
Mike Bartley
CEO and Founder

Test and Verification Solutions Ltd

February 2019

Formal Verification Bootcamp

Practical Issues

• Refreshments
• Mobile Phones
• Fire
• Acknowledgements

– To Srikanth Vijayaraghavan for allowing us to use examples from “A Practical
Guide for System Verilog Assertions”

– To Alexandre Esselin Botelho of Cadence for help in preparing the course

Objectives
• The tutorial is not about

– Learning SVA
• Although we try to cover enough to be able to write assertions

– Becoming FV experts
• For example, how to use cut points, complex models and abstractions, …

– Learning a particular tool
• The tools are used as a vehicle to give some experience in writing and proving properties
• You need to contact your tool vendor to get an evaluation, license, training, etc.

Objectives
• The tutorial is about

– Using some SVA
• properties, covers, assumptions

– Some basic FV experience
• To gain an appreciation

– Understanding how best to incorporate formal into your design flows and your
organisation

• Formal verification adoption has many potential hazards

Your speaker: Mike Bartley
• PhD in Mathematical Logic
• MSc in Software Engineering
• MBA

• Worked in software testing and hardware verification for over 25 years
– ST-Micro, Infineon, Panasonic, ARM, NXP, nVidia, ClearSpeed, Gnodal, DisplayLink, Dialog, …
– Worked in formal verification of both software and hardware

• Started T&VS in 2008
– Software testing and hardware verification products and services
– Offices in UK, India, USA, Singapore, Japan and Germany

Introduction
Quick Overview of Property Checking

Functional Verification Approaches
Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode
Analysis

Dynamic Formal
Linters

Theorem
Proving

Property
Checking

Equivalence
Checking

Silicon

FPGA

Emulation

Introduction: Role of Simulation
• Most widely used verification technique in practice
• Complexity of designs makes exhaustive simulation impossible in terms of cost/time.

– Engineers need to be selective
– Employ state of the art coverage-driven verification methods
– Test generation challenge

• Simulation can drive a design deep into its state space.
– Can find bugs buried deep inside the logic of the design

• Understand the limits of simulation:
– Simulation can only show the presence of bugs but can never prove their absence!

Introduction: Formal Property Checking
• Define properties of a design with the following aim

– To formally prove
– Or disprove and find a bug

• Typical flow
– Properties are derived from the specification.
– Properties are expressed as formulae in some (temporal) logic.
– Checking is typically performed on a model of the design.

• Usually the RTL
• Traditionally employed at higher levels of abstractions

– But tool capacity
– And assertion-based verification
– Has widened their application

Simulation Depth-first vs. Formal Breadth-first

 Where the nodes are states in the simulation
 And the arcs are clocked transitions
 But the trees are

– Very wide
– Very deep

Simulation – depth first search
T
i
m
e

Reset
Simulation trace

Adding constraints

0
1

2

3

4

ꝏ

Property Checking – breadth first search
ResetChecking Property

Adding constraints

0
1

2

3

4

Finite State Space

S
t
a
t
e

T
r
a
n
s
it
i
o
n

Property Checking – cannot prove in all states?
Reset

Checking Property

Adding constraints

0
1

2

3

4

Finite State Space

S
t
a
t
e

T
r
a
n
s
it
i
o
n

Introduction: Simulation vs Formal Verification

In practice, completeness
issues and capacity limits
restrict formal verification to
selected parts of the design.

Naïve interpretation
of exhaustive formal
verification:

Only selected parts
of the design can be
covered during
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification – The Complete Industry Cycle”, Morgan Kaufman, 2005]

Verify ALL properties.

Challenge 1:
Specify properties to

cover the entire design.

Challenge 2:
Prove all these

properties.

Challenge 3:
Proving you have

covered the design.

