” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “OR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “NAND” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “NOR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “XOR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “XNOR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “NOT” (l:fbit) RETURN fbit;
--
FUNCTION “AND” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “OR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “NAND” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “NOR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “XOR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “XNOR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “NOR” (l:fbit_vector) RETURN fbit_vector;
--
CONSTANT threshold : REAL := -.999999;
impure FUNCTION getrand RETURN real;

END fbit logic;

LIBRARY ieee;
USE ieee.math_real.ALL;
PACKAGE BODY fbit_logic IS
--
--Local types
--
TYPE fbit_1d IS ARRAY (fbit) of fbit;
TYPE fbitlogic_table IS ARRAY (fbit,fbit) of fbit;
shared VARIABLE seed1 : INTEGER := 500045;
shared VARIABLE seed2 : INTEGER := 100001;
--
--TABLE for error return
--
CONSTANT error_table : fbit_1d := (‘1’,’0’);
--
--AND FUNCTION
--
CONSTANT and_table : fbitlogic_table := (
 -- ---
 -- | 0 1
 -- ---
 (‘0’, ‘0’),
 (‘0’, ‘1’));

FUNCTION “AND” (l : fbit, r : fbit) RETURN fbit IS
 VARIABLE val : fibt;
 VARIABLE rnd : REAL;
BEGIN
 val := and_table (l,r);
 rnd := getrand;
 IF (rnd > threshold) THEN val := (error_teble(val)); END IF;
 RETURN (val);
END “AND”;

--
-- Function to return random number
impure FUNCTION getrand RETURN real IS
 VARIABLE vrandval : REAL;
BEGIN
 UNIFORM (seed1,seed2,vrandval);
 RETURN (vrandval);
END getrand;

END fbit_logic;

uniform distribution for generation of the random number and
adjustment of the threshold, the injection rate of errors into the
circuit can be controlled to enable evaluation of operation of
the circuit under fault in a modest amount of simulation time.
Results have shown this methodology to be effective.

III. THE FUALT SIMULATION TYPES

A. Package fbit_logic
Package fbit_logic contains types fbit and fbit_vector. The

package declarative design unit is shown in Figure 1. The
package contains a declaration for type fbit and fbit_vector.
This type would be used to test designs done using bit and
bit_vector. By simply pre-pending the ‘f’ in front of the bit and
bit_vector in the declarations, the modification is complete. As
is seen in the package, the basic logic functions are overloaded
for the new type so no further change is needed to the design.
To be complete, the relational operators such as <, >, =, etc.
also need to be overloaded. [9]

At the end of the package declaration is the declaration of
the threshold and the random number generator function. The
random number generator function could have been moved to
the package body but was placed here for visibility reasons.
The threshold CONSTANT is the value that needs to be
changed to modify the number of errors injected into a design.

Figure 1. Example of a figure caption. (figure caption)

In the body of the fsim_logic package are the routines that
determine the output of a gate evaluation. In Figure 2 a portion
of the fbit_logic package is shown. Space precludes including
the complete package. All of the functions are evaluated using
tables. After the logic function is evaluated and a result
determined from the table, a random number is generated using
the VHDL UNIFORM random number generation function.
This random number is then compared to the threshold. If
greater than the threshold then the output is complemented,
again using table lookup.

Figure 2. Package fbit_logic package body design unit.

The fbit_logic package first needed to be verified for
correctness and for the rate of error injection. Only one error
which was found in the initial version of fbit_logic and that
was in one of the relational functions where one of the results
was in error.

