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Background

• What was needed and why
• Working in the area of fault-tolerant design

– A design where the presence of an incorrect logic 
value is ‘corrected for’

– Fault occurs due to
• And intermittent fault –circuit noise, transistor threshold
• A permanent fault – manufacture or developed over time

• The ‘corrected for’
– Fault is not fixed
– Fault is mitigated – through detection and 

redundancy a valid result is generated
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Prior work in fault simulation

• During the 1980s fault simulation was a 
major research focus.
– A standard set of circuits for evaluation of fault 

simulator.
– Many custom simulators – nothing standardized.

• More recent work (2005) – SESC simulator –
University of Illinois
– Architectural evaluation including faults
– Designs use shadow register to mitigate faults
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Modern circuits – HDL Design

• HDLs used for design of embedded systems 
to complex processors.

• Desire is to have a code version of the HDL 
that allows fault injection during simulation.
– Fault injection – A gate evaluation generates the 

wrong result – probabilistically
– Allows for control and measurement of the 

number of faults injected.
– Faults are injected at the lowest level of design 

– the gates.
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Fault tolerant circuits

• Fault tolerant circuit design validation
– Correct circuit design validation

• NO ERRORS – typical verification methodologies
• ERRORS – some gate evaluations result in errors

– Circuit behavior under error
• Single Error Detection (SED) circuits – error detected
• Single Error Correction (SEC/DED) circuits – single 

errors correct for (output valid) – dual errors detected
– No error injection – no verification of SEC/DED 

design
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Prior work in this area

• Work in early 1990s
– Automatic generation of fixed error HDL models
– Error location fixed

• Limitations of methodology
– Large number of fixed error models
– Limited to fixed location(s) of error

• Not practical for today’s design
– Design with 100,000 gates  100,000 possible 

locations for fixed error.  (stuck at 0, stuck at 1)
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An alternative approach

• VHDL allows for user defined logic types
• A new type

– Already have bit, std_logic, signed, 
unsigned, … (most design in bit, std_logic)

– Create types fbit, fsim_logic
– Overload all operators

• In logic operator evaluation still a table lookup
• Add a call to a random number generator for 

fault injection and compare to a threshold.
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What the package provides

• The ability to test fault tolerant circuits
– Error injection is uniformly distributed error injection 

over all logic operators.
– Uniform distribution valid as testing operation under 

error conditions.
– Number of errors injected can be adjusted to 

achieve useful results in reasonable simulation time.
– Distribution of errors over entire design, not fixed 

location(s).
• Can test any design for behavior under fault 

conditions. (non-fault-tolerant design)
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Package fbit

• VHDL (and System Verilog) allow for user 
defined types and overloading of operators.

• fbit corresponds to type bit – fbit is the fault 
injected version

• Modification to test circuits using fbit
– Change type declarations from bit to fbit

in architecture and ports.
– Testbench uses type conversion to drive 

model.
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The package declaration
• The declaration
• Logic functions 

overloaded
• Relational functions 

overloaded 
(=,/=,<,<=,>,>=)

• Type conversion 
functions

-------------------------------------------------------------------------------------- 
-- Fault Simulation Package – TYPE fbit (non-resolved) 
-------------------------------------------------------------------------------------- 
PACKAGE fbit_logic IS 
 
TYPE fbit IS (‘0’,  -- low 
                        ‘1’   -- high  ); 
-------------------------------------------------------------------------------------- 
--unconstrained array of fbit 
-------------------------------------------------------------------------------------- 
TYPE fbit_vector IS ARRAY (NATURAL RANGE <>) of fbit; 
-------------------------------------------------------------------------------------- 
--Declare logic functions 
-------------------------------------------------------------------------------------- 
FUNCTION “AND” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “OR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “NAND” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “NOR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “XOR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “XNOR” (l:fbit; r:fbit) RETURN fbit; 
FUNCTION “NOT” (l:fbit) RETURN fbit; 
-------------------------------------------------------------------------------------- 
FUNCTION “AND” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “OR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “NAND” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “NOR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “XOR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “XNOR” (l,r:fbit_vector) RETURN fbit_vector; 
FUNCTION “NOR” (l:fbit_vector) RETURN fbit_vector; 
-------------------------------------------------------------------------------------- 
CONSTANT threshold : REAL := -.999999; 
impure FUNCTION getrand RETURN real; 
 

END fbit_logic; 
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Function Evaluation
• Table lookup used: function evaluation and error 

injection
– CONSTANT and_table : fbitlogic_table := (
– --------------------------------------
– --|  0    1
– --------------------------------------
– (‘0’, ‘0’),   -- 0
– (‘0’, ‘1’)  );-- 1
– FUNCTION “AND” (l,r : fbit) RETURN fbit IS
– VARIABLE val : fbit; VARIABLE rnd : REAL;
– BEGIN
– val := and_table(l,r);
– rnd : getrand;
– IF (rnd>threshold) THEN
– val:=(error_table(val)); END IF;
– RETURN (val);
– END “AND”;
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Error Injection

• Random number generation
– Impure FUNCTION getrand RETURN real IS
– VARIABLE vrandval : REAL;
– BEGIN
– UNIFORM (seed1,seed2,vrandval);
– RETURN (vrandval);
– END getrand;

• The error table
– CONSTANT error_table : fbit_1d := (‘1’,’0’);

• Modification of seeds – variable simulation 
results
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Package fsim_logic

• fsim_logic corresponds to type std_logic –
fsim_logic is the fault injected version
– Also a resolved type

