
  1 

From Spec to Verification Closure: a case study of applying UVM-MS for first 
pass success to a complex Mixed-Signal SoC design 

  
Neyaz Khan* 

Maxim Integrated Products 
14460 Maxim Drive 
Dallas, TX, 75244 

neyaz.khan@maxim-ic.com 
 

Yaron Kashai 
Cadence Design Systems 

2655 Seely Avenue 
San Jose, CA, 94087 
yaron@cadence.com

ABSTRACT	
  	
  
Why Metrics Driven Verification for Analog? 
 
In their 2006 paper titled “Verification of Complex Analog 
Integrated Circuits” Kundert et al  [1] write: Functional complexity 
in analog, mixed-signal, and RF (A/RF) designs is increasing 
dramatically. Today’s simple A/ RF functional block such as an RF 
receiver or power management unit can have hundreds to thousands 
of control bits. A/RF designs implement many modes of operation for 
different standards, power saving modes, and calibration. 
Increasingly, catastrophic failures in chips are due to functional 
bugs, and not due to missed performance specifications. 
Functionally verifying A/ RF designs is a daunting task requiring a 
rigorous and systematic verification methodology. As occurred in 
digital design, analog verification is becoming a critical task that is 
distinct from design.1 
 
Today, 5 years later, the challenges of analog verification have 
increased even further. Analog IP development is expensive, driving 
the reuse of IP in several SoCs. Each new integration brings about a 
new verification challenge because of configuration and connectivity 
changes. The verification of an analog block in the context of an SoC 
is tremendously difficult and time consuming. This highlights the 
need for thoroughly verified analog IP, as well as strong verification 
capabilities of the analog module in the SoC verification context. 
 
Common methods of SoC level analog verification include black-box 
verification of the analog portion and the capture-and-reply 
approach. The black-box approach involves integrating a highly 
abstracted model of the analog functionality, often just an interface 
with a loop-back for the digital signals. This prevents simulation 
speed degradation, but provides very little in terms of verification - it 
is often impossible to tell if the analog portion functions correctly, or 
whether it is exercised to a desired degree. The capture- and-replay 
approach extracts the boundary of the analog portion from the SoC 
simulation at some specific times (after initial configuration for 
example). The waveform is then converted and replayed as input to 
an AMS simulation of the analog circuit. This method is better at 
exposing functional errors, but it is limited by the static nature of the 
analog-digital boundary captured. Key processes such as calibration 
require reactive feedback between the digital and analog portions, 
which is impossible to achieve using this method. Providing the 
exact timing and complex handshakes that may be required by the 
analog portion makes the capture process complicated and error 
prone. Furthermore, the process is manual, lacking automated 
checking, severally limiting the number of cases that can be tested. 
 
The deficiencies described increase the risk involved in designing 

                                                
1* Formerly of Cadence Design Systems 

AMS SoCs. Analog circuits may not be hooked up correctly, may 
not function correctly and may not be driven as expected, while 
current verification methods may fail to detect the problems. Analog 
designs are often classified as “small A big D” or “small D big A” 
depending on the size of the analog content. Common wisdom 
suggests focusing on the “big” portion as the primary verification 
goal.  
 
In contrast, it is claimed that the critical aspect for verification is the 
level of interaction between the digital and analog portions. If the 
interaction is significant and complex, as it tends to be in modern 
circuits, the verification methodology must address the design as a 
whole, applying to both analog and digital portions with the same 
level of automation and rigor. 
 
Digital verification engineering emerged in the last 20 years as an 
indispensable part of chip design. As complexities grow and 
productivity pressures rise, the expansion of verification engineering 
into the analog space in the short term is inevitable. The extended 
methodology is named UVM-MS. Methodology extensions include 
verification planning for analog blocks, analog signal generation, 
checking and assertion techniques for analog properties and 
analyzing analog functional coverage [7]. The methodology features 
abstract, high level modeling of analog circuits using real number 
modeling (RNM). Automation and management aspects include 
batch execution and regression environments, as well as progress 
tracking with respect to the verification plan. 
 
This paper will provide comprehensive details of how UVM-MS is 
applied to a real life example – in this case a Noise Cancelling 
Receiver (NCR) design as part of a MS-SoC. 
 
Highlights: 

o Creation of an executable verification plan (vPlan) for 
analog DUT 

o Real Number Model (wreal) for the NCR 
o UVM-MS based verification components that contains: 

• Digital MS based Analog signal generation using 
a wire UVC 

• Analog monitors that measure the envelope of a 
signal – with built in coverage 

• Driving and monitoring configurations 
controlled by analog sequences with 
programmable resolution 

• Functional Coverage collection on analog 
parameters in design 

• Mixed Signal assertion based checks that span 
between digital & analog 

o Closing the loop – backannotating analog coverage & 
checks onto the vPlan for verification closure. 



