
1

Formal Verification
in the Real World

Jonathan Bromley jonathan.bromley@verilab.com
Jason Sprott jason.sprott@verilab.com

2

Agenda
• Introduction and motivation
• Formal verification refresher
• Challenges
• Jumping the Hurdles
• Planning and Completion
• Q&A

3

FORMAL VERIFICATION
REFRESHER

4

New to formal property checking?

• See our intro and demystifier:

• Next few slides: a very quick summary

http://www.verilab.com/files/dvcon_eu_2016_fv_tutorial.pdf

5

Formal Property Checking

• Spec. captured as properties
• Formal methods – no simulation
• Prove properties (e.g. SVA) hold
• Exhaustive state space coverage
• Interactive development/debug
• Some limitations

AssumeDUT
RTL

Assert

Cover

result debug

6

Benefits

• Another view on the specification
– encourages critical mindset

• Potentially exhaustive
• Finds gnarly bugs
• Useful at a very early stage

– even when RTL and TB are incomplete
• Focus on design behaviour (not stimulus)
• Focused debug (near-minimal CEX)

7

Drawbacks

• Difficult to tell if your design is suitable for FV
• Can be costly of compute resources
• Time to closure is hard to predict
• Requires skill in all but the simplest cases
• Results not always easy to interpret

It's still worth it!

8

FV Planning
• Start with expectations

– Early bring-up
– Identify goals, e.g. tricky to verify with simulation
– Full/bounded proofs?

• Analyze the actual design
• Repeatable, maintainable, sign-off auditable
• Closure

– Feed into the overall verification plan
– Dovetail with simulation

9

Start from the spec
• Interface specifications:

– no grant without request…
– if VALID and not READY, everything should be stable…
– latency limits
– eventual response (no starvation)

• Protocol specifications:
– correct number of beats in burst, valid controls, …

• End-to-end specifications:
– transaction integrity, routing
– transaction ordering

10

Formal Apps

Bring-up Develop Bounded/Full Proof
Formal Property Checking

Auto-Property Generation

Register Access

Coverage Analysis

X Propagation

Unreachable Analysis

End-to-end Checkers

Clock Domain Crossing

SoC Connectivity

Extract implementation detail properties

Generate reset, access policy and functional checks

IP for hard to develop checker models, e.g. scoreboards

Are we done? Results: code, COI, proof, functional

Identify unreachable states and save manual analysis

And so on … with apps working across the flow

11

CHALLENGES

12

Achieving proof and coverage closure
• Typical user experience:

– useful CEXs found very quickly
– as simple bugs are fixed, proof times get longer
– when RTL and TB are mature, some proofs don’t complete

• Reducing RTL design size (parameterization)
– small data widths
– FIFO depths, timeout counts, number of ports…

• Consider temporary constraints:
– one mode at a time

13

Other techniques
• Abstraction

– replace counters, memories etc with abstraction
that exhibits critical behaviours without full modelling

– some tool automation
– skill and experience required in practice

• Invariants and helper assertions
– use already-proven assertions as assumptions

(may be automatic in the tool)
– white-box assertions on internal structures

14

Code review
• Code quality, clarity, comments/documentation

– even more important for a formal TB
• Mapping from spec points to assertions

– logical justification of how modelling+assertions
checks a given requirement in full

– justification of assumptions
• Parameterization

– justify your choices of parameters (start with smaller than RTL)
• Sanity cover properties for key use cases
• Good use of formal apps

15

JUMPING THE HURDLES

16

JUMPING THE HURDLES - Agenda

• Counterexample waivers
• RTL parameters
• Specimen-value (symbolic) assertions
• Dealing with time hogs
• Managing complexity

– abstraction, cutpoints, black-boxing

17

CEXs Hide Bugs!
• Tools will find one example violation if possible

– no requirement to find every CEX

• Multiple DUT bugs may violate just one assertion
– the CEX you see may lead you to only one of those bugs

• FIX or WORK AROUND to expose the others

18

Bug hiding and bug waivers
Real life example

• AHB interconnect expects
burst to end on error

• AHB VIP can allow burst
to continue after error

• Another bug violating the
same assertion…

CEX: bad burst at slave
Waive it, we know our AHB

masters don't do that.

