
Formal Verification of
Connections at SoC-level

Penny Yang, Prasun Das, Yuya Kao, Mingchu Kuo

Introduction

• Complete verification of connections at SoC level is a fundamental
requirement to ensure correct operation

SoC Challenges – Padmux
– Larger gate count, but limited I/O pins
– Leads to shared I/O pins, muxing to control access
– Requires significant high level interconnect wiring
– Introduces significant possibility of errors
– Hard to do ECO because combinational logic is often optimized after

synthesis

SoC Challenges – Global reset

• SoC designs have multiple sources of global reset, such as power-on
reset, hardware reset, software reset and watchdog timer reset.

• These are top-level signals that should be connected to all
asynchronous resets in the design, i.e., all asynchronous resets in the
design should be asserted when the global reset is asserted.

• Taking watchdog reset verification as an example, a directed test
created to verify if the watchdog reset operation works correctly must
trigger the watchdog reset condition in the middle of the simulation to
check if the watchdog reset has propagated to all the intended flip-flops
in the entire SoC.

Background
• Before using formal verification, chip level simulation was used to verify

the connections at SoC-level.
– Fewer simulation patterns in chip level environment
– Corner case bugs sometimes appeared in uncovered codes
– Integration of chip level test-bench often comes late in a project cycle

• To be able to shift left, formal verification is adopted due to its
exhaustiveness and easy setup.

Motivation

• Formal property verification has been proven to be a reliable method
for different kinds of designs’ verification signoff. However,
– Run time could be several days and the iterations was very slow.
– Manual abstraction is required to achieve full proof
– Require design knowledge to partition the SoC into several different sub-

systems, black-box the modules that were not used, constrain the designs
with constants and assumptions.

– Several months to work on these settings from the beginning till the end of
the project

• Trial and error was time consuming and manual abstraction was also
prone to false alarms.

Using formal Application on
connectivity checking

• Formal Applications are customized for easy setup, use, and debug.
• It is perfect for beginners because there is no need to have formal

background or knowledge to write SVA.
• Problems which are ideal for formal connectivity checking

– SoC I/O Connectivity
– Block pin muxing/demuxing
– Connectivity & constant checking of macros
– Scan mode connectivity & constant checking
– Reset and global signal connectivity
– Registers to Debug Bus

Difference between CC and FPV

Connectivity Checks
• Value check and directional connection
• With auto-blackboxing mechanism
• Can debug through schematic +

waveform + text

Formal Property Verification
• Temporal and combinatorial signal

relationships
• No notion of direction in SVA

– “Out2 == Po2” same as “Po2==Out2”
• Manual partition and abstraction
• Can debug through waveform

Connectivity Checking App
• Tcl commands, CSV

formats and Excel files are
supported as the input
format.

• User can debug the logics
in the path using
schematics/text/waveform.

Input Formats

• Source
• Destination
• Enable
• Name
• Start line
• Comment pattern

#reset_checker.tcl
add_cc -name c1 -src 0 -dest u_cpu.resetn_i -enable $cpu_rst_en
add_cc -name c2 -src 1 -dest u_cpu.g1.reset_i -enable $cpu_rst_en
…

#padmux_checker.csv
u_cksys.tck, u_io.PAD_MCK.O,{gpio_mode==1}, a1
u_io.PAD_MDAT.I, u_cksys.dsp_out,{gpio_mode==6}, a2
…

Generate reset and register list
report_ff_reset -list
Reset path
set cpu_rst_en u_reset.wdr
source reset_checker.tcl

Debug Structurally Disconnected Path

• Structurally disconnected check

• Debug specific path

Debugging in Schematic View

Debugging in a single GUI platform

Results

The design is an SoC with 64,056,916 register bits

Results

• The application of CC is optimized for connectivity checking problems.
• The run time for formal verification is improved significantly with the

innovative automatic abstraction flow optimized in CC compared to
FPV.

• Thus, we can easily integrate the commands into MediaTek’s regular
flow using either tcl or csv format

Conclusion

• This presentation presents highly automated methodologies using
Formal techniques to verify the correctness of global reset schemes
and padmux connection, without the large amount of effort required by
manual abstraction in SoC.

• The methodologies described above have been deployed on 10
projects at MediaTek.

• As the results show, we have found that the strength of CC App is more
efficient than pure FPV based connectivity verification methodologies.

• The connectivity verification flow can be completed in hours, without
any inconclusive properties, on an SoC size design.

Future Work

• Measure Connectivity Checking Coverage
• Spec completeness – are all paths checked?
• Combine with simulation coverage data for connectivity checks
• Uses the same toggle coverage goals as VCS
• Creates a coverage database that can be merged with simulation

connectivity coverage data

Connectivity Coverage in GUI

	Formal Verification of Connections at SoC-level
	Introduction
	SoC Challenges – Padmux
	SoC Challenges – Global reset
	Background
	Motivation
	Using formal Application on connectivity checking
	Difference between CC and FPV
	Connectivity Checking App
	Input Formats
	Debug Structurally Disconnected Path
	Debugging in Schematic View
	Debugging in a single GUI platform
	Results
	Results
	Conclusion
	Future Work
	Connectivity Coverage in GUI

