
Formal Verification Tutorial –

Breaking Through the Knowledge Barrier

Sean Safarpour - Synopsys, Inc.

Iain Singleton - Synopsys, Inc.

Shaun Feng - Samsung Austin R&D Center

Syed Suhaib - Nvidia Corp.

Mandar Munishwar - Qualcomm, Inc.

Agenda

• Introduction : Sean Safarpour (20 min)

• Induction & Invariants – Steps to Convergence : Iain Singleton (45 min)

• Efficient Formal Modeling Techniques : Shaun Feng (45 min)

Break (10 min)

• Architectural Formal Verification for Coherency : Syed Suhaib (45 min)

• Formal Sign-off : Mandar Munishwar (45 min)

2

Introduction

Sean Safarpour, Synopsys

Email: seans@synopsys.com

Formal Key Enabler for “Shift Left”

Project Time

B
u

g
s
 F

o
u

n
d

 p
e
r

W
e
e
k

Find Bugs, Debug and Fix

Automate &

Customize

Verification

Reuse & VIP
Debug

Automation

TapeoutSetup Tests

Earlier

Emulation

FPGA Prototyping, Bring-up

& SW Debug

Faster

Simulation

The Verification Questions Remain:
• How can we reduce our overall verification time?

• How can we improve efficiency?

• How can we find the late bugs earlier?

• How can we prevent bugs slipping into Silicon?

Prevent Bugs

Static & Formal

4Sean Safarpour - Synopsys, Inc.

How to Improve Verification

Confidence
• Simulation cycles aren’t scaling

– Need to look at each problem differently

• Let’s break down the verification problem

– Verification plan consists of individual tasks

– Some well suited for simulation

– Some well suited for emulation

– Some well suited for static/formal verification

– Use the right task for the right problem

• Why consider multiple tools in the verification flow?

– Not all problems can be solved by the same approach

– Use the right tool for the right problem

• Find bugs, saves time and $$$

SimulationEmulation

Static

Formal

5Sean Safarpour - Synopsys, Inc.

Complementing Simulation with Formal

• Formal explores design state space exhaustively

• Simulation is not exhaustive but explores deep sequential behavior

CyclesStart State

State Space

6Sean Safarpour - Synopsys, Inc.

Stairway to Formal

• Formal Applications (Apps) solve specific problems very well

• Easy to setup & use & debug

• No need to know or write SVA/assertions,

• No need for formal background/expertise

• Users can gradually tackle more advanced formal problems

Sequential

Equivalence

Checking

Property

Verification

Formal

Signoff

Connectivity

CheckingCode

Coverage

AnalysisAutomatic

Properties

7Sean Safarpour - Synopsys, Inc.

Property Verification

• Formal Property Verification

– Very powerful

– Very flexible: can be deployed on many problems

– Size limited: block/IP level

– Limited to Control Paths

– Exponential problem: no conclusive answer

8Sean Safarpour - Synopsys, Inc.

Nature of the Problem

• Formal Verification problem is exponential in nature

• For hard problems, at some point progress stop

State Space Explored

Time Spent

9Sean Safarpour - Synopsys, Inc.

Nature of the Problem

• Plateau graph:

– When looking at a large number of properties over time

…progress appears to stops

Stage 1: Significant

progress is made quickly

Stage 2: the “knee” of the curve

progress is slowing down

Stage 3: Very few

properties can

converge with

additional time or

resources

of properties

converged

Time spent

10Sean Safarpour - Synopsys, Inc.

Property Verification

• Formal Property Verification

– Very powerful

– Very flexible: can be deployed on many problems

– Size limited: block/IP level

– Limited to Control Paths

– Exponential problem: no conclusive answer

• But in the hands of an expert…

– Size limit can be worked around

– Datapath can be handled

– Exponential effects can be managed

11Sean Safarpour - Synopsys, Inc.

Nature of the Problem

• With some “tricks” / know-how we can jump to another curve

• Might be good enough to solve our problem

State Space Explored

Time Spent

12Sean Safarpour - Synopsys, Inc.

Nature of the Problem

• Plateau graph

– More properties will converge for the same amount of time

of properties

converged

Time spent

13Sean Safarpour - Synopsys, Inc.

Secrets Disclosed

• Through Years of experience and countless projects…

• Formal expert have discovered and mastered techniques to go beyond

limitations

• Presenters will disclose some of their secrets…

– Abstraction techniques

– Symbolic Variables

– Invariants and Induction

– Architectural level checks

– Signing off with formal

14Sean Safarpour - Synopsys, Inc.

Q&A

Agenda

• Introduction : Sean Safarpour (20 min)

• Induction & Invariants – Steps to Convergence : Iain Singleton (45 min)

• Efficient Formal Modeling Techniques : Shaun Feng (45 min)

Break (10 min)

• Architectural Formal Verification for Coherency : Syed Suhaib (45 min)

• Formal Sign-off : Mandar Munishwar (45 min)

16

Induction & Invariants –

Key Steps to Convergence

Iain Singleton - Synopsys, Inc.