UNDETECTED BUG

Screenshot from Jasper GoldTM with permission

19

Bug waivers - conclusion
• CEX in final regression run is unacceptable

– explained waiver of CEX is untrustworthy

• Add workaround constraints (assumptions)

• Review and waive the constraints
– each must reflect a known, specified limitation
– much less risk of missing an unexplained bug

20

JUMPING THE HURDLES - Agenda

• Counterexample waivers
• RTL parameters
• Specimen-value (symbolic) assertions
• Dealing with time hogs
• Managing complexity

– abstraction, cutpoints, black-boxing

21

Parameters

• Each parameterization is new RTL
– Different internal model
– New formal verification run required

• Need strategies for dealing with parameters
– Symmetry
– Test compression
– Testbench reconfiguration

Formal cannot reason about parameters

22

Parameters - symmetry
• Some parameters are quantitative

– bus width
– number of ports
– FIFO depth

• Regular structures

• Examine RTL to find risk areas
(structure change):
– 0, 1, 2N, 2N-1, ...

• Otherwise, appeal to symmetry

module myDUT
#(parameter WIDTH=8)
(input [WIDTH-1:0] dIn, ...);

logic [$clog2(WIDTH)-1:0] bitSelect;
...
bitSelect = '1; // select MSB

23

Parameters – test compression
• Use pairwise to manage large

parameter spaces
– References on our website

• Prioritize known customer configurations

• Large configurations prove more slowly
– use small configs for bringup, debug

Pairwise example:
5 params, 8 values each
Exhaustive:

85 = 32768 tests
Pairwise:

86 tests

24

Parameters – convert to signals?
• Can the parameter be reworked as a pin-strap option?

– priority weights, count limits, ...

• Use rigid input values, not parameters
– Assumptions to enforce legal values

• Formal tests every possibility

It's an RTL transformation –
needs checking/review

module myDUT
#(parameter TIMEOUT=40)
...

if (count == TIMEOUT) ...

module myDUT
(input [5:0] TIMEOUT, ...);
...
if (count == TIMEOUT) ...

assume property ($stable(TIMEOUT));
assume property (TIMEOUT >= 8);

25

Testbench reconfiguration
• Some parameter values make coverage unreachable
• Example:

– AHB bus width: transfer size > bus width is impossible

• Waiving missing coverage: messy, laborious
• Aggregate coverage across parameterizations: weak

Use generate-blocks to remove
unreachable covers and asserts?

26

Safer testbench reconfiguration
• Generate and exclude

directives as appropriate...

• ...but check your
exclusion is safe!
– using a generated

assertion

if (DATA_WIDTH >= 64) begin : gen_doubleword
ast_dword: assert property (

(HTRANS == AHB_TRANS_NONSEQ) &&
(HSIZE == AHB_SIZE_DWORD)
|->

);
end
else begin : gen_no_doubleword

ast_never_dword: assert property (
HTRANS == AHB_TRANS_NONSEQ
|->
HSIZE != AHB_SIZE_DWORD

);
end • Protects against coding goofs

• Better checking of DUT

27

JUMPING THE HURDLES - Agenda

• Counterexample waivers
• RTL parameters
• Specimen-value (symbolic) assertions
• Dealing with time hogs
• Managing complexity

– abstraction, cutpoints, black-boxing

28

Specimen values
• Some attribute A (address, ID, mode, ...)

• Prove something for an arbitrary value of A ...

• ... then it is proven for all possible values of A
– because proof must consider all possible arbitrary values
– doesn't prevent other values appearing as well

• Compared with local property variables:
– specimen transactions can be more efficient
– usually easier to understand and write
– value is available across multiple properties

Local property
variables

may be better
in simulation

Sometimes called
symbolic checking

29

Example of specimen value
• Pending-transaction counter for a specimen ID value

assume property ($stable(specimen_id));

assign id_push = push && (w_id == specimen_id);
assign id_pop = pop && (b_id == specimen_id);

always @(posedge clock or negedge areset_n)
if (~areset_n)

id_in_flight <= 0;
else

id_in_flight <= id_in_flight + id_push – id_pop;

Pick an arbitrary
ID to observe

assert property (id_in_flight <= 1);

• "Never two same-ID transactions in flight" is now easy:
Sample-ID proof is sufficient

for all IDs

30

Performance gains
• Specimen assertions slower to prove:

– about 2x or 3x slower than fixed-value
assertions

• but one specimen assertion works for all
possible values!
– tools exploiting symmetry?

• Improves:
– code clarity
– coding effort
– runtime efficiency

Massive improvement when
many values must be checked

In real-world
example

31

Surprising example
• Design has NM master ports, NS slave ports
• Check all NM×NS master-slave paths?

