
fsim_logic – A VHDL type for testing of
FLYTRAP

by
Joanne E. DeGroat, Ph.D.

Associate Professor
The Ohio State University

Sponsored By:

2 of (total number of slides)

Presentation Outline

• Background – What was needed and why
• What was readily available and prior work in

the area
• The fault simulation types

– fbit and fsim_logic
– VHDL packages for fault simulation

• Use of fbit and fsim_logic to address the
need

• Conclusions

Sponsored By:

3 of (total number of slides)

Background

• What was needed and why
• Working in the area of fault-tolerant design

– A design where the presence of an incorrect logic
value is ‘corrected for’

– Fault occurs due to
• And intermittent fault –circuit noise, transistor threshold
• A permanent fault – manufacture or developed over time

• The ‘corrected for’
– Fault is not fixed
– Fault is mitigated – through detection and

redundancy a valid result is generated

Sponsored By:

4 of (total number of slides)

Prior work in fault simulation

• During the 1980s fault simulation was a
major research focus.
– A standard set of circuits for evaluation of fault

simulator.
– Many custom simulators – nothing standardized.

• More recent work (2005) – SESC simulator –
University of Illinois
– Architectural evaluation including faults
– Designs use shadow register to mitigate faults

Sponsored By:

5 of (total number of slides)

Modern circuits – HDL Design

• HDLs used for design of embedded systems
to complex processors.

• Desire is to have a code version of the HDL
that allows fault injection during simulation.
– Fault injection – A gate evaluation generates the

wrong result – probabilistically
– Allows for control and measurement of the

number of faults injected.
– Faults are injected at the lowest level of design

– the gates.

Sponsored By:

6 of (total number of slides)

Fault tolerant circuits

• Fault tolerant circuit design validation
– Correct circuit design validation

• NO ERRORS – typical verification methodologies
• ERRORS – some gate evaluations result in errors

– Circuit behavior under error
• Single Error Detection (SED) circuits – error detected
• Single Error Correction (SEC/DED) circuits – single

errors correct for (output valid) – dual errors detected
– No error injection – no verification of SEC/DED

design

Sponsored By:

7 of (total number of slides)

Presentation Outline

• Background – What was needed and why
• What was readily available and prior work in

the area
• The fault simulation types

– fbit and fsim_logic
– VHDL packages for fault simulation

• Use of fbit and fsim_logic to address the
need

• Conclusions

Sponsored By:

8 of (total number of slides)

Prior work in this area

• Work in early 1990s
– Automatic generation of fixed error HDL models
– Error location fixed

• Limitations of methodology
– Large number of fixed error models
– Limited to fixed location(s) of error

• Not practical for today’s design
– Design with 100,000 gates 100,000 possible

locations for fixed error. (stuck at 0, stuck at 1)

Sponsored By:

9 of (total number of slides)

An alternative approach

• VHDL allows for user defined logic types
• A new type

– Already have bit, std_logic, signed,
unsigned, … (most design in bit, std_logic)

– Create types fbit, fsim_logic
– Overload all operators

• In logic operator evaluation still a table lookup
• Add a call to a random number generator for

fault injection and compare to a threshold.

Sponsored By:

10 of (total number of slides)

What the package provides

• The ability to test fault tolerant circuits
– Error injection is uniformly distributed error injection

over all logic operators.
– Uniform distribution valid as testing operation under

error conditions.
– Number of errors injected can be adjusted to

achieve useful results in reasonable simulation time.
– Distribution of errors over entire design, not fixed

location(s).
• Can test any design for behavior under fault

conditions. (non-fault-tolerant design)

Sponsored By:

11 of (total number of slides)

Presentation Outline

• Background – What was needed and why
• What was readily available and prior work in

the area
• The fault simulation types

– fbit and fsim_logic
– VHDL packages for fault simulation

• Use of fbit and fsim_logic to address the
need

• Conclusions

Sponsored By:

12 of (total number of slides)

Package fbit

• VHDL (and System Verilog) allow for user
defined types and overloading of operators.

• fbit corresponds to type bit – fbit is the fault
injected version

• Modification to test circuits using fbit
– Change type declarations from bit to fbit

in architecture and ports.
– Testbench uses type conversion to drive

model.