Property Checking – a very brief introduction
Inputs to the tool

• 3 inputs to the tool
– A model of the design

– A property or set of
properties representing the
requirements

– A set of assumptions,
expressed in the same
language as the properties

• typically constraints on
the inputs to the
design

• For example
– Usually RTL

– Items are transmitted to one of three
destinations within 2 cycles of being
accepted

• (req_in && gnt_in) |-> ##[1:2]
(rec_a || rec_b || rec_c)

– The request signal is stable until it is
granted

• (req_in && !gnt_out) |-> ##1 req_in
• We would of course need a complete

set of constraints

Outcomes of Formal Property Checking
Formulate Property and Assumptions

Invoke Property Checker

Property proven Property fails

Property is
trivially true

Vacuity check

Bug in
Property

Property is
non-trivially
true

DUV
satisfies
Property

Counter example (CE)

Unreach-
able

Reach-
able

DUV bug
detectedBug in

Assumptions

Bug in
Assumptions

Over
Constraint

Outcomes of Formal Property Checking

Invoke Property Checker

Property proven Property fails

Property is
trivially true

Vacuity check

Bug in
Property

Property is
non-trivially
true

DUV
satisfies
Property

Counter example (CE)

Unreach-
able

Reach-
able

DUV bug
detectedBug in

Assumptions

Bug in
Assumptions

Over
Constraint

Formulate Property and Assumptions

Most common
mistake, restrict

input space so much
that property

becomes trivially
true.

Specify
environment

constraints for
proof.

Under-constrained
properties may lead

to unreachable
counter examples.

Correctness of
proof relies on

correctness of the
environment
constraints.

Assertion-Based
Verification

Types of Assertions: Safety Properties
• Safety: Something bad does not happen

– The FIFO does not overflow.
– The system does not allow more than one process to use a

shared device simultaneously.
– Requests are answered within 5 cycles.

• More formally: A safety property is a property for which any
path violating the property has a finite prefix such that every
extension of the prefix violates the property.

[Accellera PSL-1.1 2004]

Safety properties can be falsified by a finite simulation
run.

Types of Assertions: Liveness Properties
• Liveness: Something good eventually happens

– The system eventually terminates.
– Every request is eventually acknowledged.

• More formally: A liveness property is a property for which any
finite path can be extended to a path satisfying the property.

[Foster et al.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.]

In theory, liveness properties can only be falsified by an
infinite simulation run.
– Practically, we often assume that the “graceful end-of-test”

represents infinite time.
• If the good thing did not happen after this period, we assume that it

will never happen, and thus the property is falsified.

Introduction to SVA

What is an assertion?
• An assertion is a description of a property of the design

– If a property that is being checked does not behave the way we expect it to then
the assertion fails

– If a property that is forbidden from happening in a design happens then the
assertion fails

`ifdef ma
if (a & b)
$display (“Error: mutually asserted a and b”);
`endif

Types of SystemVerilog Assertions
There are 2 types of Assertion in SystemVerilog

• Immediate Assertions
– Immediate assertions are procedural statements used mainlyin simulation

• Concurrent Assertions
– Based on clock cycles

• For example - "A Request should be followed by an Acknowledge occurring no more than two
clocks after the Request is asserted."

Concurrent assertions
• Based on clock cycles
• Test expression is evaluated at clock edges based on

the sampled values of the variables involved
• Can be placed in a procedural block, a module, an

interface or a program definition
• Can be used in both “formal” and “dynamic”

Building Blocks of SVA
1. Create boolean expressions

2. Create sequence expressions

3. Create property

4. Assert property

5. Cover property Might be
automatic

in the tool?

sequence s1;
@(posedge clk) a ##2 b;

property p1;
s1;

endproperty

a1: assert property(p1)

c1: cover property(p1)

Basic SVA Syntax and
Semantics

Clock Definition in SVA
Clock defined in sequence
sequence s1;

@(posedge clk) a ##2 b;
endsequence;

property p1;
s1;

endproperty

a1: assert property(p1)

Clock defined in property
sequence s1;

a ##2 b;
endsequence;

property p1;
@(posedge clk) s1;

endproperty

a1: assert property(p1)

Best to keep sequences independent of clock
Will increase the sequence re-use

The ## delay operator
• Usage:

– ## integral_number
– ## identifier
– ## (constant_expression)
– ## [cycle_delay_const_range_expression]

• ## can be used multiple times within the same chain.
– E.g., a ##1 b ##2 c ##3 d

• Semantics:
– a ##0 b

• Sequence overlap: b starts on the same clock when a ends:
– a ##1 b

• Sequence concatenation: b starts one clock after a ends

• You can use an integer variable in place of the delay.
– E.g., a ##delay b

Using a range in the delay operator
• You can specify a range of absolute delays too.

– E.g., a ##[1:4] b
– b starts within 1 to 4 cycles of when a ends

• You can also use a range of variable delays.
– E.g., a ##[delay1:delay2] b

The semantics of “a ##2 b”
• What are the conditions for this to hold?