--truth table for “and” function
CONSTANT and_table : fsimlogic_table := (
-- ---
--| U X 0 1 Z W L H -
-- ---
 (‘U’,‘U’,‘0’,‘U’,‘U’,‘U’,‘0’,‘U’,‘U’), -- U
 (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’), -- X
 (‘0’,‘0’,‘0’,‘0’,’0’,’0’,’0’,’0’,’0’), -- 0
 (‘U’,‘X’,‘0’,‘1’,’X’,’X’,’0’,’1’,’X’), -- 1
 (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’), -- Z
 (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’), -- W
 (‘0’,‘0’,‘0’,‘0’,’0’,’0’,’0’,’0’,’0’), -- L
 (‘U’,‘X’,‘0’,‘1’,’X’,’X’,’0’,’1’,’X’), -- H
 (‘U’,‘X’,‘0’,‘X’,’X’,’X’,’0’,’X’,’X’)); -- -

CONSTANT error_table : fsimlogic_1d := (
-- ---
--| U X 0 1 Z W L H -
-- ---
 (‘U’,‘X’,‘1’,‘0’,‘Z’,‘W’,‘H’,‘L’,‘-’);

B. Package fsim_logic
fsim_logic is a package that for the most part mirrors the

standard package, std_logic. As with std_logic it provides for
resolved types. Once again the standard operators are
overloaded and the operations are specified in tables as
illustrated in Figure 3.

Figure 3. Table for ‘AND’ logic operation

The “and_table” shown in Figure 3, and the other logic
tables, mirror those in std_logic. The one significant difference
in the package is the error_table which specified the injected
error. In the package for type fbit the error table simple
inverted the output of the gate. As there are only two values in
the logic value system the choice is easy. For fsim_logic there
are many choices for the value to be injected. One of the goals
of this work was to have the ability to evaluate a circuit’s
performance under fault conditions. Choosing a value such as
‘X’ would result in the permeation of the ‘X’ value throughout
the circuit and the simulation results, although useful, would
not necessarily reflect the most meaningful information. For
this reason only the driven high and low and capacitive high
and low are inverted under error as shown in Figure 4.

Figure 4. Error table for type fsim_logic

This package was also verified and two error were found.
The first was that in the and_table, shown in Figure 3, the
operation of ‘1’ AND ‘H’ should result in a ‘1’ as is the case
for the corrected table here. In the original version of the
package the result was an ‘X’ and erroneous. The other error
was in the type conversion function. In the original version of
the type conversion function “to_bit” which allows conversion
from fsim_logic to bit, a ‘0’ resulted in a ‘1’ and a ‘1’ resulted
in a ‘0’. These errors were corrected, allowing characterization
of the fault injection rates.

C. Characterization of the fault injection
The threshold for error injection is set though the value set

on the CONSTANT threshold. Setting the threshold to 1.0
results in no error ever being injected into the circuit. Setting a
value of 0.9 would result in 1 of 10 gate evaluations resulting
in an error. As part of the verification of the packages for fbit
and fsim_logic, the error injection rate was also verified.

When the threshold is set to 1.0 no errors were ever injected
as should be. Table 1 shows the result of testing for the AND
and OR logic functions. As these reflect simulation starting
with the same random number seed, they should produce the
same results. (That is a side benefit in that the results of error
injection simulations are repeatable.) As can be seen in the
table when the threshold is set to 0.999 an error injection rate
of ~0.1% should result. The results of 0.07% for 10,000
instances and 0.095% for 100,000 instances correspond nicely
to expectations. When the threshold is set to 0.9 the injection
rate should be approximately 1 in 10 gate evaluations. As
expected errors are injected approximately 10% of the time.

TABLE I. ERROR INJECTION RATES

Threshold Gates Errors Error Rate(%)

‘AND’
0.999

100 0 0

10000 7 0.07%

100000 95 0.095%

‘AND’
.90

100 11 11%

10000 998 9.98%

100000 9924 9.924%

‘OR
0.999

100 0 0

10000 7 0.07%

100000 95 0.095%

OR
.90

100 11 11%

10000 998 9.98%

100000 9924 9.924%

Verifying each function one at time has merit and is needed
for a verification of the package, but a more complete
verification is required. For this case a small circuit was
simulated, a 1-bit full adder. Frist the threshold was set to 1 to
verify that the adder was coded correctly. After this simulation
the threshold was readjusted to 0.9999. A full adder has 6 logic
gate evaluations that take place during execution. Exhaustive
simulation generated 10 instances of evaluation. With the
threshold set to this level not all run will result in any error
being generated. As shown in Figure 5, the simulation results
resulted in no error.