Sponsored By:

13 of (total number of slides)

The package declaration
• The declaration
• Logic functions

overloaded
• Relational functions

overloaded
(=,/=,<,<=,>,>=)

• Type conversion
functions

--
-- Fault Simulation Package – TYPE fbit (non-resolved)
--
PACKAGE fbit_logic IS

TYPE fbit IS (‘0’, -- low
 ‘1’ -- high);
--
--unconstrained array of fbit
--
TYPE fbit_vector IS ARRAY (NATURAL RANGE <>) of fbit;
--
--Declare logic functions
--
FUNCTION “AND” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “OR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “NAND” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “NOR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “XOR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “XNOR” (l:fbit; r:fbit) RETURN fbit;
FUNCTION “NOT” (l:fbit) RETURN fbit;
--
FUNCTION “AND” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “OR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “NAND” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “NOR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “XOR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “XNOR” (l,r:fbit_vector) RETURN fbit_vector;
FUNCTION “NOR” (l:fbit_vector) RETURN fbit_vector;
--
CONSTANT threshold : REAL := -.999999;
impure FUNCTION getrand RETURN real;

END fbit_logic;

Sponsored By:

14 of (total number of slides)

Function Evaluation
• Table lookup used: function evaluation and error

injection
– CONSTANT and_table : fbitlogic_table := (
– --------------------------------------
– --| 0 1
– --------------------------------------
– (‘0’, ‘0’), -- 0
– (‘0’, ‘1’));-- 1
– FUNCTION “AND” (l,r : fbit) RETURN fbit IS
– VARIABLE val : fbit; VARIABLE rnd : REAL;
– BEGIN
– val := and_table(l,r);
– rnd : getrand;
– IF (rnd>threshold) THEN
– val:=(error_table(val)); END IF;
– RETURN (val);
– END “AND”;

Sponsored By:

15 of (total number of slides)

Error Injection

• Random number generation
– Impure FUNCTION getrand RETURN real IS
– VARIABLE vrandval : REAL;
– BEGIN
– UNIFORM (seed1,seed2,vrandval);
– RETURN (vrandval);
– END getrand;

• The error table
– CONSTANT error_table : fbit_1d := (‘1’,’0’);

• Modification of seeds – variable simulation
results

Sponsored By:

16 of (total number of slides)

Package fsim_logic

• fsim_logic corresponds to type std_logic –
fsim_logic is the fault injected version
– Also a resolved type

• Modification to test circuits using fsim_logic
– Change type declarations from std_logic to

fsim_logic in architecture and ports.
– Testbench uses type conversion to drive

model.

Sponsored By:

17 of (total number of slides)

fsim_logic package declaration

• The declarative part (initial part)
PACKAGE fsim_logic_1 IS

TYPE fsim_ulogic IS ('0', --low
 '1' --high
);
--
-- unconstrained array of fsim_ulogic
--
TYPE fsim_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF fsim_ulogic;

--
-- Resolution Function
--
FUNCTION resolved (s: fsim_ulogic_vector) RETURN fsim_ulogic;

--
-- Declare fault injection fsim_logic type
--
SUBTYPE fsim_logic IS resolved fsim_ulogic;

--
-- Declare fault injection fsim_logic_vector type
--
TYPE fsim_logic_vector IS ARRAY (NATURAL RANGE <>) of fsim_logic;

Sponsored By:

18 of (total number of slides)

fsim_logic is resolved

• No errors injected on resolution
• Resolution table same as std_logic

CONSTANT resolution_table : fsimlogic_table := (
-- ---
-- | U X 0 1 Z W L H -
-- ---
 ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- U
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- X
 ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- 0
 ('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- 1
 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- Z
 ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- W
 ('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- L
 ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- H
 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- -
);

Sponsored By:

19 of (total number of slides)

Error injection

• Error injection on logical operations
• Methodology the same a fbit
• No error injection for ‘U’,’X’,’W’,’Z’,’-’

CONSTANT error_table : fsimlogic_1d :=
-- ---
-- | U X 0 1 Z W L H -
-- ---
 ('U', 'X', '1', '0', 'Z', 'W', 'H', 'L', '-');

Sponsored By:

20 of (total number of slides)

The logic functions
• The ‘AND’ Table

• The ‘AND’ function

--truth table for "and" functilon
CONSTANT and_table : fsimlogic_table := (
-- ---
-- | U X 0 1 Z W L H -
-- ---
 ('U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U'), -- U
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- X
 ('0', '0', '0', '0', '0', '0', '0', '0', '0'), -- 0
 ('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'), -- 1
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- Z
 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- W
 ('0', '0', '0', '0', '0', '0', '0', '0', '0'), -- L
 ('U', 'X', '0', 'X', 'X', 'X', '0', '1', 'X'), -- H
 ('U', 'X', 'X', 'X', 'X', 'X', '0', 'X', 'X') -- -
);

FUNCTION "and" (l : fsim_ulogic; r : fsim_ulogic) RETURN fsim_ulogic IS
 VARIABLE val : fsim_ulogic;
 VARIABLE rnd : REAL;
BEGIN
 val := and_table(l,r);
 rnd := getrand;
 IF (rnd > threshold) THEN val := (error_table(val)); END IF;
 RETURN (val);
END "and";

Sponsored By:

21 of (total number of slides)

Presentation Outline

• Background – What was needed and why
• What was readily available and prior work in

the area
• The fault simulation types

– fbit and fsim_logic
– VHDL packages for fault simulation

• Use of fbit and fsim_logic to address the
need

• Conclusions

Sponsored By:

22 of (total number of slides)

The application of package

• Fault tolerant design
• One of designs – a fault tolerant adder
• 4x replication

– Provides Single Error Correction and Dual
Error Detection (on a bit position by bit
position basis)
• 2x replication – SED
• 3x replicaiton – SEC (TMR-many space systems)
• 4x replication – SEC/DED
• 5x replication – DEC (Space shuttle systems)

Sponsored By:

23 of (total number of slides)

The adder design

• Diagram shows 2
bit positions

• Design is
duplicate dual rail

• Why dual rail?

