DESIGHN aAMD VERIFICATIOMN™

COMNFERENCE AMD EXHIBITIHOMN

Formal Verification
of Floating-Point Hardware
with Assertion-Based VIP

Ravi Ram, Adam Elkins, Adnan Pratama — Xilinx Inc.
Sasa Stamenkovic, Sven Beyer, Sergio Marchese — OneSpin Solutions

|
‘ v
onespin t. XILINX.

1€

DESIGHN aAMD VERIFICATIOMN™

DVEON Agenda

* Floating-point (FP) arithmetic

e Functional verification of FP hardware
 Formal verification with assertion-based VIP
* Results

e Conclusions

DESIGHN aAMD VERIFICATIOMN™

eYois Floating-Point Arithmetic

 Compared to fixed-point arithmetic
— Covers wider range of values
— No loss of precision, higher accuracy
— More complex hardware

— Notoriously hard to verify
Total of 16/32/64/... bits

A

Mantissa

10/23 /52 / ... bits

IEEE 754 Half / Single / Double / ... Precision

DESIGHN aAMD VERIFICATIOMN™

DV GO Functional Verification

e Simulation misses bugs

— Exhaustive verification is not feasible
* One and a half engineer-years to cover all scenarios

— Many implementation-dependent corner cases

e Sequential Equivalence Checking (SEC) of RTL against reference model
— Requires detailed understanding of both implementations
— Reference model (C++/SystemC) needs adaptation
— High effort, little reusability

* Formal Assertion-Based VIP (ABVIP
— Xilinx tried but ran into usability and convergence issues
— Xilinx worked with OneSpin to develop a new solution

DESIGHN aAMD VERIFICATIOMN™

PYoiet: Floating-Point ABVIP
FP ABVIP r— —
» SystemVerilog package v

FH §
e ieee_... functions and data t
eee_... functions and data types esign N proof

* No reference model required 1

 Minimal design knowledge by end user ABVIP Configuration

e Precision

OneSpin Tool + Rounding
* FP ABVIP avalilable

* Proof engines/strategies for arithmetic
 Debug with FP data types

* Latency

DESIGHN aAMD VERIFICATIOMN™

s Floating-Point ABVIP

e Compliant to IEEE-754

* Supports
— Half, single and double precision formats
— All the rounding modes and the exception flags
— Tininess before or after rounding
— Add, sub, mult, absolute value, negation, and all comparison operations
— Conversion functions also included
 Customizable
— Custom precision
— Intended deviations from standard

2018

DESIGHN aAMD VERIFICATIOMN™

Yo FP ABVIP Property Template

FP ABVIP

Package

property fp_add p;
ieee with flags t expected;
@(posedge clk)
disable iff (~reset_n)

(<trigger to add>, expected/= ieee_add(.a(op_a), .b(op_b), .rm(rm)))
| =>
##<latency>
result valid && ieee check result(.expected(expected),
.actual(actual),
.supported_flags(supported flags));
endproperty

fp_add _a : assert property (fp_add_p)ﬂ

DESIGHN aAMD VERIFICATIOMN™

EVEON Xilinx FPU

e Supports addition, subtraction and multiplication

* Tool found a previously undiscovered bug in the module interface
constraints

* General and specific scenarios assertions created
— e.g. operations with signalling or quiet NaN

* Design bugs previously found in simulation and emulation
— FP ABVIP found them within seconds

2018

DESIGHN aAMD VERIFICATIOMN™

DV

COMNFERENCE AMD EXHIBITIHOMN R e S l | I t S

* Open Cores

Operation | # bugs | Setup effort Runtime Result
FADD 0 30 minutes 52 seconds Full proof
FSUB 1 5 minutes 1 minute to find a bug Fail
FMUL 2 5 minutes 1 second to find a bug Fail
e Xilinx FPU , ,
Operation | # bugs | Setup effort Runtime Result

FADD 0 4 days 3 minutes Full proof

FSUB 0 3 days 1 minute Full proof

FMUL 1 15 days 4 minutes Full proof

Tool and FPU App familiarization and
constraints setup

DESIGHN aAMD VERIFICATIOMN™

BVEON Formal Coverage

* Metric-driven verification
— OneSpin Quantify
e Answers
— How much has been verified?
— What Is the next assertion to write?
— Is my design over-constrained?

e User written assertions and covers
* Overall coverage ~90%

e Holes point to logic not contributing - deadcode
floating-point operations

verified code

verification hole

constrained
code

2018

DESIGHN aAMD VERIFICATIOMN™

eYo=rs Formal coverage results

Verified with assertions

Structural Coverage Overview

Status Statements Branches

R reached 0 0.00% 0 0.00%
U unknown 0 0.00% 2 6.90%
OR unobserved 1 054% 0 0.00%
o oo 0 fpoo
(o [comranes [T o oo
C 0 oo 12

Sum quantify targets 10¢ I 29

Code Status Statements Branches

xXu excluded by user 697 75.84% 286 B80.38%
Xr excluded redundant code 36 [392% 5 |1.56%
Xy excluded verification code 0 0.00% 0 0.00%
0fLd quantity targets 1B6 20.24% 29 9.06%
Sum total code 919 320

DESIGHN aAMD VERIFICATIOMN™

DVEDN Conclusions

* FP ABVIP is compliant with the IEEE 754 standard
e Solution Is easy to set up and use

* Excellent experience for Xilinx FPU project
— Low effort
— Uncovered corner-case bugs within seconds
— Exhaustive verification with full proofs, within minutes
— High coverage
e Current limitations
— No support for iterative operations (division, square root)
— Additional effort may be required to achieve full proofs

	Formal Verification �of Floating-Point Hardware �with Assertion-Based VIP
	Agenda
	Floating-Point Arithmetic
	Functional Verification
	Floating-Point ABVIP
	Floating-Point ABVIP
	FP ABVIP Property Template
	Xilinx FPU
	Results
	Formal Coverage
	Formal coverage results
	Conclusions