Resetting the threshold to a setting of 0.9099 resulted in
error being injected into the simulation. As there are 6 gate
evaluations that take place for each input vector most vectors
will likely have an error. As can be seen when comparing

Half
Add

a(0) b(0) a(1) b(1)

ttcout(0)

ttsum(0)

Full
Add

ttcout(1)

ttsum(1)

Half
Add

abar(0) bbar(0) abar(1) bbar(1)

tdcout(0)

tdsum(0)

Full
Add

tdcout(1)

tdsum(1)

Half
Add

a(0) b(0) a(1) b(1)

btcout(0)

btsum(0)

Full
Add

dbcout(1)

btsum(1)

Half
Add

abar(0) bbar(0) abar(1) bbar(1)

bdcout(0)

bdsum(0)

Full
Add

bdcout(1)

bdsum(1)

Mux

sum

ttsum btsum

tserr
Mux

cout

ttcout btcout

tcerr

ttsum(0)
tdsum(0)

ttsum(1)
tdsum(1)

tserr

tcerr
ttcout(0)
tdcout(0)

ttcout(1)
tdcout(1)

bcerr
btcout(0)
bdcout(0)

btcout(1)
bdcout(1)

btsum(0)
bdsum(0)

btsum(1)
bdsum(1)

bserr

tserr
bserr

tcerr
bcerr

corerr

tserr
bserr

tcerr
bcerr

ttsum(0)

ttsum(1)
btsum(0)

btsum(1)

Figure 5 and Figure 6, many of the vector evaluations result in
an error.

Figure 5. Table for ‘AND’ logic operation – threshold 0.9999

Figure 6. Table for ‘AND’ logic operation –threshold 0.9099

IV. APPLICATION OF FBIT AND FSIM_LOGIC
The packages were used to test and verify the design of a

fault tolerant adder recently developed. Without these
packages these designs could only be verified under fault
operation by physically modifying the design to have a stuck-at
fault. This would only verify the design for that one specific
fault such that the methodology of manually injecting the faults
does a poor job of verifying the design. The use of fbit or
fsim_logic allows for the more rigorous evaluation of the
design. As the designs indicate when an internal error is
present but corrected it is possible to evaluate the ability to
inject errors into the design even though the data output is
correct. This is correct operation of the design and the aspect
that requires these packages.

The design evaluated was a Single Error Correction/Dual
Error Detection adder (SEC/DED). This design is capable of
correcting any single error (on a bit-by-bit basis) and detecting
dual errors (on a bit-by-bit basis). As the design uses a
duplicated dual-rail logic implementation the error
detection/correction takes place on each bit position so there
could be multiple errors across a multiple but logic unit. The
unit is very tolerant of errors. The design of a 2-bit SEC/DED
is shown in Figure 7. There is significant circuit overhead but
any SEC/DED architecture has this. The Five-way-redundant
architecture for the computer systems of the space shuttle
actually has more circuit overhead and provides slightly less
protection that this methodology []. The advantage of this
methodology is that the protection is ingained into the design at
a very fine level of granularity, whereas the five-way-
redundant methodology is implemented at a much high level of
granularity. [10,11,12]

Figure 7. 2-bit SEC/DED adder

Various SEC/DED adder architectures were implemented
up to an 8-bit version. All the adder were synthesized and
synthesized cleanly. Figure 8, with multiple simulation
waveforms, shows the waveform from the simulation of an 8-
bit SEC/DED adder [13]. The waveforms illustrate the change
in the number of errors injected as the threshold is adjusted
from no error injection to a threshold of 0.70 where 30% of the
gate level evaluations result in error. These waveform were
extracted from a student report from my fall HDL Design and
Verification class. The final project was to work on
verification of the fault simulation packages fbit and fsim_logic
and the use that package to verify the fault tolerant adder
design.

a) Simulation with no error

b) Simulation with tolerance = 0.99

b) Simulation with tolerance = 0.90

b) Simulation with tolerance = 0.70

Figure 8. Simulartion of 8-bit SEC/DED adder [13]

The students were provided with the code for the 8-bit
SEC/DED adder design. The original VHDL had been written
using TYPE BIT and all agreed that the modification need to
use the fault simulation package was minimal.