  2 

Keywords	
  	
  
Mix-signal Functional Design Verification, Metric Driven 
Verification (MDV), Universal Verification Methodology (UVM). 
Analog Modeling, UVM-MS, MS-SoC 
 

1. INTRODUCTION  
The UVM methodology has succeeded in tackling the hardest 
verification challenges in digital design. It is a metric-driven 
approach using coverage directed random stimulus generation, 
supporting multiple verification languages. UVM promotes module-
to-chip reuse and project-to-project reuse as means of maximizing 
development efficiency. It is the methodology of choice to be 
extended for supporting analog verification. The extended 
methodology is named Universal Verification Methodology–
Mixed-Signal (UVM-MS) [7]. Methodology extensions include 
verification planning for analog blocks, analog signal generation, 
checking and assertion techniques for analog properties and 
analyzing analog functional coverage. The methodology features 
abstract, high-level modeling of analog circuits using real number 
modeling (RNM). Automation and management aspects include 
batch execution and regression environments, as well as progress 
tracking with respect to the verification plan. 
 
Figure 1 depicts a high-level view of the methodology, spanning 
both IP and SoC-level verification. At the IP level, a verification plan 
is created, the analog circuit is modeled, and a test environment is 
put together. For best verification performance, the analog circuit 
should be modeled as an abstract RNM, though the methodology can 
also apply to designs modeled as AMS and/or SPICE. The flow of 
information is represented by the solid, angular arrows. The test plan, 
models and verification artifacts are reused at the SoC level, as 
indicated by the dashed, curved arrows. 

 
Figure 1:  Applying UVM-MS at the IP and SoC Level 

Several teams are expected to collaborate in verifying mixed signal 
designs. The analog architect and a team of analog designers are in 
charge of finalizing the specification, creating the design, and 
verifying its electrical properties. IP-level verification engineers will 
implement a test environment and carry out metric-driven 
verification of the IP. The system-level integrator will oversee the 
connection of the IP in the SoC. SoC verification engineers are in 
charge of integrating the IP-level test environment into the SoC level 
and execution of the SoC-level testing. This separation of roles and 

responsibilities highlights the different expertise required, in terms of 
domain knowledge, tools, languages and methods. 
 
The application of UVM-MS starts at the analog IP or module level 
to ensure correctness and robustness. This is done in parallel to the 
development of the analog circuit, and augments the verification 
done by the analog designer using SPICE-level analyses. The analog 
designers’ work is mostly interactive and manual, and augmenting it 
with a metric-driven regression environment greatly improves 
quality and reduces risk, especially in view of rapid spec and design 
changes. Methodology and design tools evolution will enable the 
introduction of UVM-MS concepts into the analog designers’ work 
processes, leveraging the interactive work as way of authoring 
checks and coverage. 
 
The IP verification team with the help of the analog design team puts 
together a verification plan. The plan has to outline the properties to 
be verified, the testing scenarios and coverage metrics that would 
ensure functional correctness. Subsequently, a UVM-MS verification 
environment is authored by the verification team. The verification 
environment is retarget-able to either the design netlist or an 
abstracted AMS or Real Number Model (RNM). If abstract models 
are used, a batch mechanism to maintain model validity with respect 
to the netlist is included. The creation of a metric-driven verification 
environment at the IP level is done in addition to the traditional 
analog design flow, and is not intended to replace any portion of it. 
This additional investment is required to meet quality and risk 
profiles given current design complexity, in particular: 
• Verifying functionality and performance under all possible digital 
configurations, or a statistically meaningful portion thereof, if the 
number of combinations is too large. 
• Verifying dynamic control scenarios, like calibration for example, 
where digital controls are tied into a converging feedback loop. 
• Verifying that control transitions, such as power mode and test 
mode switching, do not disrupt analog functionality. Here too, the 
sheer number of possible combinations typically requires randomly 
generated scenarios. 
 
The large number of tests required to address the concerns listed 
above necessitates a metric-driven approach, featuring random 
generation of stimulus. Directed testing cannot address these needs 
effectively. This IP-level process is depicted in Figure 2. 

 
Figure 2: Verification Flow at the IP Level 

At the SoC level, the UVM-MS test plan is pulled into the SoC 
verification plan as a chapter of the verification plan. The verified 
abstract model of the IP is integrated in the SoC verification 
environment, enabling meaningful verification at reasonable 
simulation speeds. Components of the IP-level verification 



  3 

environment are reused, for the most part, minimizing the investment 
for creating the SoC verification environment and boosting 
confidence in its correctness. The reuse of verification artifacts 
during integration is depicted in Figure 3 

 
Figure 3: Verification at the SoC Level Reusing IP Verification 

Elements 

The resulting SoC verification environment is highly capable, 
performing meaningful and thorough verification of analog functions 
and digital/analog interaction. This is achieved in spite of the 
knowledge gap that exists between the analog IP designer and the 
SoC integrator, thanks to the knowledge captured in the IP-level 
verification artifacts. 
 
 

2.	
  Applying	
  MDV	
  to	
  Analog	
  

2.1 Guiding Principles of MDV for Analog 
Metric Driven Verification is a broadly used concept for verifying 
large digital designs. Modern designs have huge state spaces hence it 
is impossible to simulate all their possible conditions, or even a small 
fraction of those. MDV is guided by the functional specification, 
rather than the design implementation. The functional specification is 
parsed down to a hierarchy of features in a verification plan, where 
each feature can be shown to meet the specification by some 
measurement. These measurements are called functional coverage.  
The resulting functional coverage space is many orders of magnitude 
smaller than the design state space – making it a practical metric. A 
test bench is created to exercise the design, check its functionality 
and measure coverage. Layers of automation are added to run large 
volumes of simulations with random perturbations. The collected 
coverage is aggregated and compared with the verification plan. 
Areas lacking in coverage are targeted to get an over-all balanced 
coverage.  
 