– Very poor runtime
– Minimal verification value (symmetry)

• Use specimen master and slave numbers M, S
• Check only the path from master M to slave S
• Better tool runtime, no loss of verification power

– Tools exploit symmetry automatically where possible

32

YMMV example
• Symbolic assertion is not necessarily faster!
• Always sanity-check

Total proof time for
exhaustive paths:

65.4 sec

Proof time for
symbolic assertion:

162.4 sec
Screenshot from Jasper GoldTM with permission

33

JUMPING THE HURDLES - Agenda

• Counterexample waivers
• RTL parameters
• Specimen-value (symbolic) assertions
• Dealing with time hogs
• Managing complexity

– abstraction, cutpoints, black-boxing

34

Time-hog hotspots
• Simulation runtime is highly predictable

– a few minutes of sim gives good estimate of
sim speed in clock cycles/sec

• Formal much less so
– if an assertion is slow to prove, it's almost impossible to

predict how much longer it will take

35

Suggestions (1): Scaling
• Start with very small parameterization

– find time for complete proof
• Progressively increase parameterization size

– find how proof time scales with increasing size
• linear? quadratic? exponential?

– helps to estimate proof time for realistic sizes

36

Suggestions (2): Isolation
• Prove just one or two problematic assertions

– is their proof time reasonable?
– if so, maybe more compute power is the answer

• but remember to run all assertions for a while first!
– provides intermediate results, may make difficult proofs go

faster

37

Suggestions (3): Bounded proofs
• Observe proof radius (number of cycles explored)
• Make reasoned decisions about validity of bounded proof
• Tool coverage app may offer deeper insight

– what was tested, what wasn't
• Many good papers and other references available

Kim, Park, Singh, Singhal (DVCon San Jose 2014):
Sign-off with Bounded Formal Verification Proofs

Useful starting point

38

Confidence (or not) in bounded proofs

• Track counterexample lengths over project
– proof bound must exceed the largest CEX you’ve seen

• Reason about latency through the design
• Reason about cycles required to fill storage, etc
• Proof bound must exceed length of related covers
• Achieve 100% structural (code) coverage
• Track achieved bound as a function of tool runtime

– prioritize effort appropriately

39

JUMPING THE HURDLES - Agenda

• Counterexample waivers
• RTL parameters
• Specimen-value (symbolic) assertions
• Dealing with time hogs
• Managing complexity

– abstraction, cutpoints, black-boxing

40

Managing complexity
• Design+Properties = one huge state machine!
• More complexity  slower proof

• Well established techniques:
– black-boxing
– cutpoints
– abstraction

Reduce complexity associated with slow proofs

41

Simplify unnecessary difficult stuff

• Big complex blob of logic in the
cone-of-influence of CHECK
– Slow proof
– CHECK is not really trying to test B

DUT

A
ENV: assume
property (...);

CHECK: assert
property (...);

C

Examples:
• big math function
• long time delay

B

42

Simplify by black-boxing

• Remove the logic altogether
• Standard option in formal tools
• Default for some blocks (multiplier...)

DUT

A
ENV: assume
property (...);

CHECK: assert
property (...);

C

These signals
are now free

B

43

Simplify using Cutpoints (stop-at)

• Removes complexity from selected signal
paths

DUT

A
ENV: assume
property (...);

CHECK: assert
property (...);

B
C

This signal
is now free

44

Why is it OK to destroy the design?
• Verification-only, within formal tool

– No impact on RTL integrity

• If assertion proves with a signal free, then
it is also proven for the "correct" values

• Verification is more rigorous than
without the cutpoint or black-box!

45

Verification across cutpoints

• B functionality can be tested by another
assertion

DUT

A
ENV: assume
property (...);

CHECK: assert
property (...);

B
C

This signal
is now free

CHECK_B: assert
property (...);

46

Abstraction

• Replace real logic with
massively simplified model

DUT

A
ENV: assume
property (...);

CHECK: assert
property (...);

C

Examples:
• long timeout counter
• handshake eventually

B: assume
property
(...);

47

MEM CTRL 0

???

MEM CTRL 0

???

Abstraction results
• Loose similarity to AXI W-to-B channel relationship

response_reorder
INITIATOR

RESPONDER

w_valid
w_ready
w_data

w_chan

w_id

b_valid
b_ready
b_id

SLAVE N-1

s_valid[N-1]

s_ready[N-1]
s_data[N-1]

SLAVE 0

s_valid[0]

s_ready[0]
s_data[0]

FIFO

MEM CTRL 0

MEM CTRL N-1

DDR

Flash

Abstraction candidates

asm_slv_resp: assume property (
valid |-> s_eventually ready

);

valid

ready

48

Built-in abstractions
• Tools provide ready-to-use counter abstractions:

– reset
– limits
– "critical values"

• And maybe some arithmetic
• etc...