Half
Add

a(0) b(0) a(1) b(1)

ttcout(0)

ttsum(0)

Full
Add

ttcout(1)

ttsum(1)

Half
Add

abar(0) bbar(0) abar(1) bbar(1)

tdcout(0)

tdsum(0)

Full
Add

tdcout(1)

tdsum(1)

Half
Add

a(0) b(0) a(1) b(1)

btcout(0)

btsum(0)

Full
Add

dbcout(1)

btsum(1)

Half
Add

abar(0) bbar(0) abar(1) bbar(1)

bdcout(0)

bdsum(0)

Full
Add

bdcout(1)

bdsum(1)

Mux

sum

ttsum btsum

tserr
Mux

cout

ttcout btcout

tcerr

ttsum(0)
tdsum(0)

ttsum(1)
tdsum(1)

tserr

tcerr
ttcout(0)
tdcout(0)

ttcout(1)
tdcout(1)

bcerr
btcout(0)
bdcout(0)

btcout(1)
bdcout(1)

btsum(0)
bdsum(0)

btsum(1)
bdsum(1)

bserr

tserr
bserr

tcerr
bcerr

corerr

tserr
bserr

tcerr
bcerr

ttsum(0)

ttsum(1)
btsum(0)

btsum(1)

Sponsored By:

24 of (total number of slides)

Example of use

• Applied to single full adder
– Full adder – 6 logic operation evaluations

for each test transaction
– Threshold of .9999 results in no errors

Sponsored By:

25 of (total number of slides)

Example of use - errors

• Threshold reset to .9099
• Same design – exhaustive simulation

Sponsored By:

26 of (total number of slides)

Testing of fault tolerant adder

• Threshold = 1 - no error injection

Sponsored By:

27 of (total number of slides)

Testing of fault tolerant adder

• Threshold = .99 error injection such that
there are non correctable errors.

Sponsored By:

28 of (total number of slides)

Testing of fault tolerant adder

• Threshold = 0.70
• Most errors are noncorrectable

Sponsored By:

29 of (total number of slides)

Performance overhead

• Fault simulation comes at a cost
– Simulation overhead time

• Overhead
– Calls to random number generator
– Comparison to threshold and error injection

Sponsored By:

30 of (total number of slides)

The overhead numbers

• Baseline time come from TYPE bit
• Test of an 8-bit SEC/DED adder

TYPE threshold Time Overhead
Bit -------- 1:03.5 --------
fbit 1.00000 1:16.2 20%
 0.99990 1:16.5 20.4%
 0.99000 1:21.4 28.2%

Std_logic -------- 1.05.5 Vs bit 3%
fsim_logic 1.00000 1:16.0 16.6%
 0.99990 1:16.6 17.5%
 0.99000 1:20.5 23.5%

Sponsored By:

31 of (total number of slides)

Presentation Outline

• Background – What was needed and why
• What was readily available and prior work in

the area
• The fault simulation types

– fbit and fsim_logic
– VHDL packages for fault simulation

• Use of fbit and fsim_logic to address the
need

• Conclusions

Sponsored By:

32 of (total number of slides)

Other points

• Before use package itself was verified
– Package was verified

• A couple of small errors were found and fixed
before package was used.

• Also verified through use on simple designs
– Individual logic operations
– Full adder

Sponsored By:

33 of (total number of slides)

Single gate performance

• Capability comes at a cost in simulation time
and design modification
– About 20% additional simulation time
– Small amount of time to modify declaration

types

Sponsored By:

34 of (total number of slides)

• Questions?

	fsim_logic – A VHDL type for testing of FLYTRAP
	Presentation Outline
	Background
	Prior work in fault simulation
	Modern circuits – HDL Design
	Fault tolerant circuits
	Presentation Outline
	Prior work in this area
	An alternative approach
	What the package provides
	Presentation Outline
	Package fbit
	The package declaration
	Function Evaluation
	Error Injection
	Package fsim_logic
	fsim_logic package declaration
	fsim_logic is resolved
	Error injection
	The logic functions
	Presentation Outline
	The application of package
	The adder design
	Example of use
	Example of use - errors
	Testing of fault tolerant adder
	Testing of fault tolerant adder
	Testing of fault tolerant adder
	Performance overhead
	The overhead numbers
	Presentation Outline
	Other points
	Single gate performance
	Slide Number 34

