
From the Magician’s Hat: Developing a Multi-Methodology
PCIe Gen2 VIP

Amit Sharma

Synopsys

RMZ Infinity, Bangalore

0091.80.40189129,

amits@synopsys.com

Abhisek Verma

Synopsys

RMZ Infinity, Bangalore

0091.80.40188614,

abhiv@synopsys.com

Varun S

Synopsys

RMZ Infinity, Bangalore

0091.80.40188424

svarun@synopsys.com

Anoop Kumar

Qualcomm

Whitefield, Bangalore

0091.80.39841800

anoopkr@qualcomm.com

ABSTRACT
In a few weeks, the Accellera VIP TSC will release the "1.0" version

of the Universal Verification Methodology (UVM). This was the

next step for the committee after it had released the UVM EA release

early last year This has been quite significant because, the three

major verification vendors have aligned on a single SystemVerilog

Base-Class Library and Methodology for the first time. There have

been several compelling methodologies that abstract away and

compartmentalize many of the standard components used by the

verification teams. The Verification Methodology Manual (VMM)

was introduced in the year 2005 and since then it has been used in

creating numerous multiple robust, reusable and scalable VIPs by

different organizations. As UVM gains more and more acceptance,

companies will look more seriously at being able take existing VIP

from one methodology and use it with a UVM based flow and vice

versa. To help in this regard, Accellera’s VIP-TSC had earlier

released the Verification Intellectual Property (VIP) Recommended

Practices (http://www.accellera.org/activities/vip/VIP_1.0.pdf). This

set of guidelines has been recently enhanced to aid in the

interoperability between UVM and VMM components.

By using the examples of a PCIe Gen2 Synopsys DW VIP, this paper

describes beyond the usage of the interoperability guidelines to not

only show how a VMM VIP can be reused easily in an UVM

environment but also demonstrates different novel techniques to

completely transform the VIP into UVM using the VMM/UVM

interoperability kit. The underlying transformations which the

VMM/UVM interoperability package brings in is made totally

transparent to the end user, so that the VIP can be seamlessly

integrated in a UVM environment and used in a UVM context

without requiring any understanding of the VMM methodology used

to implement the underlying VIP. This paper covers in detail the

technical challenges presented by the differences in the two

methodologies. This includes the grouping of components, the

phasing methodology and the generation of exceptions, sequences

generation flow, using the factory infrastructure for augmenting

functionality or replacing components and mapping the different

callbacks infrastructure to each other.

The approach highlighted here is scalable to most VIPs. Some

additional work may be required in mapping some VIP specific

features to create counterparts of the transaction and configuration

classes on the UVM side. There is an emphasis on automating the

‘translate’ layer which helps in translating functionality and

capabilities from one methodology to the other. Finally, this paper

discusses how to use the same techniques to transform UVM VIPs to

VMM VIPs in order to ensure that the verification engineers have the

most efficient means of integrating VIPs in any methodology and use

it in the specific flavor they are comfortable in.

Categories and Subject Descriptors
Methodology – UVM, VMM, re-use philosophies for interoperable

verification components.

General Terms
Verification, Methodology, Interoperability

Keywords
PCIe, VIP, VMM, UVM, Layered Protocol, SystemVerilog

1. INTRODUCTION
It has become a common practice for verification engineers to adopt

advanced verification methodologies to create highly efficient

transaction-level, constrained-random verification environments

using SystemVerilog. These methodologies provide the framework

for developing re-usable verification components, sub-environments

and environments. There are multiple compelling solutions in this

space now with the Universal Verification Methodology (UVM)

being the accepted standard. Verification IP vendors who have

already made an investment in creating a VIP around a specific

methodology would necessarily want to cater to a bigger clientele by

being able to provide the same VIP in different flavors, i.e. by having

a mechanism to make it reusable across methodologies. Developing

complex VIPs from scratch can be a time consuming exercise and

often the new component is neither reliable nor mature enough to

ensure correctness. Hence, the ideal scenarios for these vendors

would be the ability to provide these new flavors of the VIP by just

spending a fraction of the time they would have otherwise taken to

develop it from scratch.

Each methodology provides a different set of guidelines and

Application Programming Interfaces (APIs) for the user to leverage

the SystemVerilog language to target various verification

requirements efficiently. Given that each methodology is different in

their own ways, verification engineers are seldom expected to master

all of them. Hence, while delivering an existing VIP in a new

methodology, the vendor has to ensure that the user need not

understand the methodology used to implement the existing VIP.

.

The VMM-UVM interoperability library includes a collection of

adapters and utilities that enable easy and flexible reuse of existing

IP in both UVM and VMM environments. While both UVM and

VMM are self-consistent and provide guidelines and technology to

ensure reusability, trying to use a VMM VIP in a UVM testbench (or

vice-versa) exposes some of the different philosophies they hold.