Email: isingle@synopsys.com

The Formal Convergence Problem

• The Satisfiability (SAT) problem:

– Given a Boolean expression is there a set of values which will evaluate

the expression to true

– For each variable, n, there are 2n possible values which must be tested

– This creates an exponential NP-complete problem

18

Depth

Time

Iain Singleton - Synopsys, Inc

End

state

Initial

state

State Space Exploration

19Iain Singleton - Synopsys, Inc

Initial

state

End

state

State Space Exploration

20Iain Singleton - Synopsys, Inc

Initial

state

End

state

State Space Exploration

21Iain Singleton - Synopsys, Inc

Improving Convergence

• Not all problems are created equal

– Complexity is impacted by a number of factors

• Overcoming complexity is one of formals biggest challenges

– Abstractions

– Property Decomposition

– Divide and Conquer

– Case Splitting

– Invariants

– Induction

22Iain Singleton - Synopsys, Inc

Invariants

• What is an invariant?

A function, quantity or property which remains unchanged when a

specific transformation is applied

• All assertions can be invariants

• Some invariants can improve convergence

23Iain Singleton - Synopsys, Inc

A

Asserts on outputs

Constraints on inputs

B

Top

Assume Guarantee

• Assume guarantee is used to guarantee constraints by proving them on

the driving logic

• Used as a complement to divide and conquer methodology

• …but can also be used without splitting the design

24Iain Singleton - Synopsys, Inc

Invariants as Helper Properties

• Invariant properties can be used as constraints

– Helps restrict state space

• Safe to assume a proven assertion

• State space reduction can help improve convergence time

25Iain Singleton - Synopsys, Inc

Initial

state

End

state

State Space Exploration

26Iain Singleton - Synopsys, Inc

Initial

state

End

state

Invariant proven!

State Space Exploration

27Iain Singleton - Synopsys, Inc

Level 0

Invariants as Helper Properties

Level 0 Prove

• Sometimes an invariant property will be

almost as difficult to prove as the main

property

• It may be necessary to chain invariants

together in a prove-assume-prove flow

• Prove the easiest properties first, then

slightly harder, then harder etc…

28Iain Singleton - Synopsys, Inc

Level 0

Level 1

Invariants as Helper Properties

• Sometimes an invariant property will be

almost as difficult to prove as the main

property

• It may be necessary to chain invariants

together in a prove-assume-prove flow

• Prove the easiest properties first, then

slightly harder, then harder etc…

Level 0
Assume

Level 1 Prove

29Iain Singleton - Synopsys, Inc

Level 0

Level 1

Invariants as Helper Properties

Level 0

Level 1

Assume

Assume

Target GoalTarget Goal Prove

• Sometimes an invariant property will be

almost as difficult to prove as the main

property

• It may be necessary to chain invariants

together in a prove-assume-prove flow

• Prove the easiest properties first, then

slightly harder, then harder etc…

30Iain Singleton - Synopsys, Inc

Invariants as Helper Properties –

Example (DAC 2014)
Target Property: sampled_in && !sampled_out && count==1 && pop |=> data_o == symb_data

L2: sampled_in && !sampled_out |=> data[ptr_locn] == symb_data

L1: sampled_in && !sampled_out |=> count <= (wptr – rptr)

L1: !sampled_in |=> count == (wptr – rptr)

L0: sampled_in && sampled_out|=> count == 0

L0: !sampled_in |-> !sampled_out

31Iain Singleton - Synopsys, Inc

Invariants as Helper Properties –

Example (DAC 2014)

32Iain Singleton - Synopsys, Inc

Helper Properties – More than Proofs

33

• Using invariants as helper properties can help prove difficult properties

• Helper properties can also exist in the form of covers

• Deep state space bug hunting utilizes helper covers to guide the search

– Simulate to interesting state in cover and run formal from there

Iain Singleton - Synopsys, Inc

Deep State Space Bug Hunting

34

Initial

state

End

state

Iain Singleton - Synopsys, Inc

What Makes a Good Helper Property?

• Invariants for proofs

– Describing relation between signals in design and formal testbench

– Proving simpler properties on the relationship inside COI of target property

– Properties related to the main property (for all DAC invariants antecedents

were a subset of expression in main property)

• Covers for bug hunting

– Hit deep extremes in the design (counters full, credit empty etc.)

– Cover interesting corner cases (long gaps between input/output toggling

etc.)

35Iain Singleton - Synopsys, Inc

Induction

• Induction is another powerful technique which can help with difficult

properties

• An inductive property says that if something is true now, it must be true

in the future

a==b |=> a==b

36Iain Singleton - Synopsys, Inc

Induction and Initial State Abstraction

• Combining induction with initial state abstraction enhances its power

– Antecedent relies on consequent currently being true

– Stops many spurious failures

• Sequential depth problem hugely reduced

• Counterexamples can be reached very quickly

37Iain Singleton - Synopsys, Inc

Induction and Initial State Abstraction

as_state_equal: assert property (design_state == tb_state);

Lots of sequential depth to bug

STOP

INIT

RUN

timer = 8192

count = 4096

STOP

INIT

RUN

timer = 8192

count = 4095

Example – Small State Machine

mismatch

38Iain Singleton - Synopsys, Inc

STOP

INIT

RUN

timer = 8192

count = 4096

STOP

INIT

RUN

timer = 8192

count = 4095
mismatch

as_ind_state_equal: assert property (design_state == tb_state |=> design_state == tb_state);

