DESIGHN aAMD VERIFICATIOMN™

COMNFERENCE AMD EXHIBITIHOMN

Formal Verification of
Connections at SoC-level

Penny Yang, Prasun Das, Yuya Kao, Mingchu Kuo

SYNOPSYS

DESIGHN aAMD VERIFICATIOMN™

 Complete verification of connections at SoC level is a fundamental
reguirement to ensure correct operation

DESIGHN aAMD VERIFICATIOMN™

RY e, SoC Challenges — Padmux

— Larger gate count, but limited 1/O pins

— Leads to shared I/O pins, muxing to control access

— Requires significant high level interconnect wiring

— Introduces significant possibility of errors

— Hard to do ECO because combinational logic is often optimized after

synthesis
Configurable Input Path Connectivity Configurable Output Path Connectivity
Pad Module C
Module X Module Y Pad

Mux Control Mux Control

DESIGHN aAMD VERIFICATIOMN™

Zadzimly SoC Challenges — Global reset

* SoC designs have multiple sources of global reset, such as power-on
reset, hardware reset, software reset and watchdog timer reset.

* These are top-level signals that should be connected to all
asynchronous resets in the design, I.e., all asynchronous resets in the
design should be asserted when the global reset is asserted.

* Taking watchdog reset verification as an example, a directed test
created to verify if the watchdog reset operation works correctly must
trigger the watchdog reset condition in the middle of the simulation to
check if the watchdog reset has propagated to all the intended flip-flops
In the entire SoC.

DESIGHN aAMD VERIFICATIOMN™

DV Background

* Before using formal verification, chip level simulation was used to verify
the connections at SoC-level.

— Fewer simulation patterns in chip level environment
— Corner case bugs sometimes appeared in uncovered codes
— Integration of chip level test-bench often comes late in a project cycle

* To be able to shift left, formal verification is adopted due to its
exhaustiveness and easy setup.

Earlier...

Virtual Prototyping
Architecture

Static & F | NN\K Emulation
atic & Forma NN\ N § ina-
Environment Setup : O\ i P SW‘Brmg L
Verification IP AN\ g
Software Development
System Validation

X
[
=
Lo
]
o
o
c
2
(=]
L
(7]
o
=
m

| —

DESIGHN aAMD VERIFICATIOMN™

DVCOIN Motivation

* Formal property verification has been proven to be a reliable method
for different kinds of designs’ verification signoff. However,

— Run time could be several days and the iterations was very slow.
— Manual abstraction is required to achieve full proof

— Require design knowledge to partition the SoC into several different sub-
systems, black-box the modules that were not used, constrain the designs
with constants and assumptions.

— Several months to work on these settings from the beginning till the end of
the project
* Trial and error was time consuming and manual abstraction was also
prone to false alarms.

svesns Jsing formal Application on
connectivity checking

* Formal Applications are customized for easy setup, use, and debug.

* |t Is perfect for beginners because there is no need to have formal
packground or knowledge to write SVA.

* Problems which are ideal for formal connectivity checking
— SoC 1/O Connectivity
— Block pin muxing/demuxing
— Connectivity & constant checking of macros
— Scan mode connectivity & constant checking
— Reset and global signal connectivity
— Registers to Debug Bus

DESIGHN aAMD VERIFICATIOMN™

e, Difference between CC and FPV
Connectivity Checks Formal Property Verification
e Value check and directional connection * Temporal and combinatorial signal
e With auto-blackboxing mechanism relationships
e Can debug through schematic + * No notion of direction in SVA
waveform + text — “Out2 == P0o2" same as “Po2==0ut2”

 Manual partition and abstraction
e Can debug through waveform

2018

DESIGHN aAMD VERIFICATIOMN™

Y= Connectivity Checking App

e Tcl commands, CSV
formats and Excel files are

Most common

Su pported aS the input add cc -srec pad —dest ind -enable \

format.
e User can debug the logics

In the path using

schematics/text/waveform.

input format
ENABLE SOURCE) - NN p
“chip_toptest_ct[5] chip top.test ctd] < lds) 0.5
chip_toputest_c[$] chip toptest] |lsd) 0.5
{ibe && ~obe} -name inpath dhip_toptest] dip ates el i) o se
] chip_toptest_ct5] chip toptest etll] [lpe) to_pe
chip_toputest_ct[$] chip_toptest] [lod) to.pd

(chip_top.test ct5) &R “chip top.port ctlS] [chip_top.mod,

[ibe dingbe dout} |from_moda

|

———————————————————————

SoC Connectivity Checking

VC Formal

Application

2018

DESIGHN aAMD VERIFICATIOMN™

=Xes Input Formats

Generate reset and register list
report ff reset -list

Reset path

e Source set cpu_rst_en u_reset.wdr

: : source reset checker.tcl
* Destination

¢ E bl #reset checker.tcl
nanie add cc -name cl -src 0 -dest u cpu.resetn_i -enable $cpu rst_en
e Name add cc -name c2 -src 1 -dest u cpu.gl.reset 1 -enable $cpu rst en