Some popular verification methodologies are based on the MDV 
concept (OVM [4], and more recently UVM [6]). These 
methodologies teach a specific style that is well supported by tools 
and libraries. Experience with those has demonstrated the 
effectiveness of the metric driven approach for some of the most 
complex digital chips produced. The effectiveness of MDV in 
tackling the state space growth problem motivated us to explore a 
possible adaptation to analog and mix-signal designs that exhibit 
similar growth. 
 

2.2 Adapting MDV to Analog Design  
Conceptually, applying MDV to analog is straight forward [8]: one 
should enumerate the functional features of the design, associate a 
measurement with each feature and simulate the design to collect 
sufficient coverage, indicating all functions are implemented 
correctly. Unfortunately there are a number of practical obstacles 
when analog designs are concerned. Some of the most prominent 
ones are discussed below. 
 
Analog verification planning and coverage collection – analog 
features are expressed in a terminology that is richer and broader 
than typical digital features. This implies that capturing analog 
features in verification planning tools requires some extensions. 
Furthermore, the measurement of analog functional coverage is more 
involved. Rather than measuring a logic value, analog properties may 
require the measurement of amplitude, gain, frequency, phase or DC 
bias among other possibilities. 
 
Batch execution – a fundamental assumption for MDV is the ability 
to run a large number of simulations in an automated manner. The 
volume of simulations requires that stimulus is automatically 
generated and the test bench is self-checking. The approach is 
inherently incompatible with interactive simulation and manual 
inspection of results. In addition, simulations must be high 
performance enough to allow for a large number of simulations to be 
executed. This brings about the following needs. 
 
High performance models – accurate analog models, such as a 
Spice netlist, are very slow to simulate when compared to digital 
event-driven simulations. For the sake of functional verification, the 
accuracy of the model needs to be traded for higher performance. 
The use of more abstract models such as AMS or real number 
models (RNM) enables the large volume of simulations required. 
 
Constrained random stimulus – input stimulus need to be 
generated such that simulations explore different behaviors and cover 
the functional space. For analog designs this means randomized 
control over both digital and analog inputs to the design. The 
problem of driving analog input stimulus that is effectively 
controlled by constraints and sequences is a major requirement. 
 
Self-checking – determining that an analog design works as planned 
is more involved and somewhat fuzzy when compared to digital 
design. Nevertheless, automatic checking must be implemented. 
Checking can be in the form of embedded assertions, as well as more 
elaborate structures such as scoreboards.  
 
We recognize that functional verification in the suggested vain does 
little to offset the verification work done by the analog team. The 
analog team will continue to be concerned with performance metrics 
specific to the design at hand. Looking at gain, power consumption, 
frequency response and similar features while running Spice level 
simulations is at the core of the analog design work. Performing 
MDV style functional verification represents extra investment.  
 
For a mix-signal verification methodology to be acceptable, all of the 
challenges above must be addressed in a cost-effective manner using 
the newly developed methodology UVM-MS Universal Verification 
Methodology – Mixed-Signal [7]. The rest of the paper is based on 
applying UVM-MS to the verification of a real-life design: a Noise 
Cancelling Receiver (NCR). 
 
 
 
 



  4 

3.3 Planning for Analog Verification 
Metric-driven verification relies on a verification plan to be used as a 
basis. The plan lists all the features that need to be verified, what to 
check for and how to measure coverage. A typical plan describes test 
scenarios that would exercise each feature and important feature 
combinations. 
 
Verification planning was done using the Cadence Enterprise Planner 
(EP) tool. Using EP, it is possible to maintain a relation between an 
annotated spec, a section in the plan and implementation code in the 
testbench. Using EP flow it was possible to work with partial specs, 
which is very useful in a world of ever changing requirements and 
revisions of code. EP provided an automated mechanism for 
maintaining the three representations in sync. 

3.3.1	
  Including	
  Analog	
  Properties	
  
Verifying analog features often require measuring continuous values, 
such as voltage or current at a certain node, continuous (real) values 
can be sampled, but in order for them to make sense as coverage they 
need to be quantized into bins. For example, a supply voltage may be 
classified as nominal, low, high, or off—creating a four element 
coverage vector. More complex continuous properties, such as gain 
and signal-to-noise ratio can be computed based on several direct 
measurements, for example the signal amplitude at various locations 
in the data path. Such computed quantities need to be similarly 
quantized when captured as coverage. 
 
Deciding what quantities to measure, either directly or indirectly, and 
how to quantize them needs to be part of the verification plan. When 
considering analog circuits, the plan should include all properties of 
concern, including those that are not directly measured by a 
functional simulation (or transient analysis). For example, the 
circuit’s frequency response may be a property that requires 
verification. Rough estimates for some such properties can be 
computed based on a large number of functional simulations. Others 
may require SPICE-level analysis that could be automated as part of 
a regression system.  
 

 
Figure 4: Enterprise Planner Used to Capture Analog Property 

Note above: Analog property captured: attenuation of signal past 
corner frequency. A programmable filters coverage space is the cross 
of the programming values and the frequency range. 
 