No reset to design

Depth 1 constraints that design and tb counter and timer are equal in initial state

Instant 2 cycle CEX

Example – Small State Machine

Induction and Initial State Abstraction

39Iain Singleton - Synopsys, Inc

Initial

state

End

state

State Space Exploration

40Iain Singleton - Synopsys, Inc

Induction and Invariants – Combining

the Power

• Finding invariants that will help with convergence is a challenge

• Inductive invariants can be very powerful tools for improving

convergence

• Tool capabilities can be used to help with this

– Find a CEX from a non-reset state

– Construct an inductive invariant property to prove this CEX cannot happen

– Add this CEX as helper property and step forward for new CEX

41Iain Singleton - Synopsys, Inc

Summary

• Formal is being used on bigger and more complex designs

• For successful formal application on such designs advanced
techniques are required

• Induction and invariants are two powerful formal techniques which can
enhance convergence

• Finding helpful invariants can be challenging

• Advanced tool features can be used to help develop inductive
invariants from non-reset design states

• When all else fails – deep state space bug hunting can find difficult
corner cases using formal

42Iain Singleton - Synopsys, Inc

Q&A

Agenda

• Introduction : Sean Safarpour (20 min)

• Induction & Invariants – Steps to Convergence : Iain Singleton (45 min)

• Efficient Formal Modeling Techniques : Shaun Feng (45 min)

Break (10 min)

• Architectural Formal Verification for Coherency : Syed Suhaib (45 min)

• Formal Sign-off : Mandar Munishwar (45 min)

44

Efficient Formal Modeling

Techniques

Xiushan “Shaun” Feng

Samsung Austin R&D Center

Email: s.feng@samsung.com

Agenda

• Formal verification basics

• Abstractions

• Symbolic constants with examples

• Conclusion

46Shaun Feng - Samsung

Formal Verification Basics

Yes

RTL Model

Formal Verification Tool

Assertions + Modeling

Pass
NoDebug

47Shaun Feng - Samsung

Formal Modeling Goals

• Goals:

– Reduce state space – abstraction

– Cut down the number of assertions

– Allow formal to quickly find bugs if there is any

• Approaches:

– Cutpoints/blackboxes/shrinking

– Assume-guarantee (or divide-conquer)

– Symbolic constants

– etc.

48Shaun Feng - Samsung

Agenda

• Formal verification basics

• Abstractions

• Symbolic constants with examples

• Conclusion

49Shaun Feng - Samsung

Cutpoints and Blackboxes

• Can apply to

– Counters

– RAMs/ROMs

– Large arrays

– Math functions

– Unnecessary logic

• Conservative

– No false proven

– Deep proof bounds

• Side effect

– False failings

– May need constraints

…

Cutpoint Applied

…

X

…

RTL Model

…

Blackbox Applied

…
…

…

RTL Model

… …

50Shaun Feng - Samsung

Shrunk Design

• Address space

– Cache coherence needs only one address

• Data size

– 1 bit may be enough for data integrity check

module FOO #(parameter bit_iwdth = 10) (

output reg[bit_width-1:0] AllocPrt,

output reg[127:0] DeAllocData,

input Alloc,

input [127:0] Data,

input DeAlloc,

input DeAllocPtr,

…

)

local param addr_size = 2^bit_width

reg [127:0] MEM[addr_size];

…

assign DeAllocData = MEM[DeAllocPtr];

….

endmodule

module FOO #(parameter bit_width = 1) (

output reg[bit_width-1:0] AllocPrt,

output reg[127:0] DeAllocData,

input Alloc,

input [127:0] Data,

input DeAlloc,

input DeAllocPtr,

…

)

local param addr_size = 2^bit_width

reg MEM[addr_size];

…

assign DeAllocData = {127{1’b0},MEM[DeAllocPtr];

….

endmodule

• FIFO

– Depth of FIFO can be reduced

– IO flopped delay can be removed

• Other symmetric structures

51Shaun Feng - Samsung

Assertion/Design Partition

• Assertion partition

– Grouping assertions with same COI

– Using proven assertions as

assumptions

• Design partition

– Using assertion groups to partition

design

– One formal test for each partition

RTL Model

Assertions

Partition

Assertions

Logic cone
1

Logic cone
2

RTL Model 1

Assertions
Logic cone

1

RTL Model 2

Assertions
Logic cone

2

52Shaun Feng - Samsung

Preloading

• Instead of starting formal at initial state, we can start at a valid pre-

defined state

– Configuration registers

– Counters

– FSM

– Cache/memory

– A witness trace of a cover property

53Shaun Feng - Samsung

Preloading MESI State

CPU 1

MEMORY

S 0 0

CPU 2

I 0 X

0 0

CPU 3

S 0 0

state address value

address value

wr add0 1

54Shaun Feng - Samsung

Counter Abstraction

• Not all values of a counter are valid.

– 32bit counter has 2^32 possible values

– Abstract away the counter and assume possible values.

