

1

From Device Trees to Virtual Prototypes

Sakshi Arora, Verification Group, Synopsys India Pvt. Ltd, Noida, India

(Sakshi.Arora@synopsys.com)

Vikrant Kamboj, Verification Group, Synopsys India Pvt. Ltd, Noida, India

(Vikrant.Kamboj@synopsys.com)

Preeti Sharma, Verification Group, Synopsys India Pvt. Ltd, Noida, India

(Preeti.Sharma@synopsys.com)

Abstract—Embedded platforms and associated products are getting smarter day-by-day, thanks to their rapidly

increasing complexity. Since software content of these systems is supporting complex features, the overall product

development becomes highly complicated and time-consuming. The answer to keeping pace with this innovation is

developing Virtual Prototypes (VP). With increasing SoC complexities in embedded-systems, the corresponding

pressure to accelerate VP model/platform creation and reduce overall development-time is also increasing. In this

context, generation of structural VPs for various IPs and their assembly, plays a key-role in improving overall iteration

turnaround-time of generating VP.

Keywords—device trees; memory map; human error; complex SoC

I. INTRODUCTION

Embedded platforms and associated products are getting smarter day-by-day, thanks to their rapidly increasing

complexity. Since software content of these systems is supporting complex features, the overall product

development becomes highly complicated and time-consuming. The answer to keeping pace with this innovation

is developing Virtual Prototypes (VP). With increasing SoC complexities in embedded-systems, the corresponding

pressure to accelerate VP model/platform creation and reduce overall development-time is also increasing. In this

context, generation of structural VPs for various IPs and their assembly, plays a key-role in improving overall

iteration turnaround-time of generating VP.

Current process of developing a VP requires SoC specifications availability. Initially, complete specification is

generally not available to VP developers. Even if available, manual reading-parsing of information takes significant

time and effort, increasing human-error probability. Furthermore, if specification is revised by SoC provider,

updating VP involves repetitive manual iterations that considerably adds to overall platform development-time.

The proposed solution addresses these challenges and provides a systematic and innovative way to create structural

VPs, using information available in operating system (OS) software (Device Tree, abbreviated as DT from here

onwards), along with taking limited inputs from vendor provided IP/platform specification document(s). Figure 1

provides an overview of proposed flow, and how it wins over the traditional manual flow which crunches on huge

manual input data. The flow enables taking minimal user inputs, facilitated by automation-framework, hence

significantly reducing efforts in creating complex VP systems with 100’s to 1000’s of models and connections.

In this paper, we will present details of how complex platforms have been created with our structured and systematic

proposed solution, presenting significant gains achieved in overall turnaround-time.

mailto:Sakshi.Arora@synopsys.com

2

Figure 1. Impact of the proposed flow

II. RELATED WORK

Current primary information-source for describing hardware platform from an embedded software developer

viewpoint is Technical Reference Manual (TRM) [1]. Typically, developing a VP platform is manual-process,

involving huge efforts and time bandwidth. There have been multiple attempts to automate creation of VPs using

UML/MARTE profiles [2], SysML [3] and IP-XACT [4]. To use these, the hardware information needs to be

available and encoded in respective formats: UML, SysML diagrams, IP-XACT etc. Making these formats

available and decoding is again time-consuming and human error-prone. The proposed flow presents an alternative,

independent and efficient way to derive most of platform assembly information from DT in absence of a detailed

TRM.

III. PROPOSED FLOW

The proposed flow consists of two levels of inputs and stages as described below.

A. Level 1

First, the flow takes Device Tree files as input, reads all nodes in tree and generates a basic platform-skeleton with

all required components. Device Tree is an essential component of OS kernel. It refers to a data-structure describing

hardware components of SoC. These components include CPUs, memories, buses, peripherals and are managed by

OS kernel.

Figure 2 Device tree nodes containing “reg” property

Platform’s memory-map/connectivity information is further extracted from Device Tree. In Device Tree, every

memory-mapped peripheral contains an entry of “reg” to specify address and size of memory-mapped registers [5]

that are used for peripheral itself (Figure 2). Once memory-map information is extracted, a basic VP framework is

created with various peripherals as placeholders at respective memory-locations.

3

B. Level 2

Using 2nd level of automation-framework execution, these IP placeholders are replaced with structural models.

Here, IP specific data provided by user is parsed to add correct register-sets and interfaces to peripherals, creating

a shell model known as structural Virtual Prototype. This data is categorized in three formats each for the registers

(Table 1), bitfields for each register (Table 2) and interfaces (Table 3). This data is extracted from SoC

specification(s) in CSV formats, using third-party tools. This structural VP can now be further developed with

specific behaviors.

Register Name R/W Address Initial Value Size

RegisterA R/W H’E615 0004 H’0032 0235 32

RegisterB R/W H’E615 00E0 H’0000 0000 32

RegisterC R H’E615 00D0 H’0000 1F1F 32

RegisterD W H’E615 0078 H’0000 0209 32

Table 1 Format of the registers CSV file

 Table 2 Format of the bitfields CSV file

Interface Name Quantity Protocol Role

p_reg_in 1 Memory Input

P_clk_in 1 Clock Input

P_rst_in 1 Reset Input

P_mem_in 2 Memory Input

P_mem_out 2 Memory Output

P_irq_out 1 Interrupt Output

Table 3 Format of the interfaces CSV file

The two-levels of proposed automation flow are depicted in Figure 3.

