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CDC Design Issues : Metastability
• Signals crossing clock domain are 

asynchronous
• Asynchronous signals cause Setup & Hold 

violation at capturing FF
• As a result, capturing FF may oscillate for 

some time, producing intermediate logic 
values

• Intermediate logic values, when 
propagating forward, may cause and 
“avalanche effect”, leading to functional 
failures and chip overheat
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Metastability solution:  Synchronizer
• Synchronizer design:

– R1 close to R2, small wiring delay
– Almost a receiving clock period given to 

oscillations to settle down
– R2 captured deterministic (settled down) value

• Prevents metastable values spread to 
fanout logic

• Still, does not guarantee functional 
determinism
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Non-determinism with Synchronizers
• When signal changes at Sample & Hold 

capturing clock region : no guarantee 
that changed value captured at receiving 
flip-flop

• Introduces non-determinism in 
deterministic design functionality

• Functional CDC verification: CDC non-
determinism not affecting  deterministic 
design behavior
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Transferring related signals
• Synchronizer delay is unpredictable:

– No issues for independent single-bit 
controls

– May cause timing shift of functionally 
related signals

• Care should be taken to verify that non-
deterministic timing shift not causing 
functional issues

• Example: related enables timing shift 
causes undesired glitch at receiving 
domain

6

en1 R1 R2

en2 R1 R2

Rs

en1

en1’ & en2’

S&H region
clkb

en2

en1’ & en2’

Data

Undesired  glitch



Related Control Signals in CDC
• Convergence: signals converge in 

driving clock domain 

• Re-convergence: signals 
converge in receiving clock 
domain

• Divergence: signal diverges to 
multiple synchronizers
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Current CDC Verification Process

• Static Verification with LINT tools

• Dynamic Verification (Simulation) 
with CDC-related assertions & 
coverage & models

• Formal Model Checking with CDC 
assertions & models

• Lab Testing 
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Static Verification with LINT Tools
• Topology-based verification of constrained 

RTL design:
– Extract clock domain crossings
– Validate the synchronizer patterns correctness 

at clock domain crossings
– Extract divergence, convergence and 

reconvergence cases
– Generate assertions for functional verification

• Problems:
– Lint Tools cannot fully verify CDC issues
– Design constraints may be wrong & 

incomplete
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Simulation-based CDC verification
• Add LINT-generation assertions to verification 

environment
• Optionally, use synchronizers with random CDC 

jitter modeling
• Ensure functional tests & regressions pass with 

no assertion failures
• Use functional coverage to improve tests 

quality for CDC checking
• Problems: 

– Need to verify all possible delay cominations on 
clock domain crossings

– RTL checking may miss timing issues & CDC-
specific test scenarios

– Gate-level sims: long simulation times, small 
amount of tests
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CDC Formal Analysis
• Add LINT-generation assertions to 

verification environment
• Optionally, use synchronizers with random 

CDC jitter modeling
• Add assumptions to constrain design 

behavior

• Problems:
– May not prove all CDC assertions due to large 

design size
– Formal constraints (assumptions) may be wrong 

& functionally incomplete
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Lab Testing for CDC Verification
• Lab Testing verifies real design, 

including functionality and timing
• May reveal CDC-related issues right 

away
• However, some CDC-related issues 

may remain undiscovered due to:
– Clock sources variations
– Process, Voltage, Temperature 

variations during device usage
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CDC Verification Completeness

CDC Verification Completeness

LINTing Simulation Formal Lab Testing Not proved
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• Each CDC verification method:
– Not providing complete confidence
– May be based on wrong & incomplete 

input data (design constraints, test 
vectors, assumptions)

• Mission-critical multi-clock FPGA 
designs require another “integrated” 
CDC verification method

• Solution : CDC Jitter emulation in 
FPGA testing



CDC Jitter Concept
• CDC jitter models unpredictable 

synchronizer delay when 
metastability occurs as a result of 
Sample & Hold Violation at first 
synchronizer register:

• CDC jitter can be modeled for 
simulation & formal analysis:
– Minimum 3 FF stages in synchronizer
– Using $random function 
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Synthesizable CDC Jitter model

• Use synthesizable Ring-Oscillator 
randomizer to randomly select R2 
or R3 stages values

• Asynchronous Enable input to 
enable & disable randomization for 
debug purposes 
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One-bit Randomizer Design
• Use Ring oscillator for in-FPGA 