• Initial values of counters

– Usually, counters are initialized to predefined values (e.g, 0)

– Counter-example can happen with a large counter value – a long

trace to hit

– Counter initial value abstraction helps to shorten the trace

55Shaun Feng - Samsung

Counter Abstraction Example

reg [bit_width-1:0] counter;

always_ff @(posedge clock) begin

if (reset)

`ifdef FORMAL_ON

`else

counter <= ‘b0;

`endif

else if (…)

counter <= counter + 1’b1;

end

Initial Value Abstraction

TCL control file:

cutpoint DUT.counter

assume {condition |-> DUT.counter inside {0, 1, 2, 4}}

Counter Value Abstraction

56Shaun Feng - Samsung

Assume-Guarantee

• General approach:

– Break down a big problem into a few sub-problems

– Assume sub-problems

– Prove big problem with added assumptions

– Prove sub-problems

• Techniques can be used:

– Design partition

– Blackboxes

– Cutpoints

– Assertion re-writing

57Shaun Feng - Samsung

Over Constraints Used as Abstraction

• Over constraints are not always bad

– Smaller state space

– Finer-grain control of inputs

• formal test bench can have both over and under constraints

valid design space

formal space

2^n exponential state space

58Shaun Feng - Samsung

Agenda

• Formal verification basics

• Abstractions

• Symbolic constants

• Conclusion

59Shaun Feng - Samsung

Symbolic Constants

• A random value after reset

• Will hold its value throughout the whole formal proof

Time 0

(@ posedge clk) ##1 $stable(SymC[31:0])

clk

Sym Constant A random number [0..2^32)

…

…

60Shaun Feng - Samsung

Symbolic Constant Examples

• Priority Arbiter

• Round Robin Arbiter

• In order transport example

61Shaun Feng - Samsung

Priority Arbiter

Priority

Arbiter

Req[0]

Req[1]

Gnt[0]

Gnt[1]

Req[N-1] Gnt[N]

.

.

.

.

High

Low

// if m<n, Req[m] has higher prority than Req[n]

// if there is a Req[m], Req[n] cannot be granted

// without grant m first
property priority_pair (m,n);

@(posedge clk) disable iff (~reset_n)

not (((m < n) && req[m] & !gnt[m])

throughout (gnt[n])[->1]));

endproperty

generate

for (genvar m = 0; m<=N; m++) begin

for (genvar n = 0; n<=N; n++) begin

assert property (priority_pair(m,n));

end

end

endgenerate

62Shaun Feng - Samsung

Use Symbolic Constants

• M, N are random values at reset, but will hold the values after reset.

localparam WIDTH = $clog2(N);

logic [WIDTH-1:0] m, n;

ASM_SYM_CONST_m_n: assume property (@(posedge n_clock) disable iff

(!n_resetb)

##1 $stable(m) && $stable(n) && m < N && n < N);

AST_PRI_ARB: assert property (@(posedge n_clock) disable iff (!n_resetb)

not (strong(((m < n) && req[m] & !gnt[m]) throughout (gnt[n])[-

>1])));

);

63Shaun Feng - Samsung

Round Robin Arbiter

• Strong fairness

• Severed request gets the lowest priority

• Rotated priority

0N-1
……

Round Robin Arbiter

…

• Fairness

• One hotness

• Round robin (rotated priority)

requests

grant

Assertion Checks

64Shaun Feng - Samsung

Cases

65

Case 1 N-1 010….

Y X

Y > X, i (X, Y), req[i] ==0

Req X is just served, expect to serve Y later

Case 2 N-1

00000000……………………………………………...000000

X Y

X > Y, Y==0,

i (X, N-1], req[i] ==0

Case 3 N-1
10……..............0

X Y

X > Y, X==N-1,

i [0, Y), req[i] ==0

Case 4 N-1
10…..…….......0

X Y

N>X > Y>0,

i (X, N-1] [0, Y), req[i] ==0

0………........0

1

Shaun Feng - Samsung

localparam WIDTH = $clog2(N);

logic [WIDTH-1:0] X, Y;

ASM_SYM_CONST_X_Y: assume property (@(posedge n_clock) disable iff (!n_resetb)

##1 $stable(X) && $stable(Y) && X < N && Y < N);

generate

for (genvar i = 0; i < N; i++) begin : location_asm

ASM_CASE1: assume property (@(posedge n_clock) disable iff (!n_resetb)

Y > X && Y>i && i>X |-> Req[i]==0);

ASM_CASE2: assume property (@(posedge n_clock) disable iff (!n_resetb)

X > Y && Y ==0 && i > X |-> Req[i]==0);

ASM_CASE3: assume property (@(posedge n_clock) disable iff (!n_resetb)

X > Y && X==N-1 && i < Y |-> Req[i]==0);

ASM_CASE4: assume property (@(posedge n_clock) disable iff (!n_resetb)

X > Y && (i > X | i < Y) |-> Req[i]==0);

end

endgenerate

AST_RR_ARB: assert property (@(posedge n_clock) disable iff (!n_resetb)

##1 $past(Req[X] && Gnt[X]) && Req[Y] && Y !=X

|-> $onehot(Gnt) && Gnt[Y]

);

AST_RR_ONEHOT: assert property (@(posedge n_clock) disable iff (!n_resetb)

$onehot0(Req)

|-> Gnt == Req

);

AST_RR_FAIR: assert property (@(posedge n_clock) disable iff (!n_resetb)

not((Req[X] &&~Gnt[X])[*N])

);

Assertions

66Shaun Feng - Samsung

Zoom in Fairness Assertion

• What happened if N is very big.