Clock defined in property
sequence s1;

a ##2 b;
endsequence;

property p1;
@(posedge clk) s1;

endproperty

a1: assert property(p1)

• There is a problem with
this assertion
– It does not say “if a is high

then b must be higher 2
cycles later”

– It says “a is high and b high
2 cycles later” is true on
EVERY cycle!

• How do we assert “b is
high 2 cycles after a is
high”?

Implication Operator
• Implication is equivalent to “if-then”
• Left hand side is “antecedent”
• Right hand side is “consequent”
• Antecedent is a gating condition
• If the antecedent does NOT succeed then property succeeds by default:

vacuous success
• If antecedent does succeed then consequent is checked

Implications
• Properties typically take the form of an implication.
• SVA has two implication operators:
• |=> represents logical implication

– A|=>B is equivalent to (not A) or B,
where B is sampled one cycle after A.

req_gnt: assert property (req |=> gnt);

clk
req
gnt

pass failfail

non-overlapping
implication

Implications
• SVA has another implication operator:
• |-> represents logical implication

– A|->B is equivalent to (not A) or B,
where B is sampled in the same cycle as A.

req_gnt_v1: assert property (req |=> gnt);

req_gnt_v2: assert property (req |-> ##1 gnt);

Both properties above are specifying the same functional behaviour.

The overlapping implication
operator |-> specifies behaviour in
the same clock cycle as the one in

which the LHS is evaluated.

Delay operator ##N
delays by N cycles,

where N is a positive
integer including 0.

Timing Windows
• // timing window in SVA

a_p_ex1: assert property(@(posedge clk) (a && b) |-> ##[1:3] c);

• Note:
– There can ONLY be one valid start on a positive clock edge
– But there can be MULTIPLE valid endings

a_p_ex1

Built-in System Functions
• $onehot(expression) : checks that the expression is one-hot, i.e. one bit

bit of the expression can be high on any given clock edge
• $onehot0(expression) : checks that the expression is zero one-hot, i.e.

one bit bit of the expression can be high or none of the bits can be high
on any given clock edge

• $isunknown(expression) : checks if any bit of the expression is X or Z

Useful System Verilog Functions for Property
Specification

• $past(expr)
– Returns the value of expr in the previous cycle.
 Example:

assert property (gnt |-> $past(req));

• $past(expr, N)
– Returns the value of expr N cycles ago.

• $stable(expr)
– Returns true when the previous value of expr is the same as the current value

of expr.
– Represents: $past(expr) == expr

SVA with Parameters
module generic_chk (input logic a, b, clk);

parameter delay = 1;

// SVA using parameters
property p16;

@(posedge clk) a |-> ##delay b;
endproperty
a16: assert property(p16);

endmodule

module simple_seq;
logic clk, a, b, c, d, e;
……….
generic_chk #(.delay(2)) i1 (a, b, clk);
generic_chk i2 (c, d, clk);
……
endmodule;

Formal Arguments in a Property
property arb (a, b, c, d);
@(posedge clk) ($fell(a) ##[2:5] $fell(b)) |->
##1 ($fell(c) && $fell(d)) ##0 (!c&&!d) [*4]
##1 (c&&d) ##1 b;
endproperty

a_arb_1: assert property(arb(a1, b1, c1, d1));
a_arb_2: assert property(arb(a2, b2, c2, d2));
a_arb_3: assert property(arb(a3, b3, c3, d3));

SVA using local variables
• A variable can be declared locally and

– Can be assigned to, stored and manipulated

property p_local_var;
int lvar;
@(posedge clk) ($rose(enable1), lvar = a)
|-> ##4 (aa == (lvar*lvar*lvar));
endproperty

a_local_var: assert property(p_local_var);

These are very good for data properties

Formal and Coverage

Coverage in Formal: use of constraints
• First, some background

– The formal tool will model the design as an FSM
– The constraints (assumptions) defined will reduce that FSM

• That is the tool will remove the states that become unreachable under the given constraints

• We need to ensure we do not “over constrain”
– Otherwise we explore a state space that is too small
– And we might miss legitimate bugs

• Over constraint in simulation
– Typically detected by code and functional coverage

• Over constraint in Formal?
– Covered in the next few slides

Coverage in Formal: implication
• Implication in formal creates a different type of coverage problem

– Did I hit my antecedent?

• If not
– Then we have a vacuous proof of the implication

• We need to consider this differently to over constraint!