]
M

C D 9= 0 &

FFFFF « : = i - o | e SOTC o T o<
. Start I i n e A £ N O - A Ll B N S - =] Form £~ Filter~ Select~
D x J | outiB =
—_— = 5 .)
To

-

e Comment pattern
— 2 Pi2 top.myCoreA.In2 top.in_mux_sel ==1'b0 in2A
3 Pi3 top.myCoreB.Inl1 top.in_mux_sel==1'bl1 inlB
4 top.myCoreA.Out2 Po2 top.out_mux_sel=1'b0 out2A
— 5 |top.myCoreB.Outl Po2 top.out_mux_sel=1b1 [outiB]

[+]

#padmux_checker.csv
u_cksys.tck, u 10.PAD MCK.O,{gpio_mode==1}, al
u 10.PAD MDAT.I1, u cksys.dsp out,{gpio _mode==6}, a2

2018

DESIGHN aAMD VERIFICATIOMN™

=x== Debug Structurally Disconnected Path

e Structurally disconnected check

[Exrror] CC_UIDO1l7: Connection 'InA2 2 Pil' is structurally disconnected.
No path from source to target. Please fix the connection

* Debug specific path

g1 PIN-BIDIR west_mux.pad2 (HS = multi_path_switch)
g2 | PORT-BIDIR west_mux.pad2 (HS = inout_mux)

83 | OPERATOR west_mux.out2 CONMECT (HS = inout_mux)
g4 PORT-0UT west_mux.out2 (HS = inout_mux)

g5 |PIN-0UT west_mux.out2 (HS = multi_path_switch)
g5 |PIN-IN east_mux.B3 (HS = multi_path_switch)

a7 |PORT-IN east_mux.B3 (HS = 1nout_mux)

98 OPERATOR east_mux.muxB MUX (HS = inout_mux)

99 OPERATOR east_mux.pad2 BUF_IF (HS = inout_mux)
100 | FORT-BIDIR east_mux.pad2 (HS = inout_mux)
101 | PIN-BIDIR east_mux.padz (HS = multi_path_switch)
162 3 internal objects
18311

i

« Message |VC Formal Console

2018

DESIGHN aAMD VERIFICATIOMN™

DV

Y= Debugging in Schematic View

Shows source,
destination &

enables
Signal values

annotated on
schematic

Double click on
input to show
driving logic

Select cell, right
mouse click to
show RTL source

Select cell, net or
port and RMB
menu: copy signal
path

2018

DESIGHN aAMD VERIFICATIOMN™
DVCOIN

COMNFERENCE AMD EXHIBITIHOMN

Debugging in a single GUI platform

M <Verdi:

FBle View Source Trace Simulation
® & 2

B & s a Appmode: CC :J
L5 E

& D

Task and
VCFETaskList

Status

Task List

Name

[Progress | Result

nTraceMain: 1> topcce topce (topce.v)
Tools Window Help

T

v O3 G

Show all or

selected resulis

RMB click to
get menu

Show

Schematic or
Waveform

Instance ! Declaration | VCETaskList |

YCEShell

List Results
Connectivity List:
> Connection

Connection: 7
[0] connected
unconnected

21 connected

[
L
0 [3] unconnected
window [4] connected
[
[

-

Tcl command

5] connected
B] connected

P~

1
vef>]

@ Message |YCEShell

Selected;

|0 | veF GoalList
b' Time [12H | Max Cycle :1 Enter name Matcl e ;l Targets ;] XAl % X (%
Verification Targets: ALL |
| I status I name lvacuity |witnessl engine I SOurce_expr I enable_expr I target expr [type I elapsed _time '
(3] 3¢ [Piln_21nAl P el Pil) i myCoreA.InAl structural 00:00:00
;; v Pil_n_2_InAl_inv & -us t3 Pil 1 ~myCoreA.InAl structural 00:00:00
? v Pil_n_inv_2 InAl @ us 3 ~Pil I myCoreA InAl structural 00:00:00
£h|
la] & Pi2_2 InA2 - p ural 00:00:00
:i ¥ | Pi3_2_Pol ¥ ural 00:00:00
lel Pi6_2_Po2 @ ural 00:00:00
7| « |bitselect ural 00:00:00
Properties sed|5] - failed]2] @]
o *Srcl:topccw VCF.GoaiLlsti ' Check Selected Propertles
" Clear Selected Properties
|
Lgl-jo
&) Enable/Disable... » |
@ Modify selected Property(s) »
0 Add selected Propertyl(s) to a temp (USR) Group... P
(non_vacuous} - Pi2_2_InA2 &) Create new Task for selected Property(s)... »
{non_vacuous) - Pi3_2 Pol
{non_vacuous} - Pi6_2_Po2 .
(non_vacuous) - Piln_2_InAl Show Property Source
{non_vacuous? = Pil_n_2_InfAl_inv
{non_vacuous} - Pil_n_inv_2_InAl Copy Name
{non_vacuous) - bitselect
T BT ®