AST_RR_FAIR: assert property (@(posedge n_clock) disable iff

(!n_resetb)

not((Req[X]&& ~Gnt[X])[*N]));

AST_RR_FAIR: assert property (@(posedge n_clock) disable iff

(!n_resetb)

X!=Y |-> not(Req[X] throughout Gnt[Y][->2])

);

67Shaun Feng - Samsung

In Order Transport

• Data comes out in order

• No drop of data

• No spurious data comes out

• No duplication of data

DUT
…

B A

!B A
Inputs Bad outputs

B !A

C

A A

68Shaun Feng - Samsung

Modeling

• A standard FIFO is used

– With full/empty state

• Input/output FSMs

• 3-state FSM

– SA: seen A

– SAB: seen A, B

– INIT: initial state

INIT

SA

SAB

A

B A/push SA

A/push SAB
!A/push SAB

!A&!B/push SA

Input monitor state machine

assume property (##1 $stable(A) && $stable(B)

&& A!= B);

69Shaun Feng - Samsung

Modeling – Cont.

INIT

SA

SAB

A

B A/pop

A/pop
!A/pop

!A&!B/pop

Output monitor state machine

ASM_EOC_COND: assume property (

fifo.full || rand_stop

|->

in != A && in!= B && in_vld &&

completed

);

ASM_EOC: assume property (

completed |=> completed && !in_vld

);

Flow control

70Shaun Feng - Samsung

Implementation

DUT
…

INIT

SA

SAB

A

B

INIT

SA

SAB

A

B

FIFO

push pop

pop |-> fifo.out == output_monitor.state

Input monitor Output monitor

Checker:

71Shaun Feng - Samsung

Symbolic Constant in Simulation

• Symbolic constants can not be used directly for simulation.

– $stable()can be replaced by a random number.

localparam WIDTH = $clog2(N);

logic [WIDTH-1:0] m;

`ifdef FORMAL

ASM_SYM_CONST_m: assume property (@(posedge n_clock) disable iff (!n_resetb)

##1 $stable(m) && m< N

);

`else

initial begin

assert(std::randomize(m));

end

`endif

AST_PRI_ARB: assert property (@(posedge n_clock) disable iff (!n_resetb)

not ((req[m] & !gnt[m])[*N])

);

72Shaun Feng - Samsung

Conclusion

• Efficient formal verification modeling techniques are crucial to formal

verification

– Simplify formal modeling code

– Improve runtime

• Abstraction is the key

– Abstractions with cost (false counter examples)

– Understand designs and find the right balance

73Shaun Feng - Samsung

Q&A

Agenda

• Introduction : Sean Safarpour (20 min)

• Induction & Invariants – Steps to Convergence : Iain Singleton (45 min)

• Efficient Formal Modeling Techniques : Shaun Feng (45 min)

Break (10 min)

• Architectural Formal Verification for Coherency : Syed Suhaib (45 min)

• Formal Sign-off : Mandar Munishwar (45 min)

75

Architectural Formal Verification of

Coherency Manager

Syed Suhaib - Nvidia Corp.

Email: ssuhaib@nvidia.com

Agenda

• Coherency Manager

• Verification Methodology

• Coherency Manager’s Architectural Model

• Results

Syed Suhaib - Nvidia

Coherency Manager

Cluster1 Cluster2

Coherency Manager (CM)

Main Memory

DMA
Agents

Cache Cache

Coherency Manager (CM)

Agent2Agent1

Fill

Read

Snoop WrAck

SnpRsp/
WriteBack

Syed Suhaib - Nvidia

Verification Challenges

Syed Suhaib - Nvidia 79

Cluster1 Cluster2

Coherency Manager (CM)

Main Memory

DMA
Agents

Cache Cache

• High Complexity

• Large DUT

• Traditional Simulation Doesn’t Work Well!

– Slow

– Coverage Challenges

– Stub models for multiple Clusters

• Tricky

Verification Challenges

• Formal Verification (FV)

– Impractical to apply FV on entire system

• State space

– May create a custom setup

• Black-box sub-units and add assumptions

• Onion-peeling effort

– Getting rid of non-relevant micro-arch details

Syed Suhaib - Nvidia

Cluster1 Cluster2

Coherency Manager (CM)

Main Memory

DMA
Agents

Cache Cache

Steps of Architectural Verification

1. Code Architectural models of Coherency Manager components affecting

coherency

2. Prove Coherence on interconnection of Architectural models (FPV)

3. Prove Architectural models against Coherency Manager RTL subunits (FPV)

Relevant to
Coherency

Irrelevant to
Coherency

Relevant to
Coherency

Irrelevant to
Coherency

Arch Model

No Model

Arch Model

No Model

Prove
Coherence

CM RTL CM Arch Model

Prove
Arch

Model

Prove
Arch

Model

Syed Suhaib - Nvidia

Coherency Manager Block Diagram

Interface Model

DMA
Agents

Cluster1 I/F
(C1I)

Cluster2 I/F
(C2I)

DMA I/F

Client Interconnect (CIC)

Coherency Engine (CE)

Memory Interconnect (MIC)