There are trade-offs in reusing an existing VIP block in a new

environment that is based on a different methodology. This paper

leverages and goes beyond Accellera’s interoperability ideology;

which is to enable the re-use of VMM VIP components in UVM (and

vice versa) and shows how you can package an industry proven VIP

to transform it wholly to assume a new methodology leaving no

traces of the base methodology actually used to implement it.. This

paper takes the example of the industry proven DesignWare PCIe

Gen2 VMM VIP and enumerates the steps that are required to

transform it into a UVM VIP. We also then deliberate on how the

reverse process can be achieved.

2. PCIe PROTOCOL OVERVIEW
The PCI Express protocol uses transaction level packets to

communicate information between components. Transactions are

formed in the Transaction and Data Link Layers and helps carry the

information from the transmitting component to the receiving

component. As the transmitted transactions flow through the other

layers, they are extended with additional information necessary to

handle transactions at those layers. At the receiving side, the reverse

process occurs and transactions get transformed from their Physical

Layer representation to the Data Link Layer representation and

finally (for Transaction Layer Packets) to the form that can be

processed by the Transaction Layer of the receiving device. Figure 1

shows the conceptual flow of transaction level packet information

through the layers. Though, a device design does not have to

implement a layered architecture as long as the functionality required

by the specification is supported, it is advisable for a VIP vendor to

provide all these layers, thus enabling the user to configure the

stimulus and response at all these layers.

Figure 1: Multi-Layered PCIe Protocol Overview

Figure 2: TLP Transaction Creation

The PCIe protocol brings in a lot of benefits from the previous

generation bus architectures and introduces an advanced set of

capabilities which include the following amongst others:

• Traffic Class and Virtual Channel Applications

• Flow Control Initialization /operation

• Error Checking mechanics/reporting

Message transactions

• PCIe Enum procedure

• Quality Of Service (QoS) features for differentiated

transmission performance

The above functionalities require the VIP vendor to provide the users

with the capability to configure the VIP in multiple modes, enabling

it to generate stimulus and exceptions to validate all the above

functionalities in a device. Also, the difficulty in verifying a PCIe

device arises from the inherent complexity of the protocol. Hence, it

is very important to ensure that the methodologies are adopted in the

most optimal manner to alleviate any bottlenecks to efficiently verify

the same.

3. PCIe VMM VIP ARCHITECTURE
Synopsys' Verification IP (VIP) for PCI Express® has been used

across multiple sites over many years and it provides a quick and

efficient way to verify system-on-chip (SoC) designs with a PCI

Express (PCIe) interface. The VIP for PCI Express enables

verification of PCI Express 3.0, 2.0 and 1.1 Endpoints, Switches, and

Root Complex devices at the 8b/10b, PIPE or Serial interface. It

provides the capability to generate and control transactions at each of

the TLP, DLLP and PHY layers.

The base Verification IP that we used in our example was a VMM

based PCIE VIP that facilitates constrainable random generation of

data while maintaining a flexible directed capability. It allows easy

integration into a verification environment.

Figure 3: PCIe Gen2 VMM VIP Architecture

3.1 VIP Usage and Configurability

The following features of the VMM VIP are required to be available

on the UVM side

Configuration: The VMM 1.0 based VIP has a configuration class

which is shared across all components. The typical flow is for the

class to be randomized at vmm_env::gen_cfg phase and then the

passed down to different components.

If a user needs to change the configuration properties in specific

tests, then it requires either of the two following mechanisms:

• Calling gen_cfg() and then modifying the values

• Setting constraints on a derived configuration class and

overriding the configuration class in the environment

Stimulus Generation: To stay consistent with the architecture of the

PCIe standard a layered approach has been adopted by the VMM

VIP with transaction classes for each of these layers. These are

typical VMM data descriptors with capabilities of constrained

random generation which will translate to protocol specified header

data. The generator classes provided with the VIP are VMM macro

based atomic and scenario generator which can be used to generate

random stimulus.

Transaction Level Interfaces: VMM channels are provided to the

user to interface to different VIP blocks. The layering here mean, the

channels at each of these layers providing the user with the flexibility

of accessing the data as it flows through the layers.

Extension Points: A rich set of callbacks are provided across the

different layers enabling the user to create implementations for

coverage, scoreboard etc.

Data Exceptions: The transaction level interfaces and extension

points can additionally be used for corrupting stimulus for negative

tests on the device being verified. A number of exception data

classes have been defined within the VIP library for this purpose.

Factory Overrides: The VIP provides the user with the benefit of

overriding behavior that will help meet the unpredictable needs of

different tests.

Event Synchronization: A number of VMM events are also provided

so that the users can use for the purpose of decision making to

synchronize their testbench with the transition of data or states within

the VIP. Most notifications are tied to the PCIe standard but there are

a few that are generic to the VMM methodology, like notifications

from the data class (STARTED & ENDED).