V. CONCLUSIONS
The packages fbit_logic and fsim_logic have been

presented. The need for such packages was presented. The
packages have been used for the verification of fault tolerant
digital circuit design and have shown these packages to be very

effective for the verification of such designs. The packages can
also be of significant benefit in the evaluation of the behavior
of the performance of conventional designs under fault and aid
in designing circuits that are more tolerant of intermittent
faults.

ACKNOWLEDGMENT
I would like to acknowledge the student of my HDL Design

and Verification class and their verification reports on the
project to verify fibt, fsim_logic and the adder design.

REFERENCES

[1] Richard D Schlichting and Fred B. Schneider, “Fail-Stop Processors: An
Approach to Designing Fault-Tolerant Computing Systems,” ACM
Transactions on Computing Systems, Vol 1, No. 3, August 1983.

[2] J. Renau, et. al., “SESC Simulator,” January 2005.
(http://sesc.sourceforge.net).

[3] Tim Miller, Radu Teordorescu, Naga Surapaneni, and Joanne DeGroat,
“Flexible Redundancy in Robust Processor Architecture,” Third Annual
Graduate Student Poster Exhibition, Department of Computer Science
and Engineering, The Ohio State University, Columbus, OH, April 9,
2009.

[4] Tim Miller, Naga Surapanneni, Radu Theodorescu, Joanne DeGroat,
“Flexible Redundancy in Robust Processor Architecture,” Weed 2009,
Austin, Tx, June 20, 2009.

[5] US Patent 5896401, Miron Abramovici and Premachandran Rama
Menon, “Fault simulator for digital circuitry,” April 20, 1999.

[6] P.C. Ward and J.R. Armstrong, “Behavioral Fault Simulation in
VHDL,” 27th ACM/IEEE Design Automation Conference, Orlando, FL,
1990.

[7] Maria Isabel Ribeiro, “Gaussian Probability Density Functions:
Properties and Error Characterization,”
http://users.isr.ist.utl.pt/~mir/pub/probability.pdf, 2004.

[8] Thara Rejimon and Sanjukta Bhanja, “An Accurate Probabilistic Model
for Error Detection,” 18th International Conference on VLSI Design,
Kolkata, India, 2005.

[9] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-
2008.

[10] Shailesh Niranjan and James F. Frenzel, “A Comparison of Fault-
Tolerant State Machine Architectures for Space Born Electronics,” IEEE
Transactions on Reliability, Vol 45, No 1, March 1996.

[11] Gary Burke and Stephanie Taft, “Fault Tolerant State Machines”, Jet
Propulsion Laboratory, California Institute of Technology, Report
D160/MALPD 2004.

[12] Keith S. Morgan, Daniel L McMurtrey, Brain H. Pratt and Michael J
Wirthlin, “A Comparison of TMR With Alternative Fault-Tolerant
Design Techniques for FPGAs,” IEEE Transactions on Nuclear Science,
Vol. 54, No. 6, December 2007.

[13] A, Antone, J Coles, M. Furst, S. Johnson, Y. Kulshrestha, “8-bit
SEC/DED Adder and Fault Injection,” Verification Report for
ECE5462, Dept of ECE, Ohio State University, Dec 2012.

http://sesc.sourceforge.net/
http://users.isr.ist.utl.pt/~mir/pub/probability.pdf

	I. Introduction
	II. Background
	III. The Fualt Simulation Types
	A. Package fbit_logic
	B. Package fsim_logic
	C. Characterization of the fault injection

	IV. Application of fbit and fsim_logic
	V. Conclusions
	Acknowledgment
	References

