Framework for creating performance model of AI algorithms for early architecture exploration

Amit Dudeja, Sr R & D Engineer, Synopsys India Pvt. Ltd.Amit Tara, Sr R & D Engineer, Synopsys India Pvt. Ltd.Amit Garg, Principal Engineer, Synopsys India Pvt. Ltd.Tushar Jain, R & D Engineer, Synopsys India Pvt. Ltd.

Agenda

- Al Market and Technology Trends
- AI SoC Design Challenges
- Shift Left Architecture Exploration and Optimization
- AI Exploration Framework
- NN driven Deep Learning Architecture Optimization
 - Case Study Resnet18 with NVDLA

© Accellera Systems Initiative

AI Market and Technology Trends

New Neural Network algorithms

- Higher accuracy, lower size and less processing
- But: less data re-use, less cycles per byte

Neural Network Compiler optimizations

- Loop-tiling, -unrolling, and –parallelization
- Splitting and fusing of Neural Network layers
- Memory layout optimization across layers
- Optimized code generation to utilize available hardware accelerators

Deep Learning Accelerator optimizations

- Schedule workload on parallel hardware engines
- Optimize/reduce data transfers to & from memory

Al SoC Design Challenges

- Choosing the right algorithm and architecture: CPU, GPU, FPGA, vector DSP, ASIP
 - CNN graphs are evolving fast, need short time to market and cannot optimize for one single graph
 - Joint design of algorithm, compiler, and target architecture
 - Joint optimization of power, performance, accuracy, and cost
- Highly parallel compute drives memory requirements
 - High on-chip and chip to chip bandwidth at low latency
 - High memory bandwidth requirements for parameters and layer to layer communication
- Performance analysis requires realistic workloads to consider dynamic effects
 - Scheduling of AI operators on parallel processing elements
 - Unpredictable interconnect and memory access latencies

Shift Left Architecture Exploration and Optimization Differentiation by Joint Algorithm and Architecture Optimization

DESIGN AND VERI

Shift Left Architecture Exploration and Optimization

Power, Performance

DESIGN AND VERIFICATION

NDIA

Objective

- Systematic creation of AI performance model in an automated manner.
 - Model AI operations like convolution, batchNorm etc
 - Generate complete topology of AI algorithm.
- Construction of generic and configurable AI Centric Hardware Subsystem
 - Model scalable AI engines for compute and memory load.
 - Build hierarchical subsystems for complex designs.

PA Ultra AI Exploration Framework

PA Ultra AI Exploration Framework

Al Operator Library

- Workload models for different operators (layers) for AI CNN algorithm development
- Automated generation of workload model for the Neural Networks
- Al centric HW architecture Engine

Workload Model of a Convolution Layer

Once the Convolution Operator block gets triggered:

- Input frame and coefficient are read in parallel.
- Once the necessary input data is read, block process the convolutions and write backs the resulting feature maps.

Al Operator Library

© Accellera Systems Initiative

INDIA

PA Ultra AI Exploration Framework

- Al Operator Library
 - Workload models for different operators (layers)

for AI CNN algorithm development

• Automated generation of workload model for Neural Networks

• Al centric HW architecture Engine

Creation of performance model of AI algorithms

11

PA Ultra AI Exploration Framework

- Al Operator Library
 - Workload models for different operators (layers) for AI CNN algorithm development
- Automated generation of workload model for Neural Networks

PA Ultra Hardware IP Models Library

Traffic, Processors, RTL

- Task-based and trace-based workload models
- Cycle accurate processor for ARM, ARC, Tensilica, CEVA
 RTL Co-simulation/emulation

Interconnect Models

Generic:

- SBL-TLM2-FT (AXI)
- SBL-GCCI (ACE, CHI)

IP Specific:

- Arteris FlexNoC & Ncore
- Arm AHB/APB
- Arm PL300
- Arm SBL-301
- Arm SBL-400
- Synopsys DW AXI

SYNOPSYS arm

Memory Subsystems

- Generic multiport memory controller (GMPMC)
- DesignWare uMCTL2
 memory controller
- DesignWare LPDDR5
 memory controller
- Co-simulate with RTL

SYNOPSYS[®]

Creation of AI Centric Hardware Engine

- Al-centric hardware engine caters to the compute and memory requirements of Al operations.
- Can be constructed hierarchically by encapsulating n-sub engines underneath.
- Can be characterized with performance related attributes like operations-per-cycle, stochastic cache, branch prediction, pipeline depth etc.