4. THE VMM UVM INTEROPERABILITY

LIBRARY
The Accellera Recommended Practices show how to integrate VIPs

and testbench components independently implemented using UVM

and VMM into a heterogeneous verification environment. It provides

solutions for the various challenges a verification architect faces

when integrating a foreign methodology VIP. It also contains a

chapter containing the application programming interfaces (APIs)

associated with Recommended Practices, thus specifying a library of

adapter components. The VCS installations and the VMMcentral.org

site has a slightly enhanced version of the same which documents

how VMM UVM interoperability can be achieved with the new

Transaction Level Interfaces like TLM2.0 and Implicit Phasing in

VMM1.2.

In a nutshell, this library addresses the following challenges the user

may experience when attempting to reuse a VIP written in a different

methodology [4]:

• Instantiating and building of the component within the

environment

• Coordinating different simulation phases

• Configuring components to operate properly in the desired

context

• Orchestrating and coordinating stimulus and other traffic

between components

• Passing data types between components

• Distributing notifications across the environment

• Issuing and controlling messages

4.1 Library Topologies
There are two reuse models of VIPs written in one methodology in

an environment written in another. One is the “interconnected”

model which enables taking the “foreign” VIP component and using

it the environment along with other “native” VIPs. In the

“interconnected” model, the user is aware that the VIP is

implemented in a different methodology. The other model is the

“encapsulated” model which requires wrapping the “foreign” VIP

component within a “native” wrapper, so the user is not aware when

he/she is using a VIP component originally implemented in a

different methodology. The guidelines specified in VIP

Recommended Practices supports the ‘interconnected model’

4.2 Applicability of the Interoperability Library

for Delivering VIPs
VIP vendors will undoubtedly be interested in delivering their

VMM-based VIPs to UVM customers. This is preferably done with

all UVM features and mechanism applied as is to the VIP so the user

is not required to know that the VIP is implemented using VMM.

From an ease-of-use perspective, VIP providers would prefer to use

the “encapsulated” model.

In DesignWare VIPs, the element of reuse are the individual

transactors, not higher-level components like vmm_subenv or top

level vmm_env which encapsulates different transactors.A key aspect

of the “encapsulated” model is to ensure that even the adapter

components from the UVM/VMM interoperability library are not

exposed to users, not even the verification architects or the

integrators. There were a few additional aspects which the

Recommended Practices didn’t address, like the use of callbacks on

the UVM side. Hence, a few other additional solutions had to be

incorporated on top of the existing APIs and Recommended

Practices to meet these requirements.

.

5. PCIe UVM VIP ENVIRONMENT
The section describes how we used the UVM/VMM interoperability

library to implement the UVM encapsulation wrapper for the VMM

VIP. We ensured that the environment complies with the UVM

methodology and enables the end user to leverage all the

functionality with regards to configurability, introspection,

generation, coordination etc that the VIP provides.

High Level Architecture:

A UVM agent encapsulates a sequencer, a driver and a monitor. We

took the existing core VMM VIP transactors, namely the PCIe TxRx/

driver and PCIe monitor, and encapsulated them inside a UVM

driver and monitor respectively. Thus, a UVM user is able to use

sequences for stimulus generation and to have a standard mechanism

to interact between the sequencer and the driver, according to the

UVM methodology principles.

.

The bulk of the VIP functionality is confined to the VMM

transactor/monitor and the UVM driver/monitor manage the relaying

and conversion of transactions from either side using the

Interoperability Kit as the bridge. Each of the layers of the PCIe

UVM driver provides uvm_sequence_item pull ports for hooking its

corresponding sequencer. In addition to these ports the driver also

provides analysis ports to broadcast transactions when in ‘receive’

mode. Similarly the UVM monitor wrapper provides for analysis

ports at each layer to broadcast transactions to be used for various

purposes like coverage collection and scoreboarding. The UVM

agent additionally has its set of own configurations as illustrated in

the figure below.

The DUT and the driver/monitor are connected through a virtual to

physical interface connection as discussed under section 5.3.4.2.

Figure 3: Multi-layered PCIe UVM Agent

5.1 The Interoperability Layer
The flow of data models in the PCIe UVM/VMM VIP using the

interoperability adapters is illustrated in figure 4. The input channels

of the VMM VIP on each of the TLP/DLLP/PHY layers

(tx_in_chan) are mapped to sequence item pull ports (tx_in_port) in

the UVM wrapper driver class using the tlm2channel adapters.

Similarly, the output channels of the VMM VIP (rx_out_chan) are

mapped to output analysis ports (rx_out_aport) using the

channel2tlm adapters. This enables a UVM user to connect the

tx_in_port on each of the layers to a type compatible sequencer, i.e. a

TLP tx_in_port is connected to a TLP sequencer through a port-

export connection. Similar mappings are made for the lower layers.