Special care should be taken to capture interactions between analog 
functions and digital control. This includes control registers set 
during configuration and calibration, various operation modes, 
switching power modes, and so on. In Figure 4 above, the low-
pass filter is programmable. Verification obligations include 
verifying the frequency response (best done using AC analysis, but 
can also be checked using transient analysis with a number of 
frequencies). Another aspect is the delay between the control register 
setting and the filter response. This is harder to check, as one must 
not assume the response time is independent of the control value–that 
may be implementation dependent. Hence a test scenario including 
random control settings at random intervals, along with frequency 
variations is required. Collecting coverage of the parameters and 
checking the delay time meets the spec ensures correct functionality. 
 
The contributors to an analog test plan should include the architect 
and analog design team. Information about corners and sweep 
settings (values included and excluded from sweeps) should be 
captured and documented in the plan even though they are not 
directly applicable in a digital setting. Capturing such information in 
the plan ensures that projects reusing the IP for integration and 
revisions have access to this information. 
 

 
Figure 5: vPlan Implementation including Analog 

3.3.2	
  Verification	
  Plan	
  Structured	
  for	
  Reuse	
  
The verification plan is used to guide the verification effort at the IP 
and SoC levels. It needs to be as complete as possible and has to be 
revised each time the spec, requirements, or implementation change. 
To facilitate that, the plan should be structured so that the mapping to 
specification sections is natural. The plan should be detailed enough 
such that each plan item (check, coverage, or scenario) maps directly 
to a single piece of code in the test environment. This often requires 
a revision once the testbench is implemented. An easy way to 
achieve that is reading into EP a coverage file and mapping each 
coverage point, check and test case to a section in the plan. 
 
Different integration targets will probably use the IP in different 
ways, often disabling features or locking them into a particular mode. 
Key values that are likely to change between projects could be 
defined as parameters, using the parameterized plan capability. A 
well structured plan will help identify which coverage points, 
checkers, and scenarios can be excluded and how to account for that 
when computing the overall coverage. EP provides convenient 
features for excluding sections from the overall coverage score as 
well as mapping logical scopes to physical scopes. 



  5 

4.0	
  Constructing	
  a	
  UVM-­‐MS	
  Verification	
  
Environment	
  
Creating a verification environment is a programming and modeling 
task carried out by a verification engineer, with reference to the 
verification plan. The environment needs to be capable of driving the 
circuit in all modes, conditions, and scenarios specified in the plan, 
check all the properties specified, and measure the requested 
coverage. The investment in a sophisticated verification environment 
is mitigated in two ways: leveraging pre-exiting universal 
verification components (UVCs), and re-using components of the 
verification environment during SoC integration and possibly 
project-to-project.  
 
For a very detailed discussion on this topic, refer to [7]. A brief 
description of the main components and careabouts for creating an 
UVM-MS based verification environment for the NCR example is 
discussed in section 5. 

5.	
  Application	
  OF	
  UVM-­‐MS	
  to	
  Real-­‐Life	
  
Design:	
  
 
Noise Cancelling Receiver (NCR) - This is a made-
up specification for the purpose of illustration only 
 

5.1 Block Architecture 
The Noise Cancelling Receiver (NCR) is part of a challenge-
response system illustrated in Figure 6. The system receives 
transmissions through a directional antenna. The received signal is 
amplified and demodulated, and is expected to carry a sequence of 
codes. The codes are matched up with a code-table inside the 
decoder, and if authenticated, the responder is invoked to transmit a 
response. 

 
Figure 6: Receiver System 

 
The system ignores out-of-lobe transmissions and off-axis jamming 
noise. Side lobe signal is passed on and subtracted from the main 
lobe for that purpose. The system features a test mode in which side 
lobe input is ignored. 
 
The main NCR components are depicted in Figure 7: 

 
Figure 7: NCR block architecture 

 
The NCR block includes the following components: 
Main channel section – a digitally controlled amplifier for the main 
channel 
Side channel section – a digitally controlled amplifier for the side 
channel 
Mixer section – mixes the main channel with either the side channel 
or a local oscillator  
Frequency converter section – transforms the modulation 
frequency into digital symbols at the block output 

5.2 Operation 
The NCR block’s input signal ranges between 0.5-1.5 GHz. At the 
block input, the signal is about 2Vp-p. Each input channel contains a 
digitally controlled amplifier with a gain of 0.6-2.85 (-4.5dB to 9dB). 
Gain accuracy needs to be within 5% of the programmed gain. 

 5.2.1 Modulation detection 
The signal may be amplitude modulated by frequencies in the 300-
400KHz range that represent digital code symbols. The modulation 
amplitude is about 0.2Vp-p. Table 1 lists the codes used: 
 
Code Name Frequency (KHz) NCR Output (6 bits) 
SYM_TOP < 270.0 [0x3E-0x3F] 
SYM_A 300.0 [0x33-0x35] 
SYM_B 320.0 [0x30-0x32] 
SYM_C 340.0 [0x2D-0x2F] 
SYM_D 360.0 [0x2B-0x2C] 
SYM_E 380.0 [0x29-0x2A] 
SYM_F 400.0 [0x26-0x28] 

Table 1: Symbol encoding 
 
Code symbols are separated by SYM_TOP. For example to decode the 
sequence {A, B, A} the transmission should carry the following 
sequence: {SYM_TOP, SYM_A, SYM_TOP, SYM_B, SYM_TOP, SYM_A}. 
The NCR block must correctly identify code symbols within a 
maximum of 6 uSec from the time the modulation is present at the 
block input. Code modulation can be of any duration, but no shorter 
than 9 uSec. A SYM_TOP must be detected within 4 uSec, and it may 
be as short as 2.5 uSec.  
 