• The following slides discuss
– Over constraint
– Vacuous implication proofs

Coverage in Formal
• Cover Properties

– Used to avoid vacuous proofs in implications
– Do we actually see a completing sequence for the antecedent so we get into the

Enabled state

• Design coverage
– Looks at how much of the FSM is explored,
– and thus how much of the RTL code was explored

• this uses the coverage app

Coverage in Formal: Design Coverage
• Looks at how much of the FSM is explored,

– and thus how much of the RTL code was explored

• Coverage metrics used
– Code

• Line, branch, expression, toggle

– Functional
• Using the SV “cover” directive

Connecting SVA to the design
Two methods for connecting checkers to the design:
1. Embed on inline the checkers in the module definition
2. Bind the checkers to a module, an instance of a module or multiple

instances of a module

bind <module_name or instance_name>
<checker name> <checker instance name>
(design signals)

Lab Time

Dealing with Complexity

Property Checking – Outputs from the tool

• Proved
– Increase in confidence

• Failed(n) 
– We found a bug
– Or an under constraint!
– Or a badly written property!

• Explored(n) ?
– What do we do now?

Overcoming Complexity Issues - Abstraction
• Some constructs are complex for formal tools
• Instead, we can use abstraction

– create a model which resembles reality
– but with much less detail.

• Successful formal verification of large designs may require that parts of
the design are abstracted.
– Learning how and where to apply abstractions will result in more proven

properties and more bugs found.

• This is a big topic that is only partially covered here

Counters
• Counters are often used to trigger events

– E.g. a timeout
• But counters add complexity for formal

– They add sequential depth
– N-bit wide add 2**N cycles to timeout

• But we only 3 interesting states
– Initial state, 0
– Intermediate values between 1, .., 2**N -1
– Max value 2**N

• We can model this as a very simple FSM
• Some tools might do automatically

• Mutations

– RTL changes to reach corner-cases in fewer cycles (e.g. FIFO

reduction). Used in simulation too. Non-deterministically enabled in

formal

• Initial value and other abstractions

– Skip “configure and populate” cycles to reach interesting cases faster

– Skip irrelevant logic

Formal helpers

Assume Guarantee Paradigm

TOP TOP
Block A

Block B

Block A

Block B
assume

assumeguarantee
guarantee

Formal in the
Design Flow

The Strengths of Property Checking
• Ease of set-up

– No test bench required, add constraints as you go, VIP?
• Flexibility of verification environment

– Constraints can be easily added or removed
• Full proof

– Of the properties under the given constraints
– (Can also prove “completeness” of the properties)

• Intensive stressing of design
– Explored(n) constitutes a large amount of exploration of the design
– Judgement when the number of cycles explored in a run is sufficient

• Significant bugs already found within a this number of cycles
• Corner cases

– Find any way in which a property can fail (under the constraints)

Potential issues with formal verification
• False failures

– Need constraints to avoid invalid behaviour of inputs

• False proofs
– Bugs may be missed in an over-constrained environment.

• Limits on size of the model that can be analysed
• Non-exhaustive checks: Explored(n)

– Interpret the results
• Can require significant knowledge and skill

• Non-uniform run times
– Often it cannot be predicted how long it will take for a check either to terminate or to reach a

useful stage

This can make formal unpredictable!

A Taxonomy of Methodologies
• Bug avoidance

– Improve quality before any property checks are run
• Visualization
• Clarification of spec

• Bug hunting
– Use model checking to look for bugs
– Do not worry if proofs do not complete

• Bug absence
– Aim to ensure that properties are fully proven
– Aim to get a “complete” set of properties

• Bug analysis
– For bugs in FPGA prototypes or in Silicon

• It may be hard to recreate the conditions that causes a bug
• By writing the symptom of the bug as a property, one can generate a waveform that can be analysed

• Aid for design during RTL development
– Verification test benches may not be ready
– Designers write “throw-away” test benches

• Formal for designers
– Getting a simple working formal setup is relatively fast

• Write the constraints
– Write basic properties

• Check the RTL is not completely broken
• Check assumptions on signal properties and equivalence

– Investigate or visualise sequences/scenarios
• Cover “set error bit” “generate interrupt signal”

• Catch bugs early
– Formal counter-examples shorter to debug than simulation failures