Thus a TLP sequence item on the requestor VIP starts from the TLP

sequencer, enters the UVM VIP through the tx_in_port gets

converted to a VMM transaction by the convertor class in the

interoperability layer and is posted on the tx_in_chan or the input

channel of the VMM VIP TLP layer. Once posted to the input

channel, the VMM VIP takes over and drives the transaction

appropriately at the DUT interface. Similarly, on the ‘completion’

side once the TLP transaction is received by the VMM VIP TLP, it is

posted on the rx_out_chan or the output channel, which then gets

converted to UVM sequence item by the interoperability layer and is

broadcasted onto the rx_out_aport analysis port for any subscriber to

feed on it.

Figure 4: Data Flow Through the Layered PCIe VIP

5.2 Data Modeling
The PCIe VIP comprises the following data models -

i. Configuration classes

ii. Transaction classes for each of the three layers

iii. Exception classes, to inject errors into each layers

The interoperability layer requires these data models in both UVM

and VMM and hence, the UVM transaction descriptor classes were

modeled with the same members as in the VMM data descriptor.

Given that the transaction methods in the original transactions in

VMM had some custom logic, the same was achieved in UVM using

the virtual methods: do_copy(), do_compare() etc. As required by the

interoperability kit, we created the ‘translation’ implementation

which does explicit data mapping between data fields of the

transaction descriptors across the two methodologies. This requires

creation of a separate converter class which defines a static “convert”

function which is implicitly sourced by a number of blocks to

transform transaction descriptors across the two base libraries.

However, this does not allow declarative methods such as constraints

and user-defined methods to be converted: functionality-equivalent

declarations need to exist in the destination type.

Figure 5: Transaction Mapping Between VMM and UVM
Transaction descriptors constitute the blood stream of a testbench

and it becomes critical to identify each descriptor for different

verification requirements. Thus we have devised a way to tie each

transaction descriptor on the UVM side to its counterpart on the

VMM side as shown in Figure 6.

Figure 6: Transaction Refernces Between Data Models

Within every UVM transaction descriptor we maintain a handle to its

VMM counterpart. This handle will be updated by the ‘convert’

function and this makes it possible to elevate features like

notifications from the underlying VMM layer to the UVM layer as

will be described later.

5.2.1 Automation
Given that there would be a plethora of data models in complex VIPs

encompassing transaction, configuration and exception classes, it is

important that some automation is brought in to generate the

counterparts of these classes in the ‘other’ methodology as well as

create the static convert classes. For each VMM class, this

automation was achieved as shown in figure 7.

Figure 7: Automation for Generating Data Models

5.3 Delivering Capabilities in UVM
This section describes how we helped deliver all the functionality

that the VMM VIP had to the UVM user.

5.3.1 VIP Phasing and Component

Synchronization
The phase synchronization provided by the Accellera interoperability

kit was not used here. Instead, the UVM wrappers for the driver and

monitor were responsible for explicitly phasing the underlying VMM

VIP as shown below in the figure. For example- the run phase of the

UVM wrapper VIP would make an explicit call to the start_xactor()

method of the underlying VMM VIP. This enabled fine control of the

underlying VMM VIP from the UVM side. This also ensured a

standard UVM architecture with no new interoperability classes used

for the top-level environment.

Figure 8: VIP Phasing

5.3.2 Notifications
The AVT library provided by Accellera provides a way to capture

the VMM data ENDED notification onto the UVM side. This facility

has been provided so that a UVM source node is aware of all

completions signaled by the VMM node. The base adapter can be

configured to do so and the adapter will post VMM transactions that

‘END’ onto a VMM response channel connected to it. This

technique involves the configuration of the TLM to Channel adapter

blocks to return all ENDED data descriptors through a response

VMM channel. Figure 9 illustrates the same.

Figure 9: Solution for Relaying ‘ENDED’ Notifications

The technique explained above has its own limitations. Firstly, it is

limited to just the VMM data ENDED notification. Secondly, the

UVM testbench is notified using a VMM data descriptor which is not

understood by a UVM block. To solve the latter we can connect the

ENDED response channel to another convert block that will make it

available at the UVM domain. However, the first limitation would

still hold and there is no generic way to solve this.

The above limitations pushed us to devising better ways to map all

the notifications defined within the VMM VIP that can be easily

used by a UVM testbench.

We employed UVM events for this purpose mapping each notify

event defined in VMM to a corresponding event in UVM. As

notifications in VMM are tied to each instance of a class it

necessitated associating every VMM object with its UVM

counterpart. For data objects this is being taken care of by the

convert layer which passes the handle of the transformed VMM data

object onto the source UVM object. With this kind of a mirror

association established between the VMM & UVM counterparts, the

“vmm_notify_callbacks::indicate()” was used to trigger the

corresponding event defined in UVM.

We had to deal with two categories of the following notifications:

1. Data notifications: These were pre-defined from the

VMM base library namely ENDED, STARTED and

EXECUTE.

2. Transactor notifications: These included a mix of pre-

defined as well as VIP specific notifications. The pre-

defined notifications such as, XACTOR_IDLE,

XACTOR_STARTED, XACTOR_STOPPED etc. Besides

these, there were a total of eight notification events defined

within the VIP driver and three in the monitor.