Randomization:
– Non-deterministic value captured at R1 

due to metastability effect

– Single NAND in the ring to increase the 
frequency of metastability events

– Two flip-flops (synchronizer) required to 
stop metastable values propagation

– Asynchronous Enable signal to enable / 
disable oscillations:

• Saves power
• Sets randomizer to pre-defined value
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Single-bit Randomizer Code

• Use “ASYNC_REG” in Xilinx and similar 
attributes in Intel FPGA to place 
synchronizer registers “as close as 
possible” (in same slice)

• Use attributes / LCELL instance to 
prevent ring oscillator optimization 
(removal)

• Use ALLOW_COMBINATORIAL_LOOPS 
attribute on ring oscillator net
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module bit_rng (
input clk, en, 
output rnd_out

); 
(* ASYNC_REG = "TRUE" *) reg meta, sync;

// inverter chain oscillator
(*DONT_TOUCH= "true"*) wire osc;
assign osc = ~(osc & en);

always @(posedge clk) begin
meta <= osc;
sync <= meta;
end

assign rnd_out = sync;  

endmodule

RTL

Constraint
set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets osc]



Synchronizer Model Code & Schematics
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module rnd_sync(
input clk, din, en, output dout

);
(* ASYNC_REG = "TRUE" *) reg meta,
sync1, sync2;

wire sel;

bit_rng sel_rng (clk, en, sel);

always @(posedge clk) begin
meta  <= din;
sync1 <= meta;
sync2 <= sync1;

end
assign dout = (sel)? sync1 : sync2; 
endmodule

rnd_sync 

bit_rng



Re-usable Synchronizer Model
• Re-use synchronizer model between 

Lab Verification, Simulation and 
Formal Analysis:
– Lab Verification : Instantiate bit 

randomizer instance

– Simulation: randomize MUX select signal

– Formal Analysis: Allow Formal tools to 
treat disconnected MUX select signal as 
an unconstrained input signal
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module rnd_sync(
input clk, din, en, output dout

);
(* ASYNC_REG = "TRUE" *) reg meta,
sync1, sync2;

wire sel;

`ifdef SYN 
bit_rng sel_rng (clk, en, sel);

`elseif FORMAL
// nothing : sel becomes primary input
// for formal tools

`else
// Simulation, random selection

always @(posedge clk) 
sel <= {$random}%2;

`endif

always @(posedge clk) begin
meta  <= din;
sync1 <= meta;
sync2 <= sync1;

end
assign dout = (sel)? sync1 : sync2; 
endmodule



Using Sync Models for Reconvergence
• Using LINT tools, identify reconvergence 

logic & related synchronizers
• For each reconvergence case, replace 

related synchronizers with synchronizer 
models

• For each reconvergence group, tie 
synchronizer models enable together and 
connect them to dedicated CSR

• Enable / Disable each reconvergence 
group for verification / debug purposes
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Enhanced CDC Verification Flow

• Use LINT tools to verify CDC topologies
• Replace all synchronizers with synchronizer models
• Group and connect sync models enables to dedicated control regs

– group sync models enables related to same reconvergence logic 

• Implement FPGA with Sync models, turn on all sync enables and run 
Lab Testing

• In a case of failure, control sync enables values to localize the problem
• Use simulation & formal methods to identify CDC issues in failing 

design part
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Enhanced CDC Verification Challenges 
• In Lab Testing, hard to get synchronizer 

delay combinations causing design failure
• Possible solution: 

– Add Shift Register LUT to each synchronizer
– Stop design clock on CDC assertion failure
– Use ChipScope to read out SRL values

• Problems:
– Need to introduce more complicated logic to 

design
– CDC-related assertion failure may occur much 

later in design : SRL length may not be sufficient
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Localizing CDC failures
• Use LINT tools to identify reconvergence 

logic
• Connect sync enables in same 

reconvergence group to same control
• For other CDC cases, group sync enables 

connections following design hierarchy
• Upon CDC failure:

1. Disable all Sync randomizer to guarantee 
Failure belongs to CDC

2. Gradually re-enable synchronizer groups to 
localize failure
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Summary

• Synthesizable CDC Jitter models enable extensive CDC 
verification for mission-critical FPGA designs

• CDC Jitter models in implemented FPGA design to 
enhance CDC effect, verifying hidden corner cases in 
real hardware

• Complements and enhances current CDC Linting & 
Simulation & Formal verification process

• Applicable for mission-critical verification of both FPGA 
and ASIC designs, with FPGA prototyping
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Thanks for your attention!
Any questions? 
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