Design bring-up

• For example
– A bug found late in the design process

• Difficult to hit in simulation
• Found by human review

– Observed in the field

• Investigate around a specific bug
– Reproduce bug in formal

• Write a suitable formal environment and property
– Find similar bugs

• Check bug fixes

Bug analysis using Formal

• Superlint (Autochecks)
• X-propagation
• Clock domain crossing
• Clock-gating
• Protocols
• Embedded assertions
• FSM
• SEC
• System registers
• Coverage Closure

Formal “apps”

• Check assertions for:

– Overflows

– Out-of-bound indexing

• Automatically generated

• Waiver mechanism is mandatory

• Meticulous lint tool

Superlint (Autochecks)

• Certify compliance with standard protocols

– AXI, ACE, AHB, ATB, APB

• Protocol checkers integrated into EDA solutions

– Can be used as master or slave

– Highly configurable

– The properties are optimized for formal rather than simulation

Protocols

• Detect and debug X-propagation issues on RTL
• Simulators do not deal correctly with X’s
• This has become a bigger issue in recent years because of the use

of power-gating architectures

X-propagation

Simulator sets D=1

'if-then-else' or 'case' statements
The X state will not satisfy the logic test,
the block will be assigned the default case.
This may convert the X to a 'known' value
or propagate it further into the simulation,
masking a bug

• What can go wrong with finite state machines?

– Deadlock: once the FSM has entered a particular state, there is no valid input that will trigger its

exit from that state.

– Unreachable states are created when there is no combination of inputs that will lead to that

state.

• Automatic generation of properties

– State reachability

– Transition conformity

• Simple textual FSM specification

– States

– Transitions

– Automatically translate into properties for proof of implementation

Finite State Machines

Formal in the
organisation

Strategic Issues with Formal
• What simulation do I replace?

– Short answer is none unless block is done completely formally
– The metrics are too different

• We don’t know if or when it will complete
– Formal can take a long time to give very poor results

• A high level of skill might be required
– To write the correct properties and constraints
– To drive the tools
– And to drive into bug avoidance in the future

• So why bother?
– You can “get it for free” on the back of assertion-based verification
– There are requirements that cannot be verified through simulation

• Cache coherency, liveness, deadlock,…
– We need it to cope with the increasing complexity of verification

So how do I get started with Formal Verification
• Targeted applications

– Coverage closure, X-propagation, etc
– Easy to apply but not of significant value

• Get designers to use it
– Write assumes, coverage and properties that can be re-used

• Real exploitation requires strategic investment
– Training for writing “bug hunting” properties

• Standardise on when, where and how to write
– Automation of the flows

• Create bug absence experts
– Requires careful selection and training
– Centralise the skills?
– These people will also be good at bug analysis

• Bug avoidance is a longer term goal

The main EDA Tools

Cadence Jasper: Best-in-class Formal by far

• Formal is a mainstream verification technology
• Formal is growing rapidly in the verification mix: complementary to

simulation
• Industry’s leading formal technology is JasperGold from Cadence

69

Formal Scalability Leadership =
• more verification
• in less time
• on bigger designs

JasperGold verification platform

70

Highly interactive formal debug
transforms to fit the App

Solve specific verification problems
with targeted JasperGold® Apps

ProofGrid™ Manager assigns best engine for task

Broad formal engine and infrastructure

Programmable Interface via TCL

Assertion Based Verification IPs for AMBA and other common protocols

Connectivity
Verification App

X-Propagation
Verification App

Control/Status
Register Verif. App

SuperLint (AFL)
App

Design Coverage
Verification App

Low Power
Verification App

Security Path
Verification App

Sequential Equivalence
Checking App

Coverage
Unreachability App

Formal Property
Verification App

Clock Domain
Crossing App

Functional Safety
Verification App

JasperGold 2018.09 / 2018.12 milestone
releases

71

Comprehensive
Formal Signoff

Engine-
independent

coverage
measurement

All-new intuitive
formal coverage

analysis

Advanced Design
Scalability

Compiles bigger
designs faster

Up to 70%
memory

reduction: uses
smaller servers

Smart Proof
Technologies

Big increases in
performance &

convergence

Uses Machine
Learning for out-
of-the-box proofs

& regression

Mentor’s Formal Apps Deliver Automated, Exhaustive
Verification For Every Project Phase

 Formal-based apps focus on
specific, high-value
verification challenges; from
IP to SoC levels

 Apps auto-generate
assertions,
saving countless hours of
work

 Because formal is exhaustive,
a formal app is THE best tool
for the corresponding task

 Results can be integrated with
simulation and verification
planning and management

JVH3, Introduction to Automated Formal Apps, February 2019

Mentor: How Do Formal Apps Work?

