
Formal Proof for GPU
Resource Management

Jia Zhu, Chuanqin Yan, Nigel Wang
Advanced Micro Devices Co., Ltd

Agenda

• Design Overview & Motivation
• Formal Verification Challenges & Solutions
• Mutation coverage in Sign-off
• Conclusions

3/1/2022 Chuanqin Yan (AMD) 2

3/1/2022 Chuanqin Yan (AMD) 3

Design Overview &
Motivation

GPU Overview

3/1/2022 Chuanqin Yan (AMD) 4

Reference from: http://www.tuicool.com/articles/meeaYfq

http://www.tuicool.com/articles/meeaYfq

GPU Resources

• Compute units are the key module in modern GPU
– Graphics shading
– General-purpose computing

• Typical GPU resources required by compute units
– Scalar/vector general-purpose-registers
– Local data share
– Barrier resource
– Computing slot
– Scratch buffer

• Resource management is critical in GPU

3/1/2022 Chuanqin Yan (AMD) 5

Design Overview

• The resource block
– 6 different types of

resources
– Uses a big bitmask to

track the status of
resources

– Decides which shader
request can be
launched

3/1/2022 Chuanqin Yan (AMD) 6

Verification Challenges

• Controllability

– Large resource pools, hard for coverage closure

– Numbers of configurations to walk through

• Observability

– Arbitration results are timing-dependent

– No way to create an accurate reference model for concurrent

allocation/de-allocation

3/1/2022 Chuanqin Yan (AMD) 7

Formal Verification

• Why do we choose Formal Verification?

– Exhaustive coverage with high controllability

– White box verification with high observability

– Advantage in verifying control-intensive logic

– Friendly debug support

• Use VC formal from Synopsys

3/1/2022 Chuanqin Yan (AMD) 8

3/1/2022 Chuanqin Yan (AMD) 9

Formal Verification
Challenges & Solutions

Formal Verification Framework

• Legality checkers for all resource types
• End-to-end checkers for data integrity, etc.

– e.g. alloc_size
• Interface checkers for interface protocols

– e.g. task_id must be consecutive in a workgroup for group requests.
• Internal checkers for arbitration mechanism

– e.g. LRU algorithm
• Automatically Extracted Properties generated by VC formal

3/1/2022 Chuanqin Yan (AMD) 10

Avoid State Explosion

State explosion cause

– Constraint/checker complexity

– Design complexity

– Deep sequential depth

Formal convergence skill

– Constraint/checker abstraction

– Design abstraction

– Bounded proof

3/1/2022 Chuanqin Yan (AMD) 11

Resource A

Bitmask size per SIMD: m bits
Number of SIMDs: n
req_size: w bits
Possible states: 2w * 2m*n

Legality Checkers

• Unavailable resource can’t be allocated.
• Available resource can’t be de-allocated.
• Allocation and de-allocation can’t happen to one resource at

the same time.

3/1/2022 Chuanqin Yan (AMD) 12

alloc_legality_check_p: assert property(@(posedge clk) disable iff(rst)
(alloc && alloc_res_hit |-> !scb)

);
dealloc_legality_check_p: assert property(@(posedge clk) disable iff(rst)

(dealloc && dealloc_res_hit |-> scb)
);
exclusive_alloc_dealloc_p: assert property (@(posedge clk) disable iff(rst)

$onehot0({(alloc && alloc_res_hit), (dealloc && dealloc_res_hit)})
);

Checker Abstraction

• Base
– The “bit mask” design is a symmetric implementation

• Solution
– Symbolic random variables to check if ANY single bit in the

scoreboard is allocated and de-allocated legally

3/1/2022 Chuanqin Yan (AMD) 13

// Symbolic variables are randomized at reset and keep stable then.
symbolic_cu_id: assume property (@(posedge clk)

(##1 $stable(watched_cu_id)));
symbolic_simd_id: assume property (@(posedge clk)

(##1 $stable(watched_simd_id)));
symbolic_res_id: assume property (@(posedge clk)

(##1 $stable(watched_res_id)));

Design Abstraction

• Base
– DUT can be scaled down to a

smaller configuration.

– Different types of resources are

independent from each other.

• Methodology

– Down-scale configuration to

smaller one

– Blackbox unconcerned resource

types.

3/1/2022 Chuanqin Yan (AMD) 14

Reset Abstraction

• Base:
– If the scoreboard starts

from an arbitrary legal
status, then doing one
allocation/de-allocation is
enough to cover all of the
possible scenarios.

• Solution:
– Exclude reset logic to

customize initial states

3/1/2022 Chuanqin Yan (AMD) 15

Scoreboard

Reset
logic

alloc and
de-alloc
control

Cutting point

update

Bounded Proof

• Bounded proof depth calculation
– 5 cycles needed to do one operation

• allocation for 4 cycles, and/or
• de-allocation for 5 cycles

– 1 extra cycle added for safety
• Run time with depth=6 for resource A

3/1/2022 Chuanqin Yan (AMD) 16

Formal verification sign-off

• Original sign-off list
– Every output signal is covered with at least one

checker.
– We achieved bounded proof for all of the checkers

with depth 6.
– We can achieve virtually 100% code coverage and

100% functional coverage in 6 cycles.