Bridge1 Bridge2

MC SYSRAM IO Fabric

Architectural Model

No Model

Cluster1 Cluster2

Syed Suhaib - Nvidia

Coherency

Model

Cluster1 vs. Cluster2 Interface Model

Syed Suhaib - Nvidia

Cluster1 Cluster2

Interface ACE Proprietary

Coherency Protocol MOESI MESI

Cache-line Model Oski ACE VIP Coded in-

house

M O

E S

I

Valid Invalid

Unique Shared

Dirty

Clean

Cluster1 CM

AR

R

AW

W

B

AC

CR

CD

Cluster2 CM

reqrsp

data

reqrsp

data

wrack

Cluster1 Interface (C1I) Model

Syed Suhaib - Nvidia 84

DMA
Agents

Cluster2 I/F
(C2I)

DMA I/F

Client Interconnect (CIC)

Coherency Engine (CE)

Memory Interconnect (MIC)

Cluster1 Cluster2
Coherency

Model

Cluster1 I/F
(C1I)

• Tracks progress of requests for a particular
cache-line

• Read Tracker

• Write Tracker

• Snoop Tracker

• Trackers can be replicated for multiple cache-
lines

Syed Suhaib - Nvidia

Cluster1 Interface (C1I) Model

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

Snoop Tracker

Syed Suhaib - Nvidia 86

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

CIC->C1I

Reset

Snoop Tracker

Syed Suhaib - Nvidia 87

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

WAIT_FOR_

C1I_REQ

MY CIC SNP

REQ,

No FillOwn

Pending

CIC->C1I C1I->Cluster1

Reset

Snoop Tracker

Syed Suhaib - Nvidia 88

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

BLOCK_SNP_

TO_C1I

WAIT_FOR_

C1I_REQ

MY CIC SNP

REQ,

No FillOwn

Pending

MY CIC

SNP REQ,

but Old

FillOwn

pending

CIC->C1I C1I->Cluster1

Reset

Snoop Tracker

Syed Suhaib - Nvidia 89

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

BLOCK_SNP_

TO_C1I

WAIT_FOR_

C1I_REQ

FillOwn Complete

MY CIC SNP

REQ,

No FillOwn

Pending

MY CIC

SNP REQ,

but Old

FillOwn

pending

CIC->C1I C1I->Cluster1

Reset

Snoop Tracker

Syed Suhaib - Nvidia 90

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

BLOCK_SNP_

TO_C1I

WAIT_FOR_

C1I_REQ

FillOwn Complete

WAIT_FOR_

C1I_RSP

MY CIC SNP

REQ,

No FillOwn

Pending

My Snoop

Req sent?

MY CIC

SNP REQ,

but Old

FillOwn

pending

CIC->C1I C1I->Cluster1 Cluster1->C1I

Reset

Snoop Tracker

Syed Suhaib - Nvidia 91

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

BLOCK_SNP_

TO_C1I

WAIT_FOR_

C1I_REQ

FillOwn Complete

WAIT_FOR_

C1I_RSP

WAIT_FOR_

CIC_RSP

My Snoop Rsp rcvd?

MY CIC SNP

REQ,

No FillOwn

Pending

My Snoop

Req sent?

MY CIC

SNP REQ,

but Old

FillOwn

pending

CIC->C1I C1I->Cluster1 Cluster1->C1I

C1I->CIC

Reset

Snoop Tracker

Syed Suhaib - Nvidia 92

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

BLOCK_SNP_

TO_C1I

WAIT_FOR_

C1I_REQ

FillOwn Complete

WAIT_FOR_

C1I_RSP

WAIT_FOR_

CIC_RSP

My Snoop Rsp rcvd?

MY CIC SNP

REQ,

No FillOwn

Pending

My Snoop

Req sent?

MY CIC

SNP REQ,

but Old

FillOwn

pending

MY CIC SNP RSP

CIC->C1I C1I->Cluster1 Cluster1->C1I

C1I->CIC

Reset

Snoop Tracker

Syed Suhaib - Nvidia 93

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

WAIT_FOR_

CIC_REQ

BLOCK_SNP_

TO_C1I

WAIT_FOR_

C1I_REQ

FillOwn Complete

WAIT_FOR_

C1I_RSP

WAIT_FOR_

CIC_RSP

My Snoop Rsp rcvd?

MY CIC

SNP REQ,

No FillOwn

Pending

My Snoop

Req sent?

MY CIC

SNP REQ,

but Old

FillOwn

pending

MY CIC SNP RSP

CIC->C1I C1I->Cluster1 Cluster1->C1I

C1I->CIC

Reset

➢ Properties:

➢ Final Snoop response must be as per original snoop request.

➢ Snoop should push Fillown.