Symbols may be missed (failed to be detected) at most 1% of the 
time. Symbols must not be falsely detected (indicated at the output 
when not present). 

5.2.2 Normal and Test mode operation 
In Normal mode, the mixer selector passes on the side channel signal 
to be mixed with the main channel. In Test mode, the selector passes 
on the local oscillator (LO) signal and the side channel is ignored. 



  6 

The LO is controlled by the R_lf register. The mode select is done by 
the R_sl register. 
 
When the LO is in use, it receives digital phase feedback from the 
mixer circuit, allowing the LO to scan and lock to the main channel. 
During Normal operation, the LO should not be running. 

5.2.3	
  Control	
  Registers	
  
The following registers are controlling the NCR operation: 
 
Register Bit-size RTL name Initial 

Value 
 

R_gm 3 reg_gmain 0b000  
R_gs 3 reg_gside 0b000  
R_lf 4 reg_losc 0b1000  
R_sl 1 reg_side_sel 0b0  

Table 2: Control registers 
 

5.2.3.1	
  Gain	
  control	
  registers	
  
The two input channels are symmetrical. Each channel gain is 
register controlled. The gain values are specified in Table 3 below. 
 
R_gm, R_gs (3 bits) Gain Gain (dB) 

0b000 0.0 -∞ 
0b001 0.65 -3.75 
0b010 0.92 -0.73 
0b011 1.12 0.98 
0b100 1.95 5.8 
0b101 2.25 7.0 
0b110 2.50 8.0 
0b111 2.85 9.0 

Table 3: Gain control registers 

5.4.3.2	
  LO	
  Control	
  register	
  
The LO control register R_lf controls the output frequency of the 
LO. The register value is taken as a 4 bit signed integer. The LO 
frequency is computed as follows: 

 

5.2.4.3	
  Mixer	
  select	
  
The mixer select register R_sl is set to Normal (0b0) by default. 
When set to 0b1, Test mode is active. 
 

5.3 Creation of an Executable Verification Plan 
(vPlan)  
Metric driven verification relies on a verification plan to be used as a 
basis. The plan lists all the features that need to be verified, what to 
check for and how to measure coverage. A typical plan describes test 
scenarios that would exercise each feature and important feature 
combinations as described in Section 3.3.1 
 

5.3.1	
  Capturing	
  Analog	
  properties	
  in	
  vPlan	
  
Verifying analog features often require measuring continuous values, 
such as voltage or current at a certain node. Continuous (real) values 

can be sampled, but in order for them to make sense as coverage they 
need to be quantized into bins. 
 
When considering analog circuits, the plan should include all 
properties of concern, including those that are not directly measured 
by a functional simulation (or transient analysis). Special care should 
be taken to capture interactions between analog functions and digital 
control. 
 
Let’s explore the NCR spec to identify features of interest and create 
a vPlan for the NCR. EPlanner tool was used to create the executable 
verification plan.  
 
The first step is to import the spec of the NCR device (in pdf format) 
into the plan creation tool – Figure 8. After a planning session with 
the key stakeholders in the project (designers, verification engineers, 
architects, s/w developers), one is ready to start adding sections and 
subsections to the vPlan – see examples in Figure 9. 
 
 

 
Figure 8: Importing spec into tool for vPlan creation 

 
Planned sections for coverage, checkers, assertions and specific tests 
etc. are added to the vPlan. 
 



  7 

 
Figure 9: Adding Planned Checks and Coverage to vPlan 

 
At the end of the planning session, a complete vPlan is available with 
verification features of interest extracted and planned coverage, 
checkers, and tests well understood and documented in an executable 
spec – Figure 10. 
 

 
Figure 10: Annotated vPlan with features extracted from specs  
 

5.4 Analog Model Creation and Validation 
Analog models are often developed at a concrete netlist level, using 
Spectre (or some other variant of Spice) to simulate. These models 
are highly accurate, but they are very slow to simulate. This is a 
major drawback when considering the large number of combinations 
that have to be covered to verify functionality. 

Behavioral analog models, like Verilog-AMS offer a much faster 
runtime, while compromising accuracy to some small degree. Much 
analog analysis can still be performed on AMS models, as they are 
simulated using an analog solver. 

Even better performance can be achieved using Real Number 
Models, for example Verilog models using reals and wreals (we call 
these wreal models here). Such models are even more abstract, as the 
user chooses explicitly which electrical phenomenons to model. Such 
a modeling style can be executed on an event driven (digital) 
simulator, which is orders of magnitude faster than using an analog 
solver. Such models tend to be less accurate, and they can only be 
used for functional simulation (transient analysis). 

In many cases a wreal model is the best choice for implementing 
UVM-MS. Model accuracy is typically not an issue for the kind of 
checking done during functional simulations and the speed advantage 
is very significant. Creating such a model may require a considerable 
investment, but that investment will be leveraged for IP verification 
and possibly multiple SoC integrations (where speed is really 
critical). Furthermore, such models can be reused with small 
modifications from one generation of a design to the next, thus 
promoting reuse. 