Figure 3 Proposed Flow for Creating Structural Virtual Prototypes using Device Trees

Register Name Bit Bit Name Initial Value R/W

RegisterA 31 to 16 BitA1 All 0 R

 15 to 1 BitA2 All 0 R

 0 BitA3 1 R/W

RegisterB 31 to 0 BitB All 0 R/W

RegisterC 31 C 0 R/W

 30 — 0 R

 29 — 0 R

 28 to 24 — All 0 R

 23 to 20 C1 11 R/W

 19 to 0 C2 10 R/W

4

IV. APPLICATION

Main requirement of VPs is to execute the same software, that runs on actual hardware [1]. Therefore, creating VPs

using Device trees eliminates various errors such as inconsistent information with respect to specification/software

etc., during software bring-up.

The proposed flow caters to following use-cases:

• When an OS has already been ported for an SoC before availability of its specification to VP

developers, DTs is available in open-source community, can be used to start developing VPs.

• Even if specification is available, the traditional manual approach of parsing it for each peripheral, and

manually assembling the VP, is highly error-prone and time-consuming. Using DTs for memory-

map/connectivity generation, significantly speeds up VP models/platform creation by systematically

automating the process with minimal impact of human-errors and taking care of additional spec updates

by vendor.

• This framework is very effective to quick-start next-generation (let say N+1th) platform development,

whose memory-map specification is not yet available. Nth generation DTs can be used as foundation

for platform development to reach a logically meaningful VP model.

The proposed flow reduces several steps exercised in the current process of creating VP for complex SoC (Figure

4). This structured and systematic flow can be effectively used to develop VPs for complex SoCs in automotive

markets.

Figure 4 Existing manual flow (left) compared against proposed flow (right)

V. RESULTS

We used the proposed solution to create VP platforms for complex SoCs for which initial-level specification didn’t

provide complete platform details, especially memory-map/connectivity. Device Tree for this platform was

available because Linux had already been ported for the already available SoC hardware boards. Using Linux open-

source code for DT in our systematic proposed flow, we unblocked ourselves (from waiting on specification 2nd

draft), by extracting required memory-map information. This enabled us to quickly reach the stage of IP refinements

and functionality addition. The total effort of VP creation got significantly reduced by 4X (months to days), as

quantified in Table 4.

5

VP

Platform

Number of

IPs

Avg. no. of

Registers per

IP

Avg. no. of

Interfaces

per IP

Manual Effort

(days)

Effort with

Proposed Flow

(days)

Improvement
(x)

1 133 20 20 20 5 ~4x

2 215 36 33 46 7 ~7x

3 390 150 100 95 10 ~9x

4 500 200 150 120 12 ~10x

5 700 200 100 150 13 ~11x

6 1000 250 150 270 14 ~20x

Table 4 Effort reduction by using proposed flow

VI. FUTURE WORK

The proposed solution can be enhanced in the following ways:

• Extending the flow by extracting interrupt, clock and reset-tree details from the device tree.

• Enablement of automated software bring-up for OS boot (Linux) on VP platform, by further refining the

meta-data extracted from Device trees, using standard OS-distribution source-repositories.

VII. SUMMARY

The proposed flow very efficiently enables creation, development and integration of complex VP systems, by using

DTs, and highly reduces dependency on vendor-specs and other mandatory information missing from specs. This

flow tremendously reduces the probability of human-errors, and overall efforts and inefficiencies involved in

developing complex SoC platforms, involving 100s of IPs, with 1000s of connections.

REFERENCES

[1] Synopsys, Inc. ,”Using VDKs for Automotive Systems Development”

[2] F. Herrera, H. Posadas, E. Villar, and D. Calvo, “Enhanced IP-XACT Platform Descriptions for Automatic Generation from

UML/MARTE of Fast Performance Models for DSE,” in 2012 15th Euromicro Conference on Digital System Design, Cesme, Izmir,

Turkey, 2012, pp. 692–699.

[3] D. Perillo and M. D. Natale, “Using MDA to Automate the Integration of Virtual Platforms for System-Level Simulation,” in 2017 IEEE

41st Annual Computer Software and Applications Conference (COMPSAC), Turin, 2017, pp. 268–277.

[4] G. Godet-Bar and J.-M. Fernandez, “A SystemC Extension for Enabling Tighter Integration of IP-XACT Platforms with Virtual

Prototypes,” p. 6.

[5] Booting the Linux/ppc kernel without Open Firmware

[6] SPIRIT Consortium, IP-XACT schema v1.4. http://www.spiritconsortium.org.

https://www.synopsys.com/cgi-bin/proto/pdfdla/pdfr1.cgi?file=VDKAuto_wp.pdf
https://www.kernel.org/doc/Documentation/devicetree/booting-without-of.txt

	I. Introduction
	II. Related Work
	III. Proposed flow
	A. Level 1
	B. Level 2

	IV. Application
	V. Results
	VI. Future Work
	VII. Summary
	References