JVH3, Introduction to Automated Formal Apps, February 2019

Processing
Assertion generator

+ formal engines

Outputs
Waveforms,

Text&GUI Report(s),
Properties, UCDB

SVA
Properties

Textual & GUI Reporting

UCDB
RTL

Initialization
Sequence

CSV
IP-XACT

XML

Properties
Assertions, Assumes,
Constraints, Covers

Secure Storage
& Path Spec

Waivers,
Constraints

Test plan

SDCUPF Questa Formal App
Assertion
Generator

Formal
Engines

Inputs
RTL + Task-Related files

Mentor: Automated Formal Apps Fix Expensive, Painful Problems

JVH3, Introduction to Automated Formal Apps, February 2019

Pain Mentor’s Solutions
Needing to wait for the UVM TB before “serious” verification can begin AutoCheck PropCheck
Finding corner-case bugs very late, when they are harder to fix PropCheck Register Check

Confirming customizations to AMBA bus protocol didn’t go too far AMBA Formal Assertion Library

Code Coverage closure & dead code analysis CoverCheck

Register policy corner cases hard to find with simulation Register Check

SoC and pad ring static & dynamic internal connectivity;
No connectivity spec for legacy IPs Connectivity Check

Is there an unintended HW backdoor to secure/safety critical paths & storage? Secure Check

Erratic HW failure from ‘X’ – low power or post-reset X-Check

Verify absolute sequential equivalency between RTL IPs (ECO, Low Pwr, Fault) SLEC

Burning opportunity cost trying to root-cause a post-silicon bug Post Silicon Debug

Multiple clock and reset domains cause metastability that hang the chip CDC, PA CDC, CDC-FX, RDC, Signoff CDC

FPGA user value

OneSpin Solutions

75

Functional Reliability Functional Safety Trust & Security

Design Exploration
Protocol Violations
Integrate Formal/Sim Coverage
End-to-End User Assertions
HLS/SystemC Verification
Synthesis/P&R Errors

FMEDA Support
Excessive Fault Simulation
Insufficient Diagnostic Coverage
Incorrect Safety Mechanisms
ISO 26262 Compliance
DO-254 Compliance

Denial of Service
Data Leakage
Privileges Escalation
Data Integrity/Confidentiality
Hardware Backdoors
Hardware Trojans

Spinnaker Partner
Certified provider of verification services
using OneSpin products

Addressing IC Integrity Challenges

OneSpin – AI, ML, 5G, RISC-V

76

Heterogeneous computing hardware platforms
• Top-level connectivity verification supporting XL chips

• 1M+ connections, 60M+ module instances, 30K+ modules
• Abstract connectivity specification expanded by tool

• Floating-point unit (FPU) automated verification
• Coherent accelerators protocol compliance
• HLS flow support (SystemC/C++)
• Reliable synthesis and P&R implementation flows

• Support for Intel-Altera, Xilinx, and Microsemi devices
RISC-V

• ISA and privileged ISA formalization using SystemVerilog Assertions
• Unbounded proofs, 100% proven functional coverage

OneSpin – Functional Safety

77

Automotive, ISO 26262 compliance
• Computation of safety metrics: SPFM, LFM, PMHF
• Minimize or replace fault simulation
• Verification of safety mechanisms
• Tool qualification kit certified by TÜV SÜD

Avionics, DO-254 compliance
• Minimize or replace gate-level simulation
• Equivalence checking to verify advanced FPGA optimizations
• Speed-up elemental analysis
• Tool qualification kit

Nuclear, railway, medical, industrial

Further Reading
• SVA

– http://s1.nonlinear.ir/epublish/book/SVA_The_Power_of_ertions_in_SystemVerilog_978
3319071381.pdf

• Abstraction
– http://www.techdesignforums.com/practice/technique/the-art-of-abstraction/

• Writing formal VIP
– https://www.design-reuse.com/articles/20327/assertion-ip-formal-verification.html

• Writing a formal verification test plan
– https://www.researchgate.net/publication/228360702_Guidelines_for_creating_a_form

al_verification_testplan
• Under the hood (???)

