
FPGA-based Clock Domain Crossing
Validation for Safety-Critical Designs

1

Alexander Gnusin

Agenda
• CDC Design Issues: an Overview
• Current CDC Verification Process

– Static Verification
– Dynamic Verification
– Formal Verification

• CDC Verification applied to FPGA designs
– FPGA-specific CDC verification : issues and solutions
– CDC jitter emulation to enhance CDC influence

• Enhanced FPGA-specific CDC verification process
• Summary

2

CDC Design Issues : Metastability
• Signals crossing clock domain are

asynchronous
• Asynchronous signals cause Setup & Hold

violation at capturing FF
• As a result, capturing FF may oscillate for

some time, producing intermediate logic
values

• Intermediate logic values, when
propagating forward, may cause and
“avalanche effect”, leading to functional
failures and chip overheat

3

S R
Comb
Logic

R1

R2

R3

asynchronous

R

R’

R1

Metastable values

R’

Metastability solution: Synchronizer
• Synchronizer design:

– R1 close to R2, small wiring delay
– Almost a receiving clock period given to

oscillations to settle down
– R2 captured deterministic (settled down) value

• Prevents metastable values spread to
fanout logic

• Still, does not guarantee functional
determinism

4

S R1 R2

R1
R2

Stable at R2 output

Sample & Hold region

Non-determinism with Synchronizers
• When signal changes at Sample & Hold

capturing clock region : no guarantee
that changed value captured at receiving
flip-flop

• Introduces non-determinism in
deterministic design functionality

• Functional CDC verification: CDC non-
determinism not affecting deterministic
design behavior

5

S

R2 (early)
?

S&H region

R2(early) or R2(late) ? : non-determinism

clkb

R2 (late)

S R1 R2

Transferring related signals
• Synchronizer delay is unpredictable:

– No issues for independent single-bit
controls

– May cause timing shift of functionally
related signals

• Care should be taken to verify that non-
deterministic timing shift not causing
functional issues

• Example: related enables timing shift
causes undesired glitch at receiving
domain

6

en1 R1 R2

en2 R1 R2

Rs

en1

en1’ & en2’

S&H region
clkb

en2

en1’ & en2’

Data

Undesired glitch

Related Control Signals in CDC
• Convergence: signals converge in

driving clock domain

• Re-convergence: signals
converge in receiving clock
domain

• Divergence: signal diverges to
multiple synchronizers

7

A

C

B

A

B

C

А

B’

A’

B’

A’

Current CDC Verification Process

• Static Verification with LINT tools

• Dynamic Verification (Simulation)
with CDC-related assertions &
coverage & models

• Formal Model Checking with CDC
assertions & models

• Lab Testing

8

LINT Static
Verification

RTL Design
constraints

Simulations

Assertions &
CoverageTestbench Assumptions

Formal Analysis
Lab

Testing

Static Verification with LINT Tools
• Topology-based verification of constrained

RTL design:
– Extract clock domain crossings
– Validate the synchronizer patterns correctness

at clock domain crossings
– Extract divergence, convergence and

reconvergence cases
– Generate assertions for functional verification

• Problems:
– Lint Tools cannot fully verify CDC issues
– Design constraints may be wrong &

incomplete

9

clka clkb

clkc

Fully verified

Partially verified,
Assertions generated

Wrong & Missing
patterns

LINT Static
Verification

RTL Design
constraints

Simulation-based CDC verification
• Add LINT-generation assertions to verification

environment
• Optionally, use synchronizers with random CDC

jitter modeling
• Ensure functional tests & regressions pass with

no assertion failures
• Use functional coverage to improve tests

quality for CDC checking
• Problems:

– Need to verify all possible delay cominations on
clock domain crossings

– RTL checking may miss timing issues & CDC-
specific test scenarios

– Gate-level sims: long simulation times, small
amount of tests

10

RTL Simulations

Assertions &
CoverageTestbench

Gate-level
Simulations

CDC functional verification may
be incomplete

CDC Formal Analysis
• Add LINT-generation assertions to

verification environment
• Optionally, use synchronizers with random

CDC jitter modeling
• Add assumptions to constrain design

behavior

• Problems:
– May not prove all CDC assertions due to large

design size
– Formal constraints (assumptions) may be wrong

& functionally incomplete

Assertions &
Coverage Assumptions

Formal Analysis

clka clkb

clkc

Proved

Proved based
on assumptions

Cannot prove

Assum
ptions

Lab Testing for CDC Verification
• Lab Testing verifies real design,

including functionality and timing
• May reveal CDC-related issues right

away
• However, some CDC-related issues

may remain undiscovered due to:
– Clock sources variations
– Process, Voltage, Temperature

variations during device usage

12

Implementation

RTL Design
constraints

Lab Testing

CDC Verification Completeness

CDC Verification Completeness

LINTing Simulation Formal Lab Testing Not proved

13

• Each CDC verification method:
– Not providing complete confidence
– May be based on wrong & incomplete

input data (design constraints, test
vectors, assumptions)

• Mission-critical multi-clock FPGA
designs require another “integrated”
CDC verification method

• Solution : CDC Jitter emulation in
FPGA testing

CDC Jitter Concept
• CDC jitter models unpredictable

synchronizer delay when
metastability occurs as a result of
Sample & Hold Violation at first
synchronizer register:

• CDC jitter can be modeled for
simulation & formal analysis:
– Minimum 3 FF stages in synchronizer
– Using $random function

14

S R1 R2

S

rclk

R1 R2 R3

$random

Synthesizable CDC Jitter model

• Use synthesizable Ring-Oscillator
randomizer to randomly select R2
or R3 stages values

• Asynchronous Enable input to
enable & disable randomization for
debug purposes

15

R1 R2 R3

Rnd_gen

R1 R2 R3

En

Din

Dout

Din Dout

One-bit Randomizer Design
• Use Ring oscillator for in-FPGA

Randomization:
– Non-deterministic value captured at R1

due to metastability effect

– Single NAND in the ring to increase the
frequency of metastability events

– Two flip-flops (synchronizer) required to
stop metastable values propagation

– Asynchronous Enable signal to enable /
disable oscillations:

• Saves power
• Sets randomizer to pre-defined value

16

R1 R2En

rclk

osc

osc

rclk

Single-bit Randomizer Code

• Use “ASYNC_REG” in Xilinx and similar
attributes in Intel FPGA to place
synchronizer registers “as close as
possible” (in same slice)

• Use attributes / LCELL instance to
prevent ring oscillator optimization
(removal)

• Use ALLOW_COMBINATORIAL_LOOPS
attribute on ring oscillator net

17

module bit_rng (
input clk, en,
output rnd_out

);
(* ASYNC_REG = "TRUE" *) reg meta, sync;

// inverter chain oscillator
(*DONT_TOUCH= "true"*) wire osc;
assign osc = ~(osc & en);

always @(posedge clk) begin
meta <= osc;
sync <= meta;
end

assign rnd_out = sync;

endmodule

RTL

Constraint
set_property ALLOW_COMBINATORIAL_LOOPS true [get_nets osc]

Synchronizer Model Code & Schematics

18

module rnd_sync(
input clk, din, en, output dout

);
(* ASYNC_REG = "TRUE" *) reg meta,
sync1, sync2;

wire sel;

bit_rng sel_rng (clk, en, sel);

always @(posedge clk) begin
meta <= din;
sync1 <= meta;
sync2 <= sync1;

end
assign dout = (sel)? sync1 : sync2;
endmodule

rnd_sync

bit_rng

Re-usable Synchronizer Model
• Re-use synchronizer model between

Lab Verification, Simulation and
Formal Analysis:
– Lab Verification : Instantiate bit

randomizer instance

– Simulation: randomize MUX select signal

– Formal Analysis: Allow Formal tools to
treat disconnected MUX select signal as
an unconstrained input signal