2018

DESIGHN aMD VERIFICATICOMN

DVCRLY Results

Verification Verification
: e ar time w/ time w/
Improvements
of connections for verification traditional FPV | Optimized CC prov
based CC flow flow
173981 (103971 proven, 70010 failed) 35 hrs 40 mins 52X
25000 (23241 proven, 1759 failed) 4 hrs 12 mins 20X
1 (1 proven) 8 hrs 3 mins 160X
4732 (4731 proven, 1 failed) 4 hrs 3 hrs 1.3X
447 (441 proven, 6 failed) 5.6 hr 3.4 hr 1.7X

The design is an SoC with 64,056,916 register bits

DESIGHN aAMD VERIFICATIOMN™

BVEDN Results

* The application of CC is optimized for connectivity checking problems.

* The run time for formal verification is improved significantly with the
Innovative automatic abstraction flow optimized in CC compared to
FPV.

* Thus, we can easlily integrate the commands into MediaTek’s regular
flow using either tcl or csv format

DESIGHN aAMD VERIFICATIOMN™

DVCOIN Conclusion

* This presentation presents highly automated methodologies using
Formal technigues to verify the correctness of global reset schemes
and padmux connection, without the large amount of effort required by
manual abstraction in SoC.

* The methodologies described above have been deployed on 10
projects at MediaTek.

* As the results show, we have found that the strength of CC App Is more
efficient than pure FPV based connectivity verification methodologies.

* The connectivity verification flow can be completed in hours, without
any inconclusive properties, on an SoC size design.

DESIGHN aAMD VERIFICATIOMN™

DVCON Future Work

* Measure Connectivity Checking Coverage

 Spec completeness — are all paths checked?

 Combine with simulation coverage data for connectivity checks
* Uses the same toggle coverage goals as VCS

* Creates a coverage database that can be merged with simulation
connectivity coverage data

2018

DESIGHN aAMD VERIFICATIOMN™

=Yo=n Connectivity Coverage in GUI

<Verdi:vdCoverage:1><vdb: cc_tgl_cov.vdb> (on vgintwm233)

Fle View Plan Exclusion Tools Window Help D v
; _— - I - | X F 5 . .
>0 FHEY @@ i vEmg S A~
Summary < C‘D - |0 | CovSrc.1: multi_path_switch [¢ LD = {m]
Hwerarchy-Mudules'Gmups Asserts'Statistics‘Tests' <All> : ‘.1 / Iremote/vgmonetfvl/andersn/files/altera/multi-path/multi_path_switch.v
* :] EE _ moduls multi_path_switch (input @, resst, . 8
Sl Nams Ertr s Toggle (o] 2 {::pul_ [23:0) esr_data,
{ e ——— < 3 input [2:0] ee_north, os_south, os_west, os_sast, B
-— o 4 inout clk_IN, clk_2N, clk_3MN,
(o] 5 inout elk_18, clk_25, clk_3S,
(o] (3 inout clk_1W, clk_2u, clk_3u,
(o] 7 inout clk_1E, clk_2E, clk_23E);
8
< 9 logic [23:0] esr;
10 always @ (posesdge clk or posadgs resst)
11 if (resest) csr <= 24'h000000;
12 else csr <= csr_data;
13
CovDetail 2 DD —Tn
L |Togqle | t l: |
- R
*® Variable Tvpe Coverage Display depth
& O clk |port [0.00%|¥
~ & clk_1E port] 100.00% *
- & clk_1IN port] 100.00% %
- A clk_1S port B 000%%
- & clk_1wW port] 100.00%
A clk_2E port] 100.00% %
- 4 clk_2N port [N 100.00% %
- & clk_2S port] 100.00% %
*® Variable 0->1 1->0 depth
A ck B R
CovDetail | Exclusion Manager Message‘
L.—.:. - gF l{l

	Formal Verification of Connections at SoC-level
	Introduction
	SoC Challenges – Padmux
	SoC Challenges – Global reset
	Background
	Motivation
	Using formal Application on connectivity checking
	Difference between CC and FPV
	Connectivity Checking App
	Input Formats
	Debug Structurally Disconnected Path
	Debugging in Schematic View
	Debugging in a single GUI platform
	Results
	Results
	Conclusion
	Future Work
	Connectivity Coverage in GUI