For data notifications, we used the begin_tr() and end_tr() functions

defined within the uvm_transaction class of the UVM base library.

These functions trigger internal events defined within the transaction

class namely “begin” and “end” respectively.

Figure 10: Notify Callback Triggering UVM Event

The convert layer takes care of creating a mirror like association

between VMM and UVM data descriptors as illustrated in the

following code snippet:

class dw_vip_pcie_tlp_transaction_ended_notify_callbacks

extends vmm_notify_callbacks;

dw_vip_pcie_tlp_transaction_uvm uvm_tr;

 function new(dw_vip_pcie_tlp_transaction_uvm uvm_tr);

 this.uvm_tr = uvm_tr;

 endfunction

 virtual function void indicated(vmm_data status);

 this.uvm_tr.end_tr();

 endfunction

endclass

Figure 11: Registering Callback with the VMM

Transaction

We used UVM event pools to access these events from the testbench.

By using the data pools, we can get the handle of the event that we

are interested in and use these event handles to wait for the event

triggers.

Figure 12: Event Usage within the UVM Testbench

For the driver and monitor events we had to define new UVM events

as these were all notifications specific to the IP. However, from a

usage perspective nothing changed and these were used exactly the

same way the events are used in UVM.

5.3.3 Stimulus Generation
The generation of stimulus and its lifecycle for the PCIe driver in

transmit mode can be illustrated by the following diagram.

Figure 13: Stimulus Generation

Referring to the numbered bullets in the figure above,

1. The Transaction Layer (TL) sequencer generates TL

packets and posts them onto the tx_in_port

2. The Interoperability layer converts the UVM sequence

item into a VMM transaction and posts it to the underlying

VMM channel

3. The VMM VIP gets the VMM transaction and starts

processing it and transmits it to the layer below which is

the Data Link Layer (DLL)

4. The TL packet flows down to the DLL

5. DLL processes the inbound TL packets and adds the DLL

header fields onto the same and transmits it to the PHY

layer

6. The PHY layer adds its header to the same and the packet

is now ready to be transmitted on the interface pins

7. Data is transmitted on the protocol pins to be sampled by

the device connected on the other side

The layered consistency was maintained with the UVM wrapper with

ports provided at the DL & PHY layers enabling VIP users to

stimulate the model from the lower layers as well. The same

interoperability mechanism was used at the lower layers to connect

the transaction interfaces across the two methodologies.

With this interoperability infrastructure in place, VIP could now be

interfaced with UVM sequencers. We then created a library of

sequence classes that was mapped from an existing library of VMM

scenarios.

Figure 14 shows the scenario registration from one of our VMM test

cases and Figure 15 shows the mapping to a UVM test sequence.

Figure 14: VMM Test Showing Scenario Registration

Figure 15: UVM Test Sequence Class

You can see how the procedural configuration sequence

“pre_condition_config()” defined in VMM is translated into a UVM

sequence. Also an additional constraint is set using sequence “kinds”

to ensure that the configuration sequence is driven only once. All the

UVM sequencer API’s now become available to the user with aid of

which one can develop a re-usable scenario library. The agent class

provides a provision to select one of three sequencers using a

configuration string. Also the objection mechanism to allow

hierarchical communication of status among components also

becomes available to the user.

5.3.4 Configurability and Overrides
The base VIP based on VMM 1.0 which was configurable only

during construction. With this new wrapper being added we brought

in the dynamic configurability using the factory infrastructure. The

UVM layer also brought in the global factory infrastructure allowing

component replacement using set_type_override_by_type()/

set_inst_override_by_type() methods.

5.3.4.1 UVM Configuration

class dw_vip_pcie_tlp_transaction_convert_uvm2vmm;

 static function dw_vip_pcie_tlp_transaction convert(

 dw_vip_pcie_tlp_transaction_uvm

 from,

 dw_vip_pcie_tlp_transaction

 to=null);

 dw_vip_pcie_tlp_transaction_ended_notify_callbacks

 tlp_ended_cb;

 ….

 from.vmm_tr = to;

 tlp_ended_cb = new(from);

 to.notify.append_callback(vmm_data::ENDED,

 tlp_ended_cb);

 endfunction

endclass

 tlp_event_pool = cfg_wr_xact.get_event_pool();

 tlp_ended_event = tlp_event_pool.get("end");

 tlp_ended_event.wait_trigger();

 UVM test sequence:

….

 // body() - Stimulus input

 virtual task body();

 uvm_test_done.raise_objection(this);

 // precond_cfg_seq run only once for configuring the

 // BAR registers of the DUT

 `uvm_do(precond_cfg_seq)

 mem_wr_seq = get_seq_kind("pcie_mem_wr_seq");

 mem_rd_seq = get_seq_kind("pcie_mem_rd_seq");

 rand_seq = get_seq_kind("pcie_rand_seq");

 for (int i=1; i<p_sequencer.count; i++) begin

 assert(randomize(seq_kind) with {seq_kind dist {

 mem_wr_seq := mem_wr_seq_wt;

 mem_rd_seq := mem_rd_seq_wt;

 rand_seq := rand_seq_wt;

 };

 });

 do_sequence_kind(seq_kind);

 end

 uvm_test_done.drop_objection(this);

VMM test:

….