19

module rnd_sync(
input clk, din, en, output dout

);
(* ASYNC_REG = "TRUE" *) reg meta,
sync1, sync2;

wire sel;

`ifdef SYN
bit_rng sel_rng (clk, en, sel);

`elseif FORMAL
// nothing : sel becomes primary input
// for formal tools

`else
// Simulation, random selection

always @(posedge clk)
sel <= {$random}%2;

`endif

always @(posedge clk) begin
meta <= din;
sync1 <= meta;
sync2 <= sync1;

end
assign dout = (sel)? sync1 : sync2;
endmodule

Using Sync Models for Reconvergence
• Using LINT tools, identify reconvergence

logic & related synchronizers
• For each reconvergence case, replace

related synchronizers with synchronizer
models

• For each reconvergence group, tie
synchronizer models enable together and
connect them to dedicated CSR

• Enable / Disable each reconvergence
group for verification / debug purposes

20

R1

R1 R2

Rc

R2

rnd_sync

Rc

rnd_sync

sync_enable

Enhanced CDC Verification Flow

• Use LINT tools to verify CDC topologies
• Replace all synchronizers with synchronizer models
• Group and connect sync models enables to dedicated control regs

– group sync models enables related to same reconvergence logic

• Implement FPGA with Sync models, turn on all sync enables and run
Lab Testing

• In a case of failure, control sync enables values to localize the problem
• Use simulation & formal methods to identify CDC issues in failing

design part

21

Enhanced CDC Verification Challenges
• In Lab Testing, hard to get synchronizer

delay combinations causing design failure
• Possible solution:

– Add Shift Register LUT to each synchronizer
– Stop design clock on CDC assertion failure
– Use ChipScope to read out SRL values

• Problems:
– Need to introduce more complicated logic to

design
– CDC-related assertion failure may occur much

later in design : SRL length may not be sufficient

22

meta sync1 sync2

Random
Generator

In

Out

En

SRL

Keep past random values

Localizing CDC failures
• Use LINT tools to identify reconvergence

logic
• Connect sync enables in same

reconvergence group to same control
• For other CDC cases, group sync enables

connections following design hierarchy
• Upon CDC failure:

1. Disable all Sync randomizer to guarantee
Failure belongs to CDC

2. Gradually re-enable synchronizer groups to
localize failure

23

B2B1

RC1

RC2
Sync RND
enables

Summary

• Synthesizable CDC Jitter models enable extensive CDC
verification for mission-critical FPGA designs

• CDC Jitter models in implemented FPGA design to
enhance CDC effect, verifying hidden corner cases in
real hardware

• Complements and enhances current CDC Linting &
Simulation & Formal verification process

• Applicable for mission-critical verification of both FPGA
and ASIC designs, with FPGA prototyping

24

CDC

Thanks for your attention!
Any questions?

25

	FPGA-based Clock Domain Crossing Validation for Safety-Critical Designs
	Agenda
	CDC Design Issues : Metastability
	Metastability solution: Synchronizer
	Non-determinism with Synchronizers
	Transferring related signals
	Related Control Signals in CDC
	Current CDC Verification Process
	Static Verification with LINT Tools
	Simulation-based CDC verification
	CDC Formal Analysis
	Lab Testing for CDC Verification
	CDC Verification Completeness
	CDC Jitter Concept
	Synthesizable CDC Jitter model
	One-bit Randomizer Design
	Single-bit Randomizer Code
	Synchronizer Model Code & Schematics
	Re-usable Synchronizer Model
	Using Sync Models for Reconvergence
	Enhanced CDC Verification Flow
	Enhanced CDC Verification Challenges
	Localizing CDC failures
	Summary
	Slide Number 25

