
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Free Yourself from the Tyranny of Power State Tables with

Incrementally Refinable UPF

Progyna Khondkar, Ping Yeung, Gabriel Chidolue, Joe Hupcey, Rick Koster and Madhur Bhargava

Mentor Graphics Corporation, Fremont, CA.

Introduction

The recent edition of IEEE 1801 specifies

 The power state table (PST) construct should be phased out

as legacy, and

 Replaced by the new semantics of the ‘add_power_state’

UPF command.

This new construct allows

 Incremental refinement of Power states for

- Power domains and

- Its associated supply sets.

 This feature provides a way to model any possible

combination of power states for a power domain and its

available supply sets,

 As well allowing modification of these defined power states to

accommodate the same UPF construct for different design

abstraction levels.

 Consequently such features serve the purpose of the legacy

PST, but in more complete and controllable ways.

The New Concept of Fundamental Power States

The New Power State Constructs

 Power State of Supply Set and Power Domain

Figure 1. Example of a Complex SoC (Courtesy: ARM SOC)

 Power States of a Supply Set

 Power States of a Power Domain

 Example of the roots of fundamental power states

of an object (i.e. power domain PD_CPUA0)

Refinement by Derivative for Definite States

 Example of Definite Power States

 Definite Power States Refinement by Derivatives

 A new power state, with a new –state name

and updated -logic_expr, based on the original

power state

Case Studies

 UPF Strategies Analysis and Validation through

Definite Power States

 Static Analysis Report

 Isolation analysis and validation done without

set_isolation strategy definition or implementation

UPF at a very early stage of design abstraction.

 Coverage Computation of Power State-

Transition through describe_state_transition

 Coverage Computation of Power State-Transition

through describe_state_cross_coverage -

domains {PD_COREA} -depth 3 ….. etc.

Conclusions

 PST replacement with add_power_state is

straightforward and simple

 But the change will impact the power specification

methodologies, power aware verification algorithms,

tools, techniques and the entire design, verification

and implementation flow.

 Because definite (indefinite as well) and deferred

power states provides the intrinsic flexibility,

essential controllability and the gifted features of

refinement options.

 The fundamental power state refinement concept

extends the UPF specification and associated PA

verification boundary to early stages of RTL design

and allows verification virtually at any level of

design abstraction.

 Definite Power State

- Defining –logic_expr contains only operators ==

and &&

- Refers only to other Definite states (of same or

dependent objects)

- Refined by derivation or branching

 Deferred Power State

- A Definite State that is not yet fully defined

- No defining expression (i.e. no –logic_expr{})

- Refined in place (actually through –update)

 Indefinite Power State

- Defining –logic_expr contains !, !=, or ||

- Refers to an Indefinite state of a dependent object

- Not refinable (UNDEFINED state)

- But not a misnomer; Usable for don’t care

states!

Limitations of Legacy PST

 Power states may also represented by the states

of a power state tables (PST),

These commands are legacy in UPF 2.1 LRM.

 Because of their limitations to coordinate with

supply sets; specifically PST states are defined

based on the supply net only, and supply nets are

usually available after the synthesis and post-

layout levels of design abstraction.

 There are no UPF methodologies for PST states to

refine states.

 Dependency on upfront information of supply ports

and supply nets severely delays the point at which

power aware verification can start.

 Other known limitations

- PST states - defined on supply net state only

- Logic net states cannot be used

- No logical view of the system states

- Power domain states cannot be specified

- Complex PST composition is not possible

- No support for hierarchical reference to state

- Reduction of states is not possible

Refinement In Place for Deferred States

 Example of Deferred Power States

 Deferred Power States Refinement in Place

 Refinements through –update implies that it

actually modifies the original definition rather

than creating a new definition or a new power

state.

Advantages of Definite and Deferred States

 Allows to model UPF, i.e. power management

architecture from very early stage of design.

 Allows to integrate design IP any time in the power

management architecture.