49

Your own counter abstractions
• It's not so hard:

• Add custom features to avoid crazy behaviour:

assume property (s_eventually count == LIMIT);

assume property (
start_timeout |=> (count != LIMIT) [*2];

);

no timeout for at least 2 cycles after trigger
assume property (

count == LIMIT |-> $past(count == LIMIT-1);
);

partial count sequence

other RTL may need
certain specific

counter behaviours

timeout

50

PLANNING AND COMPLETION

51

Planning for low stress
• Give the engineers time to experiment and gain

experience
– Poor early decisions, frozen because of timescale pressure,

can be hugely counterproductive
• Encourage teamwork and discussion

– This stuff is not intuitive
– Single engineer can easily become stalled

• Find internal expertise
– and make sure it's accessible

52

Planning for completeness
• Start with the spec
• Demand clear justification of how

each spec point
is verified by
one or more assertions
– Relationship isn't one-to-one
– Justification may be complex, needs thoughtful review

• Don't tolerate BS
• Don't encourage BS

53

Validating completeness
• When are you done?
• FV only as good as your spec points

• Code coverage / reachability
• Cone of influence (COI) vs. proof coverage

Tools can provide some quality metrics

54

"Code" coverage
• As in simulation:

– code coverage as sine qua non
– helps identify weaknesses in TB
– can never be functionally exhaustive
– may need elaborate waivers

Expect formal coverage to be smarter
than simulation code coverage

55

Cone of influence
• Establish which parts of the RTL are checked by each

property
– Can occasionally highlight missing checks
– Typically, design complexity means more logic appearing in

COI than you care about
• Vendors have intelligent variants on COI

– "proof coverage" or similar
– results often hard to interpret, need support from vendors

56

COI vs. Proof Coverage

• COI: All logic feeding the property's variables
– Purely structural analysis

Example:
pulse stretcher

s0d s1 s2 s3

COI

A1: assert property (
s2 |=> s3

); 

57

COI vs. Proof Coverage

• Proof coverage: logic needed for proof of the property
– Analyzes functional effect of logic

A1: assert property (
s2 |=> s3

);

s0d s1 s2 s3


PROOF

COI

58

Responding to poor proof coverage

• Add assertions to get full proof coverage

s0d s1 s2 s3

PROOF

A2: assert property (
$rose(s3) |=> s3

); 

59

Design mutation

• Break the design intentionally
• Some assertions should fail

s0d s1 s2 s3

PROOF

A2: assert property (
$rose(s3) |=> s3

); !!

60

Conclusion: Real People Still Needed
• Blind faith in tool reports is a good way to miss bugs
• No substitute for smart engineers thinking it through
• Mismatch between abstraction levels

for FV and other forms of coverage
– makes review process much harder
– deep-dive often required
– allow time for it!

61

RESOURCES
• Tool vendors are helpful

– genuinely expert field engineers
– knowledge-base and training websites

• More information related to this tutorial:

– follow "formal tutorials" link
– many internal and external resources

http://www.verilab.com/resources/

62

Q&A

	Formal Verification�in the Real World
	Agenda
	formal verification Refresher
	New to formal property checking?
	Formal Property Checking
	Benefits
	Drawbacks
	FV Planning
	Start from the spec
	Formal Apps
	CHALLENGES
	Achieving proof and coverage closure
	Other techniques
	Code review
	JUMPING THE HURDLES
	JUMPING THE HURDLES - Agenda
	CEXs Hide Bugs!
	Bug hiding and bug waivers
	Bug waivers - conclusion
	JUMPING THE HURDLES - Agenda
	Parameters
	Parameters - symmetry
	Parameters – test compression
	Parameters – convert to signals?
	Testbench reconfiguration
	Safer testbench reconfiguration
	JUMPING THE HURDLES - Agenda
	Specimen values
	Example of specimen value
	Performance gains
	Surprising example
	YMMV example
	JUMPING THE HURDLES - Agenda
	Time-hog hotspots
	Suggestions (1): Scaling
	Suggestions (2): Isolation
	Suggestions (3): Bounded proofs
	Confidence (or not) in bounded proofs
	JUMPING THE HURDLES - Agenda
	Managing complexity
	Simplify unnecessary difficult stuff
	Simplify by black-boxing
	Simplify using Cutpoints (stop-at)
	Why is it OK to destroy the design?
	Verification across cutpoints
	Abstraction
	Abstraction results
	Built-in abstractions
	Your own counter abstractions
	Planning and completion
	Planning for low stress
	Planning for completeness
	Validating completeness
	"Code" coverage
	Cone of influence
	COI vs. Proof Coverage
	COI vs. Proof Coverage
	Responding to poor proof coverage
	Design mutation
	Conclusion: Real People Still Needed
	RESOURCES
	Q&A