// Procedural task that configures the BAR registers of the DUT

pre_condition_cfg();

 mem_wr_scenario = new();

 mem_rd_scenario = new();

 rand_scenario = new();

 // Registering the VMM scenarios with the generator.

 env.scenario_gen.scenario_set.push_back(mem_wr_scenario);

 env.scenario_gen.scenario_set.push_back(mem_rd_scenario);

 env.scenario_gen.scenario_set.push_back(rand_scenario);

 …

 env.run();

The configuration infrastructure is scoped in the build

UVM VIP.As the build phases in a

configurations to be set from within the build() phase of all its parent

components . This ensured flexibility of configuring the VIP

within the UVM test. Once the configurations

to the UVM driver/monitor wrapper

mechanism, the underlying VMM VIP receive

constructor. The connection to the physical interface is also achieved

in a similar way with the virtual interface wrapped in a container

class. All that the user has to do is to

and set the same from the test case.

5.3.4.2 Factories
The lightweight UVM wrapper brought in the UVM component

replacement mechanism using the UVM global factory. This c

with a limitation that declarative methods and constraints

show up on the VMM side. However this was

as factories were mainly being used for sequence generation for

purpose of adding test constraints. As

to the UVM scope our requirements were completely satisfied.

Figure 16: PCIe UVM Callbacks

5.3.5 Extension Points (Callbacks)
Figure 17 explains how callbacks infrastructure of the VMM VIP

been efficiently deployed to provide callbacks infrastructure on the

UVM side without the user being aware of the VMM callbacks

underneath. The UVM VIP provides a façade class which is the

mapping of VIP VMM callback façade class

UVM façade class and implement his custom functionality

subsequently append them to the UVM

VIP is always appended with the VMM

implementation of the VMM callback tasks converts the VMM

transaction handle made available to the

model using the ‘convert’ function. It

callback tasks, which provides the hook for the UVM

the UVM sequence item. Finally the VMM

the UVM sequence item back into a VMM transaction

VIP. This causes any changes made on the

UVM callback to be propagated to the VMM transaction on the

VMM VIP.

Figure 17: PCIe UVM Callbacks

From the figure above, we can note the step

1. UVM façade class mapped from the VMM VIP façade

class

2. User UVM callbacks class, extended from the UVM

façade class, implements the callback tasks

3. The UVM callback task, which gets triggered by the VMM

callback.

configuration infrastructure is scoped in the build() phase of the

a top-down manner, it allowed

from within the build() phase of all its parent

flexibility of configuring the VIP from

Once the configurations were made available

 via set_config_*/get_config_*

he underlying VMM VIP received the same through its

The connection to the physical interface is also achieved

in a similar way with the virtual interface wrapped in a container

to initialize the virtual interface

The lightweight UVM wrapper brought in the UVM component

replacement mechanism using the UVM global factory. This came

that declarative methods and constraints wouldn’t

show up on the VMM side. However this was acceptable to our users

factories were mainly being used for sequence generation for the

As the randomization was limited

to the UVM scope our requirements were completely satisfied.

allbacks Implementation

Extension Points (Callbacks)
callbacks infrastructure of the VMM VIP has

eployed to provide callbacks infrastructure on the

UVM side without the user being aware of the VMM callbacks

UVM VIP provides a façade class which is the

callback façade class. The user can extend the

his custom functionality and then

UVM VIP. The underlying VMM

ppended with the VMM callbacks. The

implementation of the VMM callback tasks converts the VMM

transaction handle made available to the callbacks to a UVM data

. It then calls the equivalent UVM

ch provides the hook for the UVM user to process

sequence item. Finally the VMM callback task converts

VMM transaction for the VMM

. This causes any changes made on the data descriptor on the

UVM callback to be propagated to the VMM transaction on the

allbacks Implementation

the steps involved:

UVM façade class mapped from the VMM VIP façade

User UVM callbacks class, extended from the UVM

façade class, implements the callback tasks

The UVM callback task, which gets triggered by the VMM

4.

5.

The figure also shows

namely the TLP, DLLP and PHY. It also tries

data through the callbacks while the VIP tries to Transmit or receive.

5.3.6 Message
The VMM/UVM

the VIP messages come though the UVM report server. For specific

scenarios w

modification of messages, the UVM log catcher was used to catch

the messages and then to make appropriate changes in formatting or

verbosity.