 Allows to analyze and validate UPF strategy

requirements.

 Allows to compute accurate state transition

coverage information through interdependent

states and

 Prevent intermediate state transitions of definite

and deferred power states during refinement.

Source power domain: ~/PD_CPUA0 to Sink power domain: ~/PD_COREA.

Total 3 Missing isolation cells [Total Crossings: 3, Shared Crossings: 0]

1.1. Source port: ~/q_A [LowConn] to Sink port: ~/q_A [HighConn], width:1

Total 1 Missing isolation cells [Total Crossings: 1, Shared Crossings: 0]

1.1.1. Inferred type: ISO_MISSING, count: 1

Possible reason: 'Isolation is required from (~/PD_CPUA0)=>(~/PD_COREA)

and neither isolation strategy nor isolation cell is present in design' Analysis link:

[PD1_to_PD2].

UPF OBJECT Metric Goal Status

TYPE: SUPPLY SET /cpu_tester/dut/PD_CPUA0.primary

State Coverage

Power State PD_CPUA0_low_volt 100.0% 100 Covered

bin ACTIVE 3 1 Covered

Power State PD_CPUA0_moderate_volt 100.0% 100 Covered

bin ACTIVE 1 1 Covered

UPF OBJECT Metric Goal Status

TYPE: POWER STATE CROSS

/cpu_tester/dut/PD_COREA(ID:PD1),

/cpu_tester/dut/PD_CPUA0(ID:PD2),

/cpu_tester/dut/PD_L2(ID:PD3) 33.3% 100 Uncovered

Power State Cross Coverage 33.3% 100 Uncovered

bin \PD1:SLEEP-PD2:PD_CPUA0_off-PD3:PD_L2_off 0 1 ZERO

bin \PD1:RUN-PD2:PD_CPUA0_on-PD3:PD_L2_on 2 1 Covered

add_power_state PD_CPUA0.primary \

-state ON {-logic_expr {ln3 == 0} -simstate NORMAL} \

-state OFF {-logic_expr {ln3 == 1} -simstate CORRUPT}

add_power_state PD_COREA.primary \

-state ON {-logic_expr {ln3 == 1} -simstate NORMAL} \

-state OFF {-logic_expr {ln3 == 0} -simstate CORRUPT}

add_power_state PD_COREA -domain \

-state {RUN –logic_expr {primary == ON}} \

-state {SHD –logic_expr {primary == OFF}}

add_power_state PD_COREA -domain –update \

-state NEW_RUN {-logic_expr \

{(power == {FULL_ON, 1.1}) && (ground == {FULL_ON, 0.0})}}

add_power_state PD_COREA.primary \

-state ON {-logic_expr {ln3 == 1} -simstate NORMAL} \

-state SHD {-logic_expr {ln3 == 0} -simstate CORRUPT}

add_power_state PD_COREA -domain –update \

-add_power_state PD_COREA.primary -supply -update\

-state {RUN –logic_expr {nPWRUP_CON==1’b0}}

{FULL_ON, 0.0})}}

add_power_state PD_CPUA0

-state {ON -logic_expr{PD_CPUA0.retention ==ON &&

nRETCPU0==1 && PD_CPUA0.primary==ON}}

add_power_state PD_CPUA0.primary

-state {ON -simstate NORMAL -logic_expr {pwr_ctrl==1}

-supply_expr {power=={FULL_ON,1.0} &&

ground=={FULL_ON,0}} }

add_power_state PD_CPUA0 -domain \

-state {UNDEFINED -logic_expr {PD_CPUA0 != RUN &&

PD_CPUA0 != SHD} } \

-state {RUN –logic_expr {primary == ON} } \

-state {SHD –logic_expr {primary == OFF} } \

-state {ERROR -logic_expr {PD_CPUA0 == RUN && PD_CPUA0

== SHD} }

- add_port_state, add_pst_state, and create_pst.