Read Tracker

Syed Suhaib - Nvidia 94

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

➢ Properties:

➢ Read Request Consistency

➢ Read Re-order buffer entry reuse

➢ FIFO ordering rules on RRESP (on per ARID basis)

➢ SoDev Ordering properties

WAIT_FOR_

ACE_REQ

WAIT_FOR_

CIC_REQ

WAIT_FOR_

CIC_RSP

WAIT_FOR_

ACE_RSP

WAIT_FOR_

ACE_ACK

MY FillOwn RSPMY ACE RACK

MY ACE RRSP with RLAST

MY ACE

RD REQ

MY CIC

RD REQ

C1I Properties

• Only 1 outstanding coherent request allowed for a

cache-line

• If cache-line is not Unique, there should not be a dirty

write back

Syed Suhaib - Nvidia

XBAR->C1I

Cluster1 I/F
(C1I)

Client
Interconnect

(CIC)

C1I->Cluster1

Cluster1>C1I

Cluster1

C1I->CIC

Coherency
Engine (CE)

CE->CIC

CIC->CE

CIC->C1I

Coherency Engine Architectural Model

• Snoop Filter

• Generates Proper FillOwn/WriteAck for each

Read/Write request

• Models Full-Address Chain & Hazards

• Doesn’t Model: Data Values

Syed Suhaib - Nvidia

Client Interconnect (CIC)

Coherency Engine (CE)

Memory Interconnect (MIC)

Cluster1 Cluster2 DMA

Components of CE Architectural Model

1. Read Request FIFO

– Serialize read requests.

– CE processes 1 read / address at a time.

2. Top-Of-FIFO State Machine

– Models actions executed by CE to process a single read request / cacheline.

3. Snoop State Machine

– Track outstanding snoops for tracked cacheline address.

4. Write Tracker: Tracks outstanding writebacks from agents.

Syed Suhaib - Nvidia

Top-of-FIFO State Machine

Syed Suhaib - Nvidia

IDLE

Tracked Req

WAIT_

SNOOPS

Snoop

Needed

Read Needed, but older dirty WB waiting for MIC ack Read needed && No Write

Ack pending from MIC

WAIT_

WR_ACK
ISSUE_RD

WAIT_ENTRY_

DEALLOC

Got

MIC

Ack

Snoops done Snoop returned dirty data

Read

Needed

Read Not Needed

originally, or now

Read

Still Needed
Read Issued

Else

Done with Req

CM Architectural Model

Syed Suhaib - Nvidia

Cluster1

Cluster2

Cluster1

I/F (C1I)

Cluster2

I/F (C2I)

Client

Interconnect

(CIC)

Coherency

Engine (CE)

AR/R

AW/B

AC/CR

reqrsp

reqrsp

wrack

reqrsp

reqrsp

wrack

reqrsp

reqrsp

wrack

req

rsp

snoop

rdrsp

wrack

Memory

Interconnect (MIC)

rdreq/wrreq

rddata/wrrsp

Interface Model

Architectural Model

DMA I/F

snpreq

snprsp

DMA Agents
ACE

ownreq

owngnt

Results

• Coherency Verification

$onehot0({ (cl_state_cluster1==Unique),

(cl_state_cluster2==Unique),

(cl_state_dma==Unique) })

• Protocol Compliance

Syed Suhaib - Nvidia

Bugs

• C1I re-orders Read requests with same AXI-ID from cluster1 to

coherency engine (CE).

• C1I sends IsShared=1 for Failed STREX

Syed Suhaib - Nvidia

Cluster1 I/F
(C1I)

Coherency
Engine (CE)

#2,#1 #1,#2

#2#2
#1

Deadlock

#3
Cluster2 I/F

(C2I)

#3 #3

Cluster1 Cluster2

#Snp_2

#1

#3#2

Key Takeaways

• Architectural Formal Verification:

– System level checking.

– FV Applied at various abstraction levels.

• Reduce Complexity

– Prove local properties against RTL

– Example use cases

• Cache Coherency

• Forward progression of retiring instructions

2/21/2018 Syed Suhaib - Nvidia 102

Acronyms

• CM: Coherency Manager

• AFV: Architectural Formal Verification

• C1I: Cluster1 Interface

• C2I: Cluster2 Interface

• DMA I/F: DMA Interface

• CIC: Client Interconnect

• MIC: Memory Interconnect

• CE: Coherency Engine

103Syed Suhaib - Nvidia

Q&A

Agenda

• Introduction : Sean Safarpour (20 min)

• Induction & Invariants – Steps to Convergence : Iain Singleton (45 min)

• Efficient Formal Modeling Techniques : Shaun Feng (45 min)

Break (10 min)

• Architectural Formal Verification for Coherency : Syed Suhaib (45 min)

• Formal Sign-off : Mandar Munishwar (45 min)

105

Formal Sign-Off
What And How?

Mandar Munishwar

Sr. Staff Engineer, Qualcomm

Email: mmunishw@qti.qualcomm.com

Outline

• Introduction

• What is Formal Sign-off

• Steps for Formal Sign-off

– Plan

– Execute

– Measure

• Conclusion

107Mandar Munishwar - Qualcomm

Silicon Bugs …

OCT 1994

APR 2017

JAN 2018

Why these escaped verification ?

Traditional Verification dependent on vectors/stimulus

108Mandar Munishwar - Qualcomm

Impact of Silicon Bugs

1994

2018

109Mandar Munishwar - Qualcomm

What is Formal Sign-Off

• Can my formal setup catch all the design bugs?

110Mandar Munishwar - Qualcomm

What is Formal Sign-Off

• Have I written all the checks

• What is quality of checks?

• Is there any Over constraints?

111Mandar Munishwar - Qualcomm

Front-loading vs. Back-loading

Formal Verification Process

• Identify design blocks

•Functionality to be verified

•7 step Process

PLAN

•Write checkers/covers

•Debug CEX

•Write Constraints

•Run with updated RTL

EXECUTE •Have I written enough
checkers?

