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Floating-Point Arithmetic

• Compared to fixed-point arithmetic
– Covers wider range of values
– No loss of precision, higher accuracy
– More complex hardware
– Notoriously hard to verify

Sign
1 bit

Exponent
5 / 8 / 11 / … bits

Mantissa
10 / 23 / 52 / … bits

Total of 16/32/64/… bits

IEEE 754 Half / Single / Double / … Precision



• Simulation misses bugs
– Exhaustive verification is not feasible

• One and a half engineer-years to cover all scenarios
– Many implementation-dependent corner cases

• Sequential Equivalence Checking (SEC) of RTL against reference model
– Requires detailed understanding of both implementations
– Reference model (C++/SystemC) needs adaptation
– High effort, little reusability

• Formal Assertion-Based VIP (ABVIP
– Xilinx tried but ran into usability and convergence issues
– Xilinx worked with OneSpin to develop a new solution

Functional Verification 



Floating-Point ABVIP
FP ABVIP
• SystemVerilog package
• ieee_... functions and data types
• No reference model required
• Minimal design knowledge by end user

FPU
design

FP ABVIP

OneSpin’s 
Formal Tool

Fail / Debug

Full Proof

ABVIP Configuration
• Precision
• Rounding
• Latency
• …

OneSpin Tool
• FP ABVIP available
• Proof engines/strategies for arithmetic
• Debug with FP data types



Floating-Point ABVIP
• Compliant to IEEE-754
• Supports

– Half, single and double precision formats
– All the rounding modes and the exception flags
– Tininess before or after rounding
– Add, sub, mult, absolute value, negation, and all comparison operations
– Conversion functions also included

• Customizable
– Custom precision
– Intended deviations from standard



FP ABVIP Property Template

Operation 
trigger

Rounding 
modeOperands

Cycles # to 
compute 
the result

Unsupported 
can be disabled

Design result

FP ABVIP
Package



Xilinx FPU

• Supports addition, subtraction and multiplication
• Tool found a previously undiscovered bug in the module interface 

constraints
• General and specific scenarios assertions created

– e.g. operations with signalling or quiet NaN
• Design bugs previously found in simulation and emulation

– FP ABVIP found them within seconds



Results 

• Open Cores

• Xilinx FPU
Operation # bugs Setup effort Runtime Result

FADD 0 4 days 3 minutes Full proof

FSUB 0 3 days 1 minute Full proof

FMUL 1 15 days 4 minutes Full proof

Operation # bugs Setup effort Runtime Result

FADD 0 30 minutes 52 seconds Full proof

FSUB 1 5 minutes 1 minute to find a bug Fail

FMUL 2 5 minutes 1 second to find a bug Fail

Tool and FPU App familiarization and 
constraints setup



Formal Coverage

• Metric-driven verification
– OneSpin Quantify

• Answers
– How much has been verified?
– What is the next assertion to write?
– Is my design over-constrained?

• User written assertions and covers
• Overall coverage ~90%
• Holes point to logic not contributing 

floating-point operations



Formal coverage results
Verified with assertionsVerified with assertions



Conclusions
• FP ABVIP is compliant with the IEEE 754 standard 
• Solution is easy to set up and use
• Excellent experience for Xilinx FPU project

– Low effort
– Uncovered corner-case bugs within seconds
– Exhaustive verification with full proofs, within minutes
– High coverage

• Current limitations
– No support for iterative operations (division, square root)
– Additional effort may be required to achieve full proofs  
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