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Design Overview & 
Motivation



GPU Overview
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Reference from: http://www.tuicool.com/articles/meeaYfq

http://www.tuicool.com/articles/meeaYfq


GPU Resources

• Compute units are the key module in modern GPU
– Graphics shading
– General-purpose computing

• Typical GPU resources required by compute units
– Scalar/vector general-purpose-registers 
– Local data share
– Barrier resource
– Computing slot 
– Scratch buffer

• Resource management is critical in GPU
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Design Overview

• The resource block
– 6 different types of 

resources
– Uses a big bitmask to 

track the status of 
resources

– Decides which shader 
request can be 
launched
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Verification Challenges

• Controllability

– Large resource pools, hard for coverage closure

– Numbers of configurations to walk through

• Observability

– Arbitration results are timing-dependent

– No way to create an accurate reference model for concurrent 

allocation/de-allocation
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Formal Verification

• Why do we choose Formal Verification?

– Exhaustive coverage with high controllability

– White box verification with high observability

– Advantage in verifying control-intensive logic

– Friendly debug support

• Use VC formal from Synopsys
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Formal Verification 
Challenges & Solutions



Formal Verification Framework

• Legality checkers for all resource types
• End-to-end checkers for data integrity, etc.

– e.g. alloc_size
• Interface checkers for interface protocols

– e.g. task_id must be consecutive in a workgroup for group requests. 
• Internal checkers for arbitration mechanism

– e.g. LRU algorithm
• Automatically Extracted Properties generated by VC formal
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Avoid State Explosion

State explosion cause

– Constraint/checker complexity

– Design complexity

– Deep sequential depth

Formal convergence skill

– Constraint/checker abstraction

– Design abstraction 

– Bounded proof
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Resource A

Bitmask size per SIMD:   m bits
Number of SIMDs:           n 
req_size:                          w bits
Possible states:               2w * 2m*n



Legality Checkers

• Unavailable resource can’t be allocated.
• Available resource can’t be de-allocated.
• Allocation and de-allocation can’t happen to one resource at 

the same time.

3/1/2022 Chuanqin Yan (AMD) 12

alloc_legality_check_p: assert property(@(posedge clk) disable iff(rst)
(alloc && alloc_res_hit |-> !scb)

);
dealloc_legality_check_p: assert property(@(posedge clk) disable iff(rst)

(dealloc && dealloc_res_hit |-> scb)
);
exclusive_alloc_dealloc_p: assert property (@(posedge clk) disable iff(rst)

$onehot0({(alloc && alloc_res_hit), (dealloc && dealloc_res_hit)})
);  



Checker Abstraction

• Base
– The “bit mask” design is a symmetric implementation

• Solution
– Symbolic random variables to check if ANY single bit in the 

scoreboard is allocated and de-allocated legally
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// Symbolic variables are randomized at reset and keep stable then.
symbolic_cu_id:     assume property (@(posedge clk) 

(##1 $stable(watched_cu_id)));
symbolic_simd_id: assume property (@(posedge clk) 

(##1 $stable(watched_simd_id)));
symbolic_res_id:    assume property (@(posedge clk) 

(##1 $stable(watched_res_id)));



Design Abstraction

• Base
– DUT can be scaled down to a 

smaller configuration.

– Different types of resources are 

independent from each other. 

• Methodology

– Down-scale configuration to 

smaller one

– Blackbox unconcerned resource 

types.
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Reset Abstraction

• Base:
– If the scoreboard starts 

from an arbitrary legal 
status, then doing one 
allocation/de-allocation is 
enough to cover all of the 
possible scenarios.

• Solution:
– Exclude reset logic to 

customize initial states
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Scoreboard

Reset 
logic

alloc and 
de-alloc 
control 

Cutting point

update



Bounded Proof

• Bounded proof depth calculation
– 5 cycles needed to do one operation

• allocation for 4 cycles, and/or
• de-allocation for 5 cycles

– 1 extra cycle added for safety 
• Run time with depth=6 for resource A
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Formal verification sign-off

• Original sign-off list
– Every output signal is covered with at least one 

checker. 
– We achieved bounded proof for all of the checkers 

with depth 6.
– We can achieve virtually 100% code coverage and 

100% functional coverage in 6 cycles.

3/1/2022 Chuanqin Yan (AMD) 17

Only guarantee the reachability of formal verification 
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Mutation Coverage In Sign-off



Mutation Coverage

• Measure the quality of verification environment
– Error injection to find property holes
– 4 types of errors inserted 
 The DUT allocates more resources than expected. 
 The DUT allocates less resources than expected.
 The DUT de-allocates more resources than expected.
 The DUT de-allocates less resources than expected.
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All the 3 legality checkers are still proven
There are verification holes



Resource Leakage Issue
• Will break forward progress with enough depth

– Reset abstraction/bounded proof reduce the depth
• No immediate observability for scoreboard itself 

– Should add property for internal scoreboard status.
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Scoreboard Checkers

• check if each resource state transition works correctly
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//After alloc, the scoreboard bit must be the same as reference bit, scb
alloc_legality_check_internal_p: assert property (@(posedge clk) disable iff(rst)

(alloc && alloc_res_hit |-> scb == internal_bit_mask[symbolic_id])
);  

// After dealloc, the scoreboard bit must be the same as reference bit, scb
dealloc_legality_check_internal_p: assert property (@(posedge clk) disable iff(rst)

(dealloc && dealloc_res_hit |-> ##3 scb = internal_bit_mask[symbolic_id])
); 



Mutation Coverage Trade-off 
• Challenges for mutation injection

– Large number of mutation for certain design
– Time-consuming to check mutation coverage

• Two mutation coverages are defined for trade-off
1. Functional mutation coverage
Manually defined, explicit coverage based on SPEC
Measurement for observability of interests

2. Structural mutation coverage
Auto-generated, implicit coverage based on RTL structure
Can be numerous
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Combine functional and structural mutation coverage
Use certitude from Synopsys



Coverage Results

Mutation coverage result from certitude

• 33% non-detected faults.
– 9 errors are the resource leakage related issues.
– 19 errors are related to logic redundancy.
– 37 errors are covered by other types of checkers, like the “reserve” 

and “cu_locking” logics. 
– 172 errors are related to resource search logic as we expect. 
similar to issues in resource status logic.
after reset abstraction, the reset logic of resource search is cut off from 

DUT. 
• 67% detected faults.
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Certitude Run-Time
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Mutation Coverage Steps
• Manual mutation coverage - functional

– For critical functions, abstraction related parts
– alloc more/less, de-alloc more/less for this case.
Guide tool to inject arithmetic error into target design file

• Auto mutation coverage - structural
– auto-inject by EDA tool
– Reset, connectivity, arithmetic, etc.
– Restrict the number of errors
– Low priority errors.

• Trade-off between performance and confidence
• Add mutation coverage into our formal sign-off list.
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Conclusions

• Formal verification solves our challenges in simulation

• Manual interventions are required for FPV convergence

• Verification holes may be introduced

• Mutation coverage helps a lot for formal sign-off

• Trade-off between functional mutation coverage and 

structural mutation coverage for best ROI
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