•What is the quality of my
checker

•Are my bounds enough deep?

• Is my setup over constrained?

MEASURE

Mandar Munishwar - Qualcomm

PLAN

1. Identify blocks suitable for Formal Sign-off

2. Capture Functional behavior

3. Define Formal Specification Interface

4. Create Requirements Checklist in Natural Language

5. Formalize Natural Language Requirements Checklist

113Mandar Munishwar - Qualcomm

Capture Functional Behavior (step 2)

• Shape of the signal

• Interface relationship

• Causality

• Forward Progress

• Signal Integrity (transport)

114Mandar Munishwar - Qualcomm

Example of Formal Specification Interface

(step 3)

115Mandar Munishwar - Qualcomm

Example of step 4, 5

Interface Name Outputs Desc SVA STATUS Note

SCHD2BMMU

bmmu_gnt signal is a pulse bmmu2schd_bmmu_gnt_is_pulse_a

bmmu2schd_bmmu_no_gnt_if_no_req_a

for each req, bmmu should provide gnt within N cycles bmmu2schd_bmmu_rst_gnt_forward_progress_chk_a

bmmu2schd_bmmu_ini_gnt_forward_progress_chk_a

bmmu2schd_bmmu_pop_gnt_fwd_progress_chk20_a

bmmu2schd_bmmu_dlt_gnt_forward_progress_chk_a

bmmu2schd_bmmu_pwrdn_gnt_forward_progress_chk_a

Interface name signals Constraints SVA

deint interface x 4

llr_dat

llr_valid no valid for 15 cycles after last init gnted by bmmu deint2bmmu_no_data_for_15cyc_after_last_init_gnted_c

llr_usr UID never out of range (less than 20 per bank) deint2bmmu_no_uid_oor_c

forbid invalid uid (uid that is not initialized) deint2bmmu_forbid_invalid_deint_llr_usr_c

same uid cannot be on multiple channels in a given cycle (per uid) deint2bmmu_no_duplicate_uid_across_chnl_c

Checkers

Constraints

116Mandar Munishwar - Qualcomm

Checks for common design

components

• FIFOs

• Counters

• Arbiters

117Mandar Munishwar - Qualcomm

EXECUTE

118Mandar Munishwar - Qualcomm

MEASURE
Is my setup over constrained?

• Code Coverage

Without Constraints With Constraints

Unreachable 5 12

Reached 95 88

95

88

5

12

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

Reached Unreachable

Indicates Over
Constraint

Indicates
dead code

119Mandar Munishwar - Qualcomm

MEASURE
Have I written enough checkers?

• COI Coverage

• < 100% COI Coverage indicates missing checkers

120Mandar Munishwar - Qualcomm

MEASURE
Quality of checkers

• Subjective

• A good job at planning phase will ensure quality

• Diversified checkers

• Technical review with team

121Mandar Munishwar - Qualcomm

MEASURE
Quantifying the Quality of checkers

• Formal Core

122Mandar Munishwar - Qualcomm

Formal-core Coverage

Mandar Munishwar - Qualcomm

100% Formal-core Coverage

• Can we sign-off ?

• Will this setup catch a bug if it is there?

Mandar Munishwar - Qualcomm

Let’s introduce one …

• My checkers are still passing

Mandar Munishwar - Qualcomm

Formal-core Coverage

• As with any other structural coverage, 100 % formal-core coverage

does not mean much

• What are the options?

WELCOME to MUTATION

Mandar Munishwar - Qualcomm

What is Mutation?

• Modifying the DUT in small ways

• Can this modification be detected by checkers?

Original
Mutant

Mandar Munishwar - Qualcomm

Applying Mutation – 1st Iteration

Mandar Munishwar - Qualcomm

Applying Mutation – 2nd Iteration

Mandar Munishwar - Qualcomm

What Are The Ways To Mutate?

Mandar Munishwar - Qualcomm

Mutant Classification

• Top Outputs Connectivity

• Reset Condition True

• Internal Connectivity

• Synchronous Flow Control

• Synchronous Dead Assign

• Combo Logic Control Flow

Mandar Munishwar - Qualcomm

Example of TopOutput Connectivity

Faults

• module topMod (output out1…);

• assign out1 = (opsa0en == 1'b1) ? ('0) : // OutputPortStuckAt0

• (opsa1en == 1'b1) ? ('1) : // OutputPortStuckAt1

• (opnegen == 1'b1) ? (~orig_out1) : // OutputPortNegated

• orig_out1 ;

• …

• endmodule

Mandar Munishwar - Qualcomm

Example of ResetCondition True Fault

always @(posedge clk or negedge rstn) begin

if (!rstn) begin

….

end else …

….

always @(posedge clk or negedge rstn) begin

if (1’b1) begin

….

end else …

….

Original

Mutated

Mandar Munishwar - Qualcomm

Summary

• A well executed and measured plan can take us to the goal of

Formal sign-off

• Plan

– Well Defined process with diversified checkers identified

• Execution

– All checkers passing or acceptable bounded depth

• Measurement

– No over constraint

– 100% Formal Core

– Extra confidence with Mutation analysis

Mandar Munishwar - Qualcomm

Thank You

135