Platform Architect Ultra

Capture Workload Model

Case Study: Resnet-18 with NVDLA

© Accellera Systems Initiative

ResNet-18 Workload model generated with AI-XP

20

DESIGN AND VERIFICA

CONFERENCE AND EXHIBITION

NVDLA

CONFERENCE AND EXHIBITION

NVDLA Initial Configuration

- Burst size: 16
- Max Outstanding transactions: 8
- Clock frequency of data path: 1GHz
- SIMD width: 16 operations per cycle

DESIGN AND VERIFIC

Results of Initial Configuration

Performance limited by processing, use wider SIMD data path

DESIGN AND VERIFICATION

Impact of SIMD Width on Performance

Resource Utilization of CONV Datapath (yellow), CONV DMA (red) and other components

SYSTEMS INITIATIVE

Resnet 18 Example Sweep

Goal: 5ms latency, minimize power & energy

	Name	simtime_us	outstanding	sz_in_bytes	speed_bin	Clk/perioc	opc
23	run_b32_opc64_clk05_DDR4_1866M_os4	4416.966	4	32	DDR4-18	0.5	64
24	run_b32_opc64_clk05_DDR4_1866M_os8	4235.459	8	32	DDR4-18	0.5	64
25	run_b16_opc128_clk10_DDR4_2400_os4	5990.249	4	16	DDR4-2400	1	128
26	run_b16_opc128_clk10_DDR4_2400_os8	5657.129	8	16	DDR4-2400	1	128
27	run_b16_opc128_clk10_DDR4_1866M_os4	6994.128	4	16	DDR4-18	1	128
28	run_b16_opc128_clk10_DDR4_1866M_os8	6676.136	8	16	DDR4-18	1	128
29	run_b16_opc128_clk075_DDR4_2400_os4	5509.487	4	16	DDR4-2400	0.75	128
30	run_b16_opc128_clk075_DDR4_2400_os8	5189.458	8	16	DDR4-2400	0.75	128
31	run_b16_opc128_clk075_DDR4_1866M_os4	6485.257	4	16	DDR4-18	0.75	128
32	run_b16_opc128_clk075_DDR4_1866M_os8	6207.377	8	16	DDR4-18	0.75	128
33	run_b16_opc128_clk05_DDR4_2400_os4	5141.269	4	16	DDR4-2400	0.5	128
34	run_b16_opc128_clk05_DDR4_2400_os8	4797.354	8	16	DDR4-2400	0.5	128
35	run_b16_opc128_clk05_DDR4_1866M_os4	6402.813	4	16	DDR4-18	0.5	128
36	run_b16_opc128_clk05_DDR4_1866M_os8	6080.660	8	16	DDR4-18	0.5	128
37	run_b32_opc128_clk10_DDR4_2400_os4	4228.984	4	32	DDR4-2400	1	128
38	run_b32_opc128_clk10_DDR4_2400_os8	4066.654	8	32	DDR4-2400	1	128
39	run_b32_opc128_clk10_DDR4_1866M_os4	4444.511	4	32	DDR4-18	1	128
40	run_b32_opc128_clk10_DDR4_1866M_os8	4236.462	8	32	DDR4-18	1	128
41	run_b32_opc128_clk075_DDR4_2400_os4	3464.214	4	32	DDR4-2400	0.75	128
42	run_b32_opc128_clk075_DDR4_2400_os8	3261.505	8	32	DDR4-2400	0.75	128
43	run_b32_opc128_clk075_DDR4_1866M_os4	3963.731	4	32	DDR4-18	0.75	128
44	run_b32_opc128_clk075_DDR4_1866M_os8	3769.144	8	32	DDR4-18	0.75	128
45	run_b32_opc128_clk05_DDR4_2400_os4	2981.385	4	32	DDR4-2400	0.5	128
46	run_b32_opc128_clk05_DDR4_2400_os8	2795.655	8	32	DDR4-2400	0.5	128
47	run_b32_opc128_clk05_DDR4_1866M_os4	3483.204	4	32	DDR4-18	0.5	128
48	run_b32_opc128_clk05_DDR4_1866M_os8	3301.767	8	32	DDR4-18	0.5	128
	1						

Sweep parameters

- Burst size: 16, 32
- Outstanding transactions: 4, 8
- DDR memory speed: DDR4-1866, DDR4-2400

DESIGN AND VERIE

- Clock frequency of data path: 1, 1.33, 2GHz
- SIMD width: 64, 128 operations per cycle

Sweep Over Hardware Parameters, Latency in µs

© Accellera Systems Initiative

SYSTEMS INITIATIVE

NDIA

Power/Performance/Energy Trade-off Analysis

Example: Resnet-18 with NVDLA

SYSTEMS INITIATIVE

generate

Resnet18 333 couv, 517 334 couv, 517 335 couv, 5

Goal:

- 5 ms latency, minimize energy

Optimize Hardware configuration:

- SIMD width: 128 operations per cycle
- Burst size: 32 bytes
- outstanding transactions: 4
- speed of DDR memory: DDR4-1866
- speed of data path: 1GHz

Summary

- Demonstrated a framework to perform exploration studies in the field of AI.
- Ease of automatically creating a workload model out of an AI algorithm.
- Goal directed power and performance study to achieve an inference latency of 5ms with optimized power consumption.

© Accellera Systems Initiative

Questions