The UVM-MS methodology applies to all modeling styles, enabling 
easy switching of models within the same test environment. This is 
especially important for debug purposes, when an error detected 
during a fast model simulation needs to be re-played on a more 
accurate model. 

Each time more than one representation of a system exists, the 
question of congruence between models is raised. In the case of 
analog design, the netlist model is likely to evolve over time, as the 
design work progresses. The more abstract models (AMS, wreal) 
need to catch up. Because the bulk of verification is using the 
abstract models, the question of congruence becomes critical. Model 
validation deals with verifying that an abstract model matches the 
concrete model. 

Because the models to be compared are not at the same level of 
abstraction, one has to define the exact nature of comparison to be 
done. The following criteria are commonly used to determine 
matching: 

• Waveforms of select signals to be compared. Some tolerance in 
terms of timing and value may be defined to allow some 
flexibility in modeling.  

• Expressions or equations that are evaluated continuously or at the 
end of the run.  

• Test bench checkers that should not trigger for either model 
execution.  

• Interface ports that need to match in name, type and direction.  
 
Models keep changing throughout the design and verification cycle, 
and hence it is important to validate the models repeatedly, as part of 
a regression process. To enable that, the validation needs to become 
an automated, push button task. This can be done by applying the 
same stimulus to the two models executing in their respective test 
benches and comparing the outputs.  

5.5 Signal Generator and Monitor 
Signals are generated by a programmable signal generator and 
monitor, which is used to drive and measure analog signals in a 
controlled manner, also known as dms_wire UVC. Typical functions 
include: 



  8 

• Driving a signal, such as a sine wave at a specified frequency, 
amplitude bias (DC level), and phase. 
• Measuring the envelope of a signal, which is assumed to be 
periodic, within a time window. The time window is defined by a 
triggering event or a sequence item. 
• Driving and monitoring configurations, which are controlled by 
dedicated sequence items and supporting easy integration into multi-
channel test sequences. Controls can also be set by way of 
constraints for pre-run configurations. 
• The monitor features built-in coverage, customizable by extension, 
as well as a method port interface for custom coverage and checking. 
• Time resolution is explicitly controlled (the number of samples per 
cycle). 
• Optionally, a continuous time signal source can be used for driving 
netlist models accurately. It is possible to combine several signal 
generators to achieve complex input signals. Modulation and noise 
injection are common cases. 
 
Other monitors are needed, for example for coverage checking of a-
periodic analog signals often requires threshold crossing detection. 
Simpler cases use hard constants, for instance checking that a signal 
voltage is always below 0.9 Volts. A more complex case requires 
comparison between a signal and a reference. Because of model and 
circuit inaccuracies, the checking needs to allow some tolerance, 
both in terms of the measured quantity and the response time. 
Consider for example the requirement: “the regulator will maintain 
the output voltage at 95% +/-5% of the reference voltage, with a 
response time of less than tmax”.  

 
 
Checking the relation between reference and signals, one signal is 
within voltage and time tolerances. The other signal takes too long to 
settle after the step and shoots over the high margin. 
 
The dms_threshold block implements a programmable detector that 
is robust in face of short transients (spikes, glitches). It features: 
• Transient suppression mechanism eliminating crossings (high-low-
high and low-high-low) shorter than a set suppression time interval. 
• Programmable high and low threshold and suppression time 
interval, set by way of constraints for pre-run configurations. 
• The (nominal) threshold value is connected to a reference voltage 
signal. 
• Event port outputs indicating definite threshold crossing (high-to-
low, low-to-high and their union). Unfiltered high-crossed and low-
crossed events can also be interfaced. This is for custom checking 
and coverage collection. 
• Automatic coverage of crossings (low-to-high, high-to-low, both). 

5.6 Analog Configuration Interface 
Analog circuits often feature banks of control registers used to trim, 
program, or calibrate the circuit. These registers should be divided 
into distinct control interfaces according to their function, keeping in 
mind that any particular integration of the IP may treat such 
interfaces differently. For example, in one case an interface may be 
tied to a digital block driving it, while in a simpler instantiation that 
interface may be tied to constant values. 
 

Creating a simple dms_reg UVC can provide the following 
functions: 
• A macro construct for defining the interface, its control clock, and 
the set of registers included. 
• Each register is specified with its size in bits and its reset value 
• A sequence item interface provides easy integration of interface 
setup commands (reset, write) into multi-channel test sequences. 
• Automatic coverage definition and collection upon value change. 
• Value change notification through method ports, facilitating custom 
checking and coverage collection. 
 

5.7 Checking analog functionality 
The UVM-MS approach to checking is possibly its biggest departure 
from current practices in analog design. When using metric driven 
verification there is simply no escape from automatic checking, 
while manual inspection of waveforms is still a much used method 
for checking analog correctness. The challenge of automating analog 
checking is not to replace manual inspection completely, but rather 
to provide a reasonably good detection of errors for the multitude of 
batch runs. Deciding which functions and features to check for is a 
major decision during the verification planning phase. 

5.7.1 Triggering a check on control changes 
Carefully timing a check in a specific test may be good enough for a 
feature test, but having the check trigger automatically is much more 
powerful. Automatic activation of tests ensures the checked 
condition is monitored continuously, even when that feature is not 
targeted. This is especially important when the checker is integrated 
in a bigger environment where tight control over input timing may 
not be possible. In order to determine the activation timing of a 
check, one has to consider which controls effect the checked 
condition. These controls are likely to be register settings and 
external interfaces. Each time any of these controls change, the check 
should be triggered. The following timing diagram illustrates this 
concept. 
 