5.3.7 Scoreboard
We demonstrated th

a number of our legacy test

VMM DataStream

comparator by simply connecting the exports of the comparator with

the analysis port

integration was as simple as just connecting the correct analysis

export of the comparator to the analysis port of the appropriate

monitor and we had a very simple in

We understood that

from a unified methodology perspective. At the same time we were

losing out on the advanced features provided by the VMM

DataStream

“expect with losses”

concern we even demonstrated using the VMM

Scoreboard within our new UVM

connecting the analysis exports provided within the VMM

scoreboard to the analysis ports of the UVM VIP. F

additional

transaction descriptors being posted by the UVM monitors to VMM

data descriptors to be inserted and compared within the VMM

scoreboard. This is illustrated in the

Figure

With RAL be

similar Register Access APIs can now be used for both the flavors of

VIP. Minimal cha

being replaced with a

VMM RAL checker test

5.3.9 Limitations
Accellera’s VMM

to architect

UVM VI

very close to our objective

that we had to inevitably

As the

configura

added in the derived classes of the same, do not reflect on the VMM

core of the VIP. In case a derived class is being used on the UVM

side, it gets created, randomized but

the VMM VIP core.

 The interoperability layer to convert VMM transaction to

UVM sequence item and vice versa.

 VMM VIP callback tasks, appended to the VMM VIP,

once it is created.(always on)

The figure also shows the callbacks on various layers of

namely the TLP, DLLP and PHY. It also tries to depict the flow of

data through the callbacks while the VIP tries to Transmit or receive.

Message Service
he VMM/UVM interoperability mechanism was used to ensure all

VIP messages come though the UVM report server. For specific

scenarios where more control was required with respect to the

modification of messages, the UVM log catcher was used to catch

the messages and then to make appropriate changes in formatting or

verbosity.

Scoreboarding and Register Validation
We demonstrated the use of the UVM comparator with UVM

a number of our legacy test cases. Previously we had employed the

DataStream Scoreboard which was replaced with the UVM

comparator by simply connecting the exports of the comparator with

the analysis ports of the newly created UVM monitors. The

integration was as simple as just connecting the correct analysis

export of the comparator to the analysis port of the appropriate

monitor and we had a very simple in-order comparator.

understood that using the UVM comparator was appropriate

from a unified methodology perspective. At the same time we were

losing out on the advanced features provided by the VMM

DataStream Scoreboard like the “out of order” compare,

expect with losses”, the reporting facility etcetera. To appease that

concern we even demonstrated using the VMM DataStream

Scoreboard within our new UVM testbench. This was achieved by

connecting the analysis exports provided within the VMM

scoreboard to the analysis ports of the UVM VIP. For doing this an

additional ‘convert’ layer was needed to convert the UVM

transaction descriptors being posted by the UVM monitors to VMM

data descriptors to be inserted and compared within the VMM

scoreboard. This is illustrated in the following figure:

Figure 18: DS Scoreboard/UVM Comparator Integration

With RAL becoming a part of UVM with the UVM 1.0 release,

similar Register Access APIs can now be used for both the flavors of

VIP. Minimal changes were needed here with the old RAL

replaced with a UVM sequence. This allowed us to port all our

VMM RAL checker test cases with relative ease.

Limitations

Accellera’s VMM-UVM interoperability kit was appropriately

architect our wrapper VIP, which very closely resemble

VIP. The development time was accelerated and we c

very close to our objective, however, there were a few limitations

that we had to inevitably deal.

the ‘convert’ layer is static with the base transactions,

configurations and the exceptions of the VIP, any new member

added in the derived classes of the same, do not reflect on the VMM

core of the VIP. In case a derived class is being used on the UVM

it gets created, randomized but then posted as the base type to

the VMM VIP core.

nvert VMM transaction to

VMM VIP callback tasks, appended to the VMM VIP,

callbacks on various layers of PCIe VIP,

to depict the flow of

data through the callbacks while the VIP tries to Transmit or receive.

nteroperability mechanism was used to ensure all

VIP messages come though the UVM report server. For specific

here more control was required with respect to the

modification of messages, the UVM log catcher was used to catch

the messages and then to make appropriate changes in formatting or

ing and Register Validation
UVM VIP in

cases. Previously we had employed the

Scoreboard which was replaced with the UVM

comparator by simply connecting the exports of the comparator with

s of the newly created UVM monitors. The

integration was as simple as just connecting the correct analysis

export of the comparator to the analysis port of the appropriate

appropriate

from a unified methodology perspective. At the same time we were

losing out on the advanced features provided by the VMM

” compare, with

appease that

DataStream

. This was achieved by

connecting the analysis exports provided within the VMM

or doing this an

layer was needed to convert the UVM

transaction descriptors being posted by the UVM monitors to VMM

data descriptors to be inserted and compared within the VMM

ntegration

1.0 release,

similar Register Access APIs can now be used for both the flavors of

RAL translator

This allowed us to port all our

appropriately used

mbles a native

s accelerated and we came

re a few limitations

with the base transactions,

tions and the exceptions of the VIP, any new member

added in the derived classes of the same, do not reflect on the VMM

core of the VIP. In case a derived class is being used on the UVM

then posted as the base type to

The VMM VIP core also provides for a mechanism to inject errors

by overriding a ‘factory’ object through its constructor. The

mechanism to inject errors or create exceptions in such a scenario

from the UVM side would be to resolve all the dependencies and

randomizations on the UVM side itself and then pass it as the ‘base’

type to the VMM core again through the ‘convert’ layer. However,

the VMM VIP will always have the handle of the base transaction

type, even if a derived class was being used on the UVM side for the

transaction.

