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Abstract— Pre-silicon simulation/emulation based dynamic validation (DV) has advanced by leaps and bounds to 

verify the latest complex hardware designs with decent confidence. However, the union of all these technologies would 

still leave some holes that get exposed as bugs on the silicon that motivates the designers to explore alternate 

methodologies to gain higher confidence.  Formal Verification (FV) is one powerful validation technique that 

mathematically proves design correctness, rather than simulating specific test cases, and has been growing in 

popularity across the industry.   Traditionally, FV has been found useful applications in the areas such as algorithmic 

circuit verification, complex control path verification, connectivity checks etc. There are many other areas where 

application of FV has been limited or completely non-existent since these are considered not suited for FV. In our paper, 

we present our experience in application of FV in some of these non-traditional areas. 
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I.  INTRODUCTION  

Increasing design complexity driven by feature and performance requirements and the Time to Market (TTM) 

constraints force a faster design and validation closure. Studies [6] indicate more than 50% of the project time is 

consumed by verification, and verification engineers spends 44% of overall verification time in debug, which is the 

maximum when compared to other tasks like test planning, test writing simulation and regression. This compels a 

verification engineer to think of novel ways of identifying and debugging behavioral inconsistencies. Despite 

extensive verification done using multiple tools and technologies, some bugs escape pre-silicon and are found at 

post-silicon validation stage, which brings in immediate management attention and management wants those bugs 

to be solved as quickly as possible to cause a minimum impact on the project schedule. The designers and managers 

at this stage not only want to fix the bug early but also wants to verify the bug fix. Post-silicon debug and bug fix 

verification using traditional simulation has been very challenging and time consuming. We proposed a 

methodology using formal verification (FV) which we have successfully applied to post-silicon debugs and reduced 

debug time, as compared to traditional simulation approach, and achieved higher confidence in verification of bug 

fix using FV.  

RTL-RTL sequential equivalence checking using formal is already being used for verification of incremental 

features like timing fixes, clock gating, chicken bit[4], but these applications are mostly confined to unit level 

boundaries. Any incremental change at the chip level becomes challenging as RTL2RTL sequential equivalence 

tool hit complexity issues leaving the verification engineer with two options, to verify logical equivalence RTL-

RTL and use traditional simulation to verify the functional correctness. Chip level simulation regression takes 

multiple days, consuming lot of time and resources which is not always suitable for the project timelines. We 

proposed an automation to establish the sequential equivalence, hierarchically from leaf level to chip level saving 

verification time and resources as compared to traditional approaches. We also present an innovative application, 

where we have utilized the power of sequential equivalence to establish transaction equivalence between two RTLs 

and found corner case control logic bugs which are very hard to find using traditional approaches. This paper also 

discusses how smartly applying connectivity verification can save lot of debug time and resources. 
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II. POST-SILICON FV 

In the current design environment, even after running many cycles of verification both at simulation and 

emulation, there are critical bug escapes which are found post-silicon. These bugs are often hard to root-cause at 

the chip level since not all RTL signals are available for debug. An RTL bug which is found post-silicon is required 

to be root caused and fixed correctly at the RTL level. The current techniques which are being used, although help 

in localizing a problem, takes time to arrive at the root cause to a particular unit or a functional block (FUB). Some 

of the critical bugs could delay the PRQ of the product and hence causing a huge financial loss to the company. 

The key requirement for curtailing the compute resources would be exhaustive verification methods and expeditious 

debug time.  

Formal property Verification (FPV) exhaustively verifies a given design against a specification coded as 

properties. The FPV environment uses mathematical techniques to verify the assertions, given a set of constraints 

(assumptions). A passing proof indicates that all possible behaviours were exhaustively verified, and the design 

adheres to the given specifications. In the Figure1, we describe the FPV methodology which was incorporated to 

resolve the post-silicon bugs on multiple units therewith not only reducing the time for debug but also proving that 

the RTL fix provided was correct. Although application of FV in post-silicon debugs is nothing new [5], we are 

presenting an optimised methodology which would help in catching bugs faster. 

 

 

 

III. NON-CONVENTIONAL APPLICATIONS USING FORMAL 

With the increasing use of sequential optimizations during logic synthesis, sequential equivalence checking 

(SEC) has become an important practical verification problem. SEC might employ symbolic algorithms, based on 

binary decision diagrams (BDD) to traverse the state space or any optimized methodology for the specific state 

space traversal to check for the equivalence of two circuits. On the other hand, the equivalence problem could also 

be mapped to a model checking problem, where a set of properties define the equivalence between the two circuits. 

The basic theory behind the RTL-RTL is that when we inject two functionally equivalent RTL models with same 

inputs, we expect the outputs to remain the same. The tool requires us to give two RTL models. If the input names 

are same, then it drives the same values on both the models and an assertion is added at the output to check for 

 
* Identify applicable sponsor/s here. If no sponsors, delete this text box (sponsors). 

Figure 1 Flowchart for Post-silicon Debug. 
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equivalence. This methodology has found widespread applications in areas such as clock gating verification, timing 

fixes [4] etc. We employed this methodology to attune to our validation environment which lead us to the 

application of sequential equivalence checking in new areas. 