Let us now look at some potential checks that can be implemented in 
the NCR Verification Environment (VE). 
 

 
Figure 11: Event triggers for automated checks in verification env. 

 



  9 

5.7.1.1	
  Checking	
  -­‐	
  Stage	
  1:	
  Gain	
  Check	
  

 

 
Figure 12: NCR Stage 1 Gain Check 

 
Timing the check requires figuring out a triggering event to start the 
measurement on both signals. In case there is an expected delay 
between input and output, the measurements need to be delayed 
accordingly. The measurement happens over a period of time, at the 
end of which each monitor provides its output, typically as a call to a 
method port. The final checker code is triggered by the returned 
measurements. 
 

 
Figure 13: Triggering event to start measurement  

 
Figure 14: Setup for automated tests & checks 

 
Looking at the NCR Spec, the gain-control register sets the gain of 
the pre-Amp. From Table 3, the two input channels are symmetrical. 
Each channel gain is register controlled. Using this checkers can be 
created and added to the verification env (VE). 

5.7.2	
  Assertions	
  based	
  Checks	
  
Assertions are a complementary approach to checking. Assertions 
tend to be local checks that are embedded or associated with the 
design IP. Assertions are seamlessly integrated into the coverage and 
reporting scheme of the test bench. Assertions are most often used to 
check input conditions and local invariants. 

5.7.2.1	
  Checking	
  input	
  conditions	
  
A common problem during SoC integration is hooking up the IPs 
incorrectly. This may be as crude as switching the polarity of a 
signal, or a subtle mismatch in voltage levels. However, once such an 
error occurs it is very hard to detect and debug in the context of the 
integrated system. Input checking is all about detecting such 
problems. They are typically implemented as assertions so that they 
are included in the integrated system. 
 
Assertion languages like PSL and SVA are synchronous, meaning 
they are associated with a clock event. Still, to check a condition 
holds at the end of reset, the falling edge of reset can be used as the 
clock event. The AMS extension to PSL supports checking electrical 
properties of signals, like the voltage level of a node. Hence 
verifying the input voltage on a node directly after reset is trivially 
simple, as shown below. 

A more complicated case arises when the property to be checked is 
dependent on the configuration. Assume for example, an input is 
allowed to be 0 if a particular feature is disabled, but should meet the 
specified voltage range otherwise. This can be expressed using an 
implication (an overlapping suffix implication in PSL). This topic is 
covered in much more detail in [7]. 

 

 
Figure 15: NCR Stage 2 Gain Check 

 
An example of assertions used for checks above in Figure 15. 

input_v_check: assert always   
   ((V(sig_in)>0.5m) &&(V(sig_in)<10m) 
   ) @(negedge reset); 
 

input_cond_check: assert always 
  (feature_enabled |->((V(sig_in)>0.5m) && (V(sig_in)<10m)) 
  ) @(negedge reset); 
 

Check1_Stage2: assert (always  
    ({reg_side_sel == 1} |=> {V(side_out) == 0.0} 
    ) @(posedge ctrl_write_clk) ); 



  10 

5.7.2.2	
  Checking	
  -­‐	
  Stage	
  3:	
  end-­‐to-­‐end	
  Checks	
  using	
  
Scoreboards	
  
 

 
 

End-to-end checkers are implemented by using UVM components 
described in Section #4. The code below shows examples of how this 
is achieved. 
 

 
 
 

 
 

Figure 16: Scoreboard Implementation 
 

5.8	
  Coverage	
  

5.8.1 Analog Coverage 
In the context of Analog, Coverage collection involves capturing 
data at specified points in time. For analog coverage, deciding on 
what data to collect, how to categorize (continuous real value) data 
into bins and deciding on when to sample are the tasks at hand. 

5.8.2 Direct and computed coverage collection 
Covered values can be voltage or current measured directly off 
circuit nodes. Other values may be computed by the test bench 
before sampling. Direct measurements are the simplest to implement 
- the covered node is sampled directly by the high-level testbench. 
 
Values that cannot be measured directly may be computed at the 
HDL testbench level for one of the following reasons: 
• The quantity measured for coverage is not directly available. For 
instance, to compute the power of a node, one could create a real 
wire holding the multiplication of voltage and current. The result 
wire is then sampled for coverage. 
• The source of the measured quantity differs depending on the DUT 
model being used. A value of interest may be available as an internal 
node in one model, a different node in another model, and a derived 
value in a third. In this case, replicating the value at a node in the 
HDL testbench allows the high-level testbench to deal with the 
different models uniformly. 
• Selective coverage. Coverage collected from within the analog 
model may be unavailable when running with a netlist model. Such 
coverage should be defined under a when condition, so that it can be 
turned on and off as needed. This is discussed in more detail in [7]. 
 

Push symbol on 
queue on send 

Pop symbol off 
queue when symbol 
matches on receive 

Check received 
symbol validity 



  11 

 
Coverage collection for rapidly changing signals require an indirect 
measurement of the desired properties. The dms_wire UVC provides 
capabilities to monitor such signals and compute their amplitude, 
frequency, phase and DC bias. These values cannot be sampled 
directly. 
 