• Modification to test circuits using fsim_logic
– Change type declarations from std_logic to 

fsim_logic in architecture and ports.
– Testbench uses type conversion to drive 

model.
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fsim_logic package declaration

• The declarative part  (initial part)
PACKAGE fsim_logic_1 IS 
     
TYPE fsim_ulogic IS ('0', --low 
                     '1'  --high 
                    ); 
------------------------------------------------------------------ 
-- unconstrained array of fsim_ulogic 
------------------------------------------------------------------ 
TYPE fsim_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF fsim_ulogic; 
     
------------------------------------------------------------------ 
-- Resolution Function 
------------------------------------------------------------------ 
FUNCTION resolved (s: fsim_ulogic_vector) RETURN fsim_ulogic; 
 
------------------------------------------------------------------ 
-- Declare fault injection fsim_logic type 
------------------------------------------------------------------ 
SUBTYPE fsim_logic IS resolved fsim_ulogic; 
 
------------------------------------------------------------------ 
-- Declare fault injection fsim_logic_vector type 
------------------------------------------------------------------ 
TYPE fsim_logic_vector IS ARRAY (NATURAL RANGE <>) of fsim_logic; 
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fsim_logic is resolved

• No errors injected on resolution
• Resolution table same as std_logic

CONSTANT resolution_table : fsimlogic_table := ( 
--    ----------------------------------------------- 
--    | U    X    0    1    Z    W    L    H    - 
--    ----------------------------------------------- 
      ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'),   -- U 
      ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'),   -- X 
      ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'),   -- 0  
      ('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'),   -- 1  
      ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'),   -- Z  
      ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'),   -- W 
      ('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'),   -- L 
      ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'),   -- H 
      ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X')    -- - 
       ); 
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Error injection

• Error injection on logical operations
• Methodology the same a fbit
• No error injection for ‘U’,’X’,’W’,’Z’,’-’

CONSTANT error_table : fsimlogic_1d := 
--    ----------------------------------------------- 
--    | U    X    0    1    Z    W    L    H    - 
--    ----------------------------------------------- 
      ('U', 'X', '1', '0', 'Z', 'W', 'H', 'L', '-' ); 
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The logic functions
• The ‘AND’ Table

• The ‘AND’ function

--truth table for "and" functilon 
CONSTANT and_table : fsimlogic_table := ( 
--    ----------------------------------------------- 
--    | U    X    0    1    Z    W    L    H    - 
--    ----------------------------------------------- 
      ('U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U'),   -- U 
      ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'),   -- X 
      ('0', '0', '0', '0', '0', '0', '0', '0', '0'),   -- 0  
      ('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'),   -- 1  
      ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'),   -- Z  
      ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'),   -- W 
      ('0', '0', '0', '0', '0', '0', '0', '0', '0'),   -- L 
      ('U', 'X', '0', 'X', 'X', 'X', '0', '1', 'X'),   -- H 
      ('U', 'X', 'X', 'X', 'X', 'X', '0', 'X', 'X')    -- - 
       ); 
 

FUNCTION "and" (l : fsim_ulogic; r : fsim_ulogic) RETURN fsim_ulogic IS 
  VARIABLE val : fsim_ulogic; 
  VARIABLE rnd : REAL; 
BEGIN 
   val := and_table(l,r); 
   rnd := getrand; 
   IF (rnd > threshold) THEN val := (error_table(val)); END IF; 
   RETURN (val); 
END "and"; 
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The application of package

• Fault tolerant design
• One of designs – a fault tolerant adder
• 4x replication

– Provides Single Error Correction and Dual 
Error Detection (on a bit position by bit 
position basis)
• 2x replication – SED
• 3x replicaiton – SEC  (TMR-many space systems)
• 4x replication – SEC/DED
• 5x replication – DEC  (Space shuttle systems)
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The adder design

• Diagram shows 2 
bit positions

• Design is 
duplicate dual rail

• Why dual rail?
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Example of use

• Applied to single full adder
– Full adder – 6 logic operation evaluations 

for each test transaction
– Threshold of .9999 results in no errors
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Example of use - errors

• Threshold reset to .9099 
• Same design – exhaustive simulation
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Testing of fault tolerant adder

• Threshold = 1  - no error injection
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Testing of fault tolerant adder

• Threshold = .99    error injection such that 
there are non correctable errors.
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Testing of fault tolerant adder

• Threshold = 0.70
• Most errors are noncorrectable
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Performance overhead

• Fault simulation comes at a cost
– Simulation overhead time

• Overhead
– Calls to random number generator
– Comparison to threshold and error injection
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The overhead numbers

• Baseline time come from TYPE bit
• Test of an 8-bit SEC/DED adder

TYPE threshold Time Overhead 
Bit -------- 1:03.5 -------- 
fbit 1.00000 1:16.2 20% 
 0.99990 1:16.5 20.4% 
 0.99000 1:21.4 28.2% 
    
Std_logic -------- 1.05.5 Vs bit 3% 
fsim_logic 1.00000 1:16.0 16.6% 
 0.99990 1:16.6 17.5% 
 0.99000 1:20.5 23.5% 
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Other points

• Before use package itself was verified
– Package was verified

• A couple of small errors were found and fixed 
before package was used.

• Also verified through use on simple designs
– Individual logic operations
– Full adder
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Single gate performance

• Capability comes at a cost in simulation time 
and design modification
– About 20% additional simulation time
– Small amount of time to modify declaration 

types
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• Questions?
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