With the given architecture, an additional layer is created and the

data models have to be passed to and fro between the UVM and

VMM layers. This can potentially cause degradation in simulation

performance compared to a native VIP. The VMM VIP once created

or built always has callbacks on all the three layers appended to it

during the simulation thus impacting simulation performance

adversely. We have now created a mechanism to turn them on only

when it is required by a runtime configuration option.

6. REVERSE ENGINEERING THE FLOW:

Delivering a VMM Wrapper over a UVM VIP
Most of the techniques described above would hold true while

creating a VMM flavor for an existing UVM VIP. In some cases, it

will be easier. For example, unlike the specific DW VMM VIP,

UVM guidelines profess the delivery of a VIP as an UVM agent

which encapsulates the individual components. Thus the phase

synchronization mechanism in the VMM on TOP topology can

easily be used to phase a UVM VIP in a VMM 1.2 timeline as shown

in Figure 19. However, for implicit phasing, there is some additional

rework that needs to be done on top of the Accellera’s

interoperability layer and the modified library and is available for

download at VMMCentral.org.

Figure 19: Phase Synchronization Between a VMM on

Top Environment and a UVM VIP with Implcit Phasing

The following table summarizes the additional effort if any that

would be required for creating a VMM based flavor on top of a

UVM VIP.

Table 1: VMM test showing scenario registration

Feature What needs to be done?

Sequences Similar UVM to VMM convert mechanism to

handle data modifications.

Phasing Accellera’s phase synchronization with

VMM on top topology.

Factories Consistent with our solution with the

limitation of declarative methods and

constraints not being added.

Notifications Any UVM events can be mapped to

notifications

Callbacks/Extension

points

Our existing solution can be used here and

can be mapped accordingly

Message Service Accellera’s interoperability mechanism with

VMM on top topology.

7. RESULTS
It took about two man months to complete the whole activity which

included, validating our new VIP’s by porting our legacy test cases

and examples to UVM. This was insignificant compared to the

development time of a complex VIP like PCIE which would

typically span over a period of four to five man years. Most

importantly, we are assured of the quality as our base is an industry

proven VIP that has evolved over the years.

The developed wrapper files had about 30,000 lines of code in total.

A good percentage of these were generated using scripts which

meant even lesser number lines of user written code. This reused the

underlying infrastructure of the VMM VIP. Vendors delivering

multiple VIP typically create a base infrastructure so that the use

model and architecture is consistent across different IPs. Taking this

base infrastructure along with the VIP specific code would typically

run into hundreds of thousands of lines of code if not millions. Thus,

not only did this exercise help us in meeting our requirements of

delivering and integrating this VIP, it also helped us in meeting our

goals much more efficiently when compared to the option of creating

a VIP from scratch.

8. CONCLUSION
Given that there are multiple accepted and evolving methodologies,

when it comes to SystemVerilog testbenches, vendors creating

Verification IP’s based on a specific methodology should have a

mechanism to provide the VIPs functionality to users conversant

with a different methodology. Also, vendors cannot possibly make

the same big investments for multiple methodologies.

The ‘Verification Intellectual Property (VIP) Recommended

Practices” from Accellera and the associated base classes go a long

way to make VIPs interoperable. The techniques documented in this

paper are a result of our efforts to meet a requirement to provide a

UVM VIP to completely match the capabilities of our proven VMM

based VIP. We managed to achieve this infew weeks and also

demonstrated the VIP usage in its new avatar. We leveraged the

same base classes that is provided in the interoperability kit and

enhanced them with additional capabilities to meet out requirements

for having a proven VIP ready in UVM in quick time. While vendors

as well as developers of block-level testbenches can use these

techniques to make their VIPs interoperable, they can also

understand the requirements for VIPs in either methodology through

the various challenges and requirements demonstrated in this paper.

The guidelines will hold true for creating a new VIP from scratch.

For delivering multi-methodology environments, they can create

their own standard base layer that can be underpinned to make the

VIP being leveraged by both VMM and UVM users. This brings an

added advantage of layering the architecture of the IP making it easy

to maintain. Moreover the vendor specific standard can be used

across multiple VIP titles maintaining a consistent architecture.

10. REFERENCES
[1] UVM User Guide

[2] Verification Intellectual Property (VIP) Recommended Practices

(http://www.accellera.org/activities/vip/VIP_1.0.pdf).
[3] DesignWare PCIE VIP User Guide

[4] Mindshare Inc., Ravi Budruk, Don Anderson,Tom Shanley,PCIe

PCI Express System Architecture

[5] VMM User Guide