3/1/2022 Chuanqin Yan (AMD) 17

Only guarantee the reachability of formal verification

3/1/2022 Chuanqin Yan (AMD) 18

Mutation Coverage In Sign-off

Mutation Coverage

• Measure the quality of verification environment
– Error injection to find property holes
– 4 types of errors inserted
 The DUT allocates more resources than expected.
 The DUT allocates less resources than expected.
 The DUT de-allocates more resources than expected.
 The DUT de-allocates less resources than expected.

3/1/2022 Chuanqin Yan (AMD) 19

All the 3 legality checkers are still proven
There are verification holes

Resource Leakage Issue
• Will break forward progress with enough depth

– Reset abstraction/bounded proof reduce the depth
• No immediate observability for scoreboard itself

– Should add property for internal scoreboard status.

3/1/2022 Chuanqin Yan (AMD) 20

Scoreboard Checkers

• check if each resource state transition works correctly

3/1/2022 Chuanqin Yan (AMD) 21

//After alloc, the scoreboard bit must be the same as reference bit, scb
alloc_legality_check_internal_p: assert property (@(posedge clk) disable iff(rst)

(alloc && alloc_res_hit |-> scb == internal_bit_mask[symbolic_id])
);

// After dealloc, the scoreboard bit must be the same as reference bit, scb
dealloc_legality_check_internal_p: assert property (@(posedge clk) disable iff(rst)

(dealloc && dealloc_res_hit |-> ##3 scb = internal_bit_mask[symbolic_id])
);

Mutation Coverage Trade-off
• Challenges for mutation injection

– Large number of mutation for certain design
– Time-consuming to check mutation coverage

• Two mutation coverages are defined for trade-off
1. Functional mutation coverage
Manually defined, explicit coverage based on SPEC
Measurement for observability of interests

2. Structural mutation coverage
Auto-generated, implicit coverage based on RTL structure
Can be numerous

3/1/2022 Chuanqin Yan (AMD) 22

Combine functional and structural mutation coverage
Use certitude from Synopsys

Coverage Results

Mutation coverage result from certitude

• 33% non-detected faults.
– 9 errors are the resource leakage related issues.
– 19 errors are related to logic redundancy.
– 37 errors are covered by other types of checkers, like the “reserve”

and “cu_locking” logics.
– 172 errors are related to resource search logic as we expect.
similar to issues in resource status logic.
after reset abstraction, the reset logic of resource search is cut off from

DUT.
• 67% detected faults.

3/1/2022 Chuanqin Yan (AMD) 23

Certitude Run-Time

3/1/2022 Chuanqin Yan (AMD) 24

0.67

208

33

0

50

100

150

200

250

Time/h

Manual injection Structural mutation Functional mutation

Platform: HP 8 core workstation, 64G mem

Manual injection: manually defined, manually injected
Structural mutation: fully auto-error injection by tool
Functional mutation: manually defined, but auto-injected by tool

Mutation Coverage Steps
• Manual mutation coverage - functional

– For critical functions, abstraction related parts
– alloc more/less, de-alloc more/less for this case.
Guide tool to inject arithmetic error into target design file

• Auto mutation coverage - structural
– auto-inject by EDA tool
– Reset, connectivity, arithmetic, etc.
– Restrict the number of errors
– Low priority errors.

• Trade-off between performance and confidence
• Add mutation coverage into our formal sign-off list.

3/1/2022 Chuanqin Yan (AMD) 25

Conclusions

• Formal verification solves our challenges in simulation

• Manual interventions are required for FPV convergence

• Verification holes may be introduced

• Mutation coverage helps a lot for formal sign-off

• Trade-off between functional mutation coverage and

structural mutation coverage for best ROI

3/1/2022 Chuanqin Yan (AMD) 26

Acknowledge

3/1/2022 Chuanqin Yan (AMD) 27

Thank Vigyan Singhal and Chirag Agarwal from Oski

Thank Xiaolin Chen, Jimmy Sun, Huang Feng from

Synopsys

Thank Matthew Znoj, Mark Anderson from AMD Shader

Processor Input team

Thank Christeen Gray from AMD GFXIP methodology

team

	Formal Proof for GPU Resource Management
	Agenda
	Slide Number 3
	GPU Overview
	GPU Resources
	Design Overview
	Verification Challenges
	Formal Verification
	Slide Number 9
	Formal Verification Framework
	Avoid State Explosion
	Legality Checkers
	Checker Abstraction
	Design Abstraction
	Reset Abstraction
	Bounded Proof
	Formal verification sign-off
	Slide Number 18
	Mutation Coverage
	Resource Leakage Issue
	Scoreboard Checkers
	Mutation Coverage Trade-off
	Coverage Results
	Certitude Run-Time
	Mutation Coverage Steps
	Conclusions
	Acknowledge