– https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

http://s1.nonlinear.ir/epublish/book/SVA_The_Power_of_ertions_in_SystemVerilog_9783319071381.pdf
http://www.techdesignforums.com/practice/technique/the-art-of-abstraction/
https://www.design-reuse.com/articles/20327/assertion-ip-formal-verification.html
https://www.researchgate.net/publication/228360702_Guidelines_for_creating_a_formal_verification_testplan
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Further reading
• Good T&VS conference papers

– Alex Orr, Princip, Broadcom al Engineer – IC Design
• “My first 100 days in formal-land”

– https://www.testandverification.com/conferences/formal-verification-conference/formal-
verification-conference-2015/

• Better Living Through Formal
– https://www.testandverification.com/conferences/formal-verification-conference/fv2016/better-

living-through-formal/

– Prof. Ashish Darbari, Leader of Advanced Verification Methodology Group,
Imagination Technologies Limited “The Ten Myths About Formal”

• https://www.testandverification.com/conferences/formal-verification-conference/formal-
verification-conference-2015/speaker-professor-ashish-darbari-imagination-technologies/

https://www.testandverification.com/conferences/formal-verification-conference/formal-verification-conference-2015/
https://www.testandverification.com/conferences/formal-verification-conference/fv2016/better-living-through-formal/
https://www.testandverification.com/conferences/formal-verification-conference/formal-verification-conference-2015/speaker-professor-ashish-darbari-imagination-technologies/

Further reading
• SNUG Austin 2018

– Formal Property Checking Applied to Low-Power Microcontroller Designs
• Alan Carlin, Nemo Zhong, NXP Semiconductors Austin, TX USA
• Tareq Altakrouri, Synopsys Plano, TX USA

Further Work
• Get the labs

– Email it@testandverification.com

• Any questions
– Email mike@testandverification.com

mailto:it@testandverification.com
mailto:mike@testandverification.com

	Mike Bartley�CEO and Founder�Test and Verification Solutions Ltd���February 2019�
	Practical Issues
	Objectives
	Objectives
	Your speaker: Mike Bartley
	Introduction
	Functional Verification Approaches
	Introduction: Role of Simulation
	Introduction: Formal Property Checking
	Simulation Depth-first vs. Formal Breadth-first
	Simulation – depth first search
	Property Checking – breadth first search
	Property Checking – cannot prove in all states?
	Introduction: Simulation vs Formal Verification
	Property Checking – a very brief introduction�Inputs to the tool
	Outcomes of Formal Property Checking
	Outcomes of Formal Property Checking
	Assertion-Based Verification
	Types of Assertions: Safety Properties
	Types of Assertions: Liveness Properties
	Slide Number 21
	What is an assertion?
	Types of SystemVerilog Assertions
	Concurrent assertions
	Building Blocks of SVA
	Slide Number 26
	Clock Definition in SVA
	The ## delay operator
	Using a range in the delay operator
	The semantics of “a ##2 b”
	Implication Operator
	Implications
	Implications
	Timing Windows
	Built-in System Functions
	Useful System Verilog Functions for Property Specification
	SVA with Parameters
	Formal Arguments in a Property
	SVA using local variables
	Slide Number 40
	Coverage in Formal: use of constraints
	Coverage in Formal: implication
	Coverage in Formal
	Coverage in Formal: Design Coverage
	Connecting SVA to the design
	Slide Number 46
	Slide Number 47
	Property Checking – Outputs from the tool
	Overcoming Complexity Issues - Abstraction
	Counters
	Formal helpers
	Assume Guarantee Paradigm
	Slide Number 53
	The Strengths of Property Checking
	Potential issues with formal verification
	A Taxonomy of Methodologies
	Design bring-up
	Bug analysis using Formal
	Formal “apps”
	Superlint (Autochecks)
	Protocols
	X-propagation
	Finite State Machines
	Slide Number 65
	Strategic Issues with Formal
	So how do I get started with Formal Verification
	Slide Number 68
	Cadence Jasper: Best-in-class Formal by far
	JasperGold verification platform
	JasperGold 2018.09 / 2018.12 milestone releases
	Mentor’s Formal Apps Deliver Automated, Exhaustive Verification For Every Project Phase
	Mentor: How Do Formal Apps Work?
	Mentor: Automated Formal Apps Fix Expensive, Painful Problems
	OneSpin Solutions
	OneSpin – AI, ML, 5G, RISC-V
	OneSpin – Functional Safety
	Further Reading
	Further reading
	Further reading
	Further Work