For a more complete description, please refer to [7]. 
 

 
Figure 17: Enabling Analog Coverage 

5.8.3	
  Methods	
  for	
  Timing	
  the	
  Collection	
  of	
  Coverage	
  
Sampled signals may be highly dynamic, like a high frequency data 
signal, or slow changing, like a reference voltage. Slow changing 
data can be sampled using simple triggers. In contrast, naive 
sampling of dynamic signals will generate a broad spectrum of 
values depending on the exact sampling time. Consider the attempt 
to measure the amplitude of a sine wave —it cannot be done 
accurately using a simple trigger. 
 
Trigger timing should take into account the event that causes a 
perturbation to the analog input or control, as well as the time it takes 
for the data path to respond and stabilize. Consider, for example, a 
digitally controlled voltage source. The change event is a write 
operation to the control register. Coverage should be sampled after 
the appropriate propagation delay, or response time, which is 
typically part of the circuit specification. The coverage event should 
be triggered by the write operation, delayed by the nominal response 
time. Figure 18, shows how coverage collection is triggered.  
 

 
Figure 18: Triggering Coverage collection 

Coverage collection for rapidly changing signals requires an indirect 
measurement of the desired properties. The dms_wire UVC provides 
capabilities to monitor such signals and compute their amplitude, 

frequency, phase, and DC bias. These values cannot be sampled 
directly as mentioned above. Figure 19 shows the coverage model. 
 

 
Figure 19: Coverage Model for Analog 

Figure 10 shows the planned coverage in the vPlan. The next step is 
to load in collected coverage as specified by the various sources of 
coverage in the VE – cover-groups, assertions etc. Figure 19 below 
shows raw coverage data being loaded into the vPlan.  
 
The link between spec – to planned coverage – to collected coverage 
is managed and achieved by mapping collected coverage to planned 
coverage as discussed in the next section. 
 

 
Figure 20: Loading vPlan and raw coverage from simulation run 

5.8.3	
  Mapping	
  Raw	
  coverage	
  data	
  into	
  vPlan:	
  
 
Collected coverage data is mapped onto planned coverage in vPlan 

• collected metrics (on right side) to planned metrics (on left 
side) 

• implemented checks and assertions (on right) to planned 
checks (on the left side) 

This is the process by which the collected metrics is backannotated 
onto the planned metrics. 
 



  12 

 
Figure 21: Mapping Collected coverage to Planned coverage in 
vPlan 

 
Figure 22: Coverage data from regression mapped back onto vPlan 

We now have a very efficient and complete way to apply UVM 
based Metrics and Plan driven verification to Mixed Signal designs. 
 
 

6.	
  CONCLUSIONS	
  
The UVM-MS methodology presented here is the first mix-signal 
verification methodology we are aware of that scales from analog IP 
blocks to mix-signal SoCs. The methodology does introduce an extra 
cost at the IP verification level. This cost is justified as mitigation to  

the additional risk incurred due to the introduction of digital controls, 
sophisticated power management and broad configurability found in 
current analog circuits. The cost and effort implementing UVM-MS 
is minimized thanks to a library of small verification components. 
The investment at the IP level can be leveraged many times over, as 
the IP block is integrated into different SoCs. 
 
 
Implementing the methodology on a real design as enumerated above 
provided some evidence of how effective MDV can be, even when 
applied to analog design. The positive reaction of the analog design 
team was an indication that this method can become a welcome 
addition to the design flow. The experiment also provided some 
insight to the costs associated and expertise needed. Based on this 
experience we would recommend that the verification team include 
some verification specialists along with the analog designers. The 
verification engineers should focus on architecting and implementing 
the test environment, while the analog engineers can provide the 
DUV model and lead the analysis and debug. The whole team should 
contribute to the planning phase. 
 
We conclude that an MDV approach such as the one proposed in this 
paper is likely to become mainstream in mix-signal design 
verification. While the authors have made a conscious effort to 
provide as much detail as possible within the constraints of the size 
of this paper, there are several other topics that need to be discussed.  
For those interested in more details, our experiences have been fully 
captured in a new book [7]. 
 
 

7.	
  REFERENCES	
  	
  
 [1] Kundert, Ken and Chang, Henry, 2006. Verification of Complex Analog 
Circuits. Proceeding of IEEE 2006 Custom Integrated Circuit Conf. (CICC)  
[2] Palnitkar, Samir, 2003, Design Verification with e, Prentice Hall, ISBN: 
978-0131413092 
[3] Rosenberg, S. and Meade, K., 2010, A Practical Guide to Adopting the 
Universal Verification Methodology (UVM), Cadence Design Systems, ISBN 
978-0-578-05995-6 
[4] www.ovmworld.org 
[5] www.SystemVerilog.org 
[6] www.uvmworld.org 
[7] Bishnupriya B., John D., Gary H., Nick H., Yaron K., Neyaz K., Zeev K., 
Efrat S., 2012, Advanced Verification Topics, Cadence Design Systems, ISBN 
978-1-105-11375-8 
[8] Neyaz Khan, Yaron Kashai, Hao Fang, 2011, DVCon Metrics Driven 
Verification of Mixed Signal Designs 
 
 
 
 
 

 
 

 
 
 