A. Hierarchical RTL-RTL for SoC designs and derivative products 

When there are multiple derivative projects forked off from a parent project, there are certain features which 

are coded both in the parent project and the derivative project requires the need to validate if the feature is not 

affecting the unintended partitions. To ensure the functional correctness of the change, many tests are run which 

has an added impact on the compute cost on each test. This effort could be greatly reduced if we have equivalence 

checked from the top level to the design till the leaf level of two projects. Conventional RTL –RTL would hit 

convergence issues if the design size is more than 5 million. We worked with vendor to enhance the equivalence 

check capabilities at chip level to automatically partition the design depending on the hierarchy defined at the chip 

level till the leaf level units. This compares the two designs till the leaf level and equivalence is proven. We have 

enhanced the automation further to compare the partition if there is a change in the name of the partition with the 

lower level units being the same. This has helped us to achieve the results nearly 50X faster to current validation 

environment. 

B. SCHMOO RTL-RTL 

Intel GPU (GT) has media capabilities which handle video encoding, decoding and transcoding process. The 

traditional way of validating media hardware algorithms is using a golden C model as reference and control logic 

in these blocks is validated using testbench techniques to create different timing scenarios. In any VLSI design it is 

hard to expose some of the control logic bugs using traditional techniques as we are limited by either test content, 

testbench infrastructure or coverage and these bugs end up showing in silicon, which is very expensive. We use the 

terminology schmoo to refer to different interface delays and backpressures created in testbench to the DUT. 

In order to enable the requirement for control logic verification, we needed to create an environment where we 

do a transactional equivalence i.e., irrespective of the time the data is injected into the RTL, we expect the RTL to 

generate the same output. This transactional verification is for the data and the associated valid signal only.  Since 

the tool maps all the signals, we had to specifically unmap just the data and its associated valid signals and add 

FIFOs both at the input (INFIFO) and at the output (OUT FIFO) as shown in figure 2.  The advantage of un-

mapping the valid signals is that, the tool is free to drive them independently which is needed to create delays.  

The tool is programmed to drive back-back transactions into spec RTL and essentially has no back pressure or 

delay. Using INFIFO, we have introduced delays at the input of the IMPL model. This is done to keep the input 

data between SPEC and IMP the same, but data arrives at two different time-stamps in the SPEC and IMP models. 

The write and read equations for the INFIFO are as follows: 

  INFIFO.WRITE= SPEC.INCOMING_DATA_VALID && ! INFIFO.FULL 

  INFIFO.READ = IMPL.INCOMING_DATA_VALID && !INFIFO.EMPTY 

 We added an OUT FIFO since the SPEC RTL will generate outputs faster than the IMPL RTL and we have to 

hold the spec data until the corresponding transaction from IMPL model comes out. The OUT FIFO is written when 

there is valid data at the SPEC RTL output and this data is compared against the IMPL RTL output when a 

corresponding data is present.  

The write and read equations for the OUT FIFO are as follows: 

  OUT FIFO.WRITE= SPEC.OUTGOING_DATA_VALID && ! OUTFIFO.FULL 

  OUT FIFO.READ = IMPL.OUTGOING_DATA_VALID && !OUTFIFO.EMPTY 
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C. Connectivity Verification 

The Formal Connectivity verifies RTL connections at the block, unit, and chip level for IP integration. It takes 

connectivity specification as input, automatically generate properties for each connection specified in the 

specification and exhaustively verifies connectivity. Formal Connectivity tools traverse the connectivity 

specification and automatically black-boxes the modules which are not required, thereby reducing the complexity 

for formal. Connectivity tools also have the capability to extract connectivity specification from the design and is 

termed as reverse connectivity flow.  

Using normal SoC connectivity verification flow at top chip level, a lot of the debug time is wasted in debugging 

the failures related to errors in connection misses. Formal Connectivity is helpful in exhaustive verification of 

connections, but creating connectivity specification is challenge, which we smartly solved by extracting 

connectivity specification using reverse connectivity from monitors connected at leaf levels and translated these 

connections to top level and verified connectivity at chip level, thereby reducing down the connectivity debug time 

to less than 1% of debug time, proving a typical example of shift left in validation cycle. By using this automation, 

we were able to quickly find out critical issues in chip level connectivity much faster than traditional flow. 

 

IV. RESULTS 

Post-silicon debug using formal reduced the debug time by 60% as compared to simulation approach. The 

properties used in reproducing the issue, were also utilized in verifying the bug-fix, provided higher confidence due 

to exhaustive nature of formal.  

In the course of project, there were multiple derivatives which were forked off from the main project. We 

applied the hierarchical RTL-RTL between the main model Vs forked off model. In addition to the models, the tool 

was provided with high level partition information so that it could effectively do the equivalence. Taking these as 

the inputs, the tool was able to do a hierarchical equivalence between the two models by internally partitioning the 

700 million gate design into close to 7000+ partitions. The equivalence was completed in 8hrs compared to the DV 

regression time of 125 hours. The tool was able to point out many errors such as signal mismatches, incorrect 

porting of features etc.  

We enabled Schmoo RTL-RTL on DUTs which were already reasonably validated using traditional 

approaches and this new methodology exposed additional 3 bugs, one of which was artificially introduced. This 

proved the robustness of the methodology and is made POR in current project and planned to be used for other in 

upcoming projects. The amount of time needed to expose these bugs is much faster compared to traditional 

approach.       

Figure 2. Schmoo RTL-RTL. 
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Using normal SoC connectivity verification flow at GT level, 8% of the debug time was wasted in debugging 

the failures related to missed connections. Using the connectivity specification extracted at leaf level we were able 

to automate the complete flow and reduce down the connectivity debug to less than 1% of debug time. 
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