
Formal Verification
of Floating-Point Hardware
with Assertion-Based VIP

Ravi Ram, Adam Elkins, Adnan Pratama – Xilinx Inc.
Sasa Stamenkovic, Sven Beyer, Sergio Marchese – OneSpin Solutions

Agenda

• Floating-point (FP) arithmetic
• Functional verification of FP hardware
• Formal verification with assertion-based VIP
• Results
• Conclusions

Floating-Point Arithmetic

• Compared to fixed-point arithmetic
– Covers wider range of values
– No loss of precision, higher accuracy
– More complex hardware
– Notoriously hard to verify

Sign
1 bit

Exponent
5 / 8 / 11 / … bits

Mantissa
10 / 23 / 52 / … bits

Total of 16/32/64/… bits

IEEE 754 Half / Single / Double / … Precision

• Simulation misses bugs
– Exhaustive verification is not feasible

• One and a half engineer-years to cover all scenarios
– Many implementation-dependent corner cases

• Sequential Equivalence Checking (SEC) of RTL against reference model
– Requires detailed understanding of both implementations
– Reference model (C++/SystemC) needs adaptation
– High effort, little reusability

• Formal Assertion-Based VIP (ABVIP
– Xilinx tried but ran into usability and convergence issues
– Xilinx worked with OneSpin to develop a new solution

Functional Verification

Floating-Point ABVIP
FP ABVIP
• SystemVerilog package
• ieee_... functions and data types
• No reference model required
• Minimal design knowledge by end user

FPU
design

FP ABVIP

OneSpin’s
Formal Tool

Fail / Debug

Full Proof

ABVIP Configuration
• Precision
• Rounding
• Latency
• …

OneSpin Tool
• FP ABVIP available
• Proof engines/strategies for arithmetic
• Debug with FP data types

Floating-Point ABVIP
• Compliant to IEEE-754
• Supports

– Half, single and double precision formats
– All the rounding modes and the exception flags
– Tininess before or after rounding
– Add, sub, mult, absolute value, negation, and all comparison operations
– Conversion functions also included

• Customizable
– Custom precision
– Intended deviations from standard

FP ABVIP Property Template

Operation
trigger

Rounding
modeOperands

Cycles # to
compute
the result

Unsupported
can be disabled

Design result

FP ABVIP
Package

Xilinx FPU

• Supports addition, subtraction and multiplication
• Tool found a previously undiscovered bug in the module interface

constraints
• General and specific scenarios assertions created

– e.g. operations with signalling or quiet NaN
• Design bugs previously found in simulation and emulation

– FP ABVIP found them within seconds

Results

• Open Cores

• Xilinx FPU
Operation # bugs Setup effort Runtime Result

FADD 0 4 days 3 minutes Full proof

FSUB 0 3 days 1 minute Full proof

FMUL 1 15 days 4 minutes Full proof

Operation # bugs Setup effort Runtime Result

FADD 0 30 minutes 52 seconds Full proof

FSUB 1 5 minutes 1 minute to find a bug Fail

FMUL 2 5 minutes 1 second to find a bug Fail

Tool and FPU App familiarization and
constraints setup

Formal Coverage

• Metric-driven verification
– OneSpin Quantify

• Answers
– How much has been verified?
– What is the next assertion to write?
– Is my design over-constrained?

• User written assertions and covers
• Overall coverage ~90%
• Holes point to logic not contributing

floating-point operations

Formal coverage results
Verified with assertionsVerified with assertions

Conclusions
• FP ABVIP is compliant with the IEEE 754 standard
• Solution is easy to set up and use
• Excellent experience for Xilinx FPU project

– Low effort
– Uncovered corner-case bugs within seconds
– Exhaustive verification with full proofs, within minutes
– High coverage

• Current limitations
– No support for iterative operations (division, square root)
– Additional effort may be required to achieve full proofs

	Formal Verification �of Floating-Point Hardware �with Assertion-Based VIP
	Agenda
	Floating-Point Arithmetic
	Functional Verification
	Floating-Point ABVIP
	Floating-Point ABVIP
	FP ABVIP Property Template
	Xilinx FPU
	Results
	Formal Coverage
	Formal coverage results
	Conclusions

