

1

Formal Fault Propagation Analysis that Scales to

Modern Automotive SoCs

Sergio Marchese, Jörg Grosse

OneSpin Solutions GmbH, Munich, Germany

{sergio.marchese, joerg.grosse}@onespin.com

Abstract—Modern automotive S ystems-On-Chip (SoCs) implement numerous safety-critical functions. Random
hardware faults, e.g. single event latch-ups, may cause errors in circuit behavior and ultimately lead to dangerous

system failures. Safety mechanisms can reduce the occurrence of failures, but compliance to ISO 26262 requires a

quantitative analysis of their effectiveness. Formal verification tools can accurately inject faults in hardware models

and rigorously analyze their propagation. For complex automotive hardware with huge number of potential faults,

however, scalability and usability are challenging. In this paper, we present a two-mode formal fault propagation
analysis (FPA) method that requires minimal user input. We show how this pragmatic approach can complement

simulation-based fault analysis to deliver improved ISO 26262 metrics, while saving in engineering effort and

simulation cycles. Moreover, we demonstrate that with this method, formal FPA can be applied successfully to modern

automotive SoCs.

Keywords—formal verification; functional safety; fault injection; fault simulation; safety mechanisms; ISO 26262.

I.INTRODUCTION

Functional safety standards regulate the development of safety-critical systems for a number of industrial

domains, and include requirements for hardware components. ISO 26262 is the functional safety standard for the

automotive industry and applies to safety-related electrical and electronic (E/E) systems within road vehicles [1].

Automotive hardware must satisfy stringent expectations on the proportion of random hardware faults that could

compromise safety-critical functions. Hardware and software safety mechanisms can detect anomalous circuit

behavior and prevent, or control, dangerous failures. Safety mechanisms are key to satisfy ISO 26262 requirements

and fault simulation is the dominant method to provide evidence that only a small proportion of faults might

propagate to safety-critical functions without being detected.

A. Related Work

Formal methods [2] are widely recognized as a powerful technique to uncover design bugs and perform rigorous

and efficient functional verification. The application of formal tools to the functional verification of automotive

hardware is well established in the industry [8,9,10].

Another important characteristic of formal tools, particularly relevant to safety-critical applications, is the ability

to finely control the injection of faults and exhaustively analyze their sequential effects. Crucially, formal tools

have the potential to perform this task very efficiently, in terms of both user effort and computational demands, and

non-invasively (no need for code instrumentation steps). Formal-based fault injection and analysis methods applied

to automotive hardware are presented in [3,4,5,6,7].

These applications mainly target the verification of register-transfer level (RTL) hardware models, and require

significant inputs from expert users with in-depth knowledge of the design under test (DUT).

B. Contributions

In this paper, we present an application of formal tools that is specifically targeted at the computation of fault

metrics. This method requires minimal user input, is applicable to RTL and gate-level hardware models, and scales

to large designs with millions of faults to analyze. We propose a two-mode approach where, in each mode, we

apply dedicated formal algorithms to achieve different intermediate goals. The first mode, named Fast Fault

2

Propagation Analysis (FPA), targets large fault populations aiming at providing useable results for most of the

examined faults. The second mode, named Deep FPA, uses formal algorithms targeted at hard-to-analyze faults,

thus being applicable only to fault populations of limited size. In Section II we set the context of this work and

present basic concepts and terminology in line with ISO 26262. After introducing the two FPA modes in Section

III, we show how this approach can integrate with simulation-based fault analysis in Section IV. In Section V we

report on results obtained running the two FPA modes on both RTL and gate-level designs. Section VI concludes

the paper.

II. BASIC CONCEPTS

A. Faults, Errors and Failures

Failures happen when an element in a system is no longer capable to perform its required function. Failures are

caused by errors, e.g. the output of a hardware component not having its specified value. Errors are caused by faults,

e.g. a DRAM memory being corrupted by a cosmic ray. Note that failures at a certain level of hierarchy within a

system can become faults at the next level: a failure of a hardware component might be seen as a fault at the vehicle

level [1]. ISO 26262 defines two categories of failures: systematic and random (see Fig. 1). Systematic failures

have a deterministic relation to certain causes or faults as, for example, specification mistakes, coding mistakes in

software or in RTL, or even manufacturing defects. Random hardware failures occur unpredictably during the

lifetime of hardware elements following a probability distribution: examples are failures caused by natural radiation

or wear-out.

B. Random Hardware Faults

Random hardware faults can be categorized according to their duration [11]: permanent faults, e.g. a net

becoming permanently stuck to the logical value 0 due to wear-out, intermittent faults, and transient faults. Single

Even Upset (SEU) and Single Event Transient (SET) are transient faults. A typical example of a SEU is a bit -flip

in a DRAM memory due to natural radiation. SET and SEU faults cause soft errors, as, unlike for hard errors, there

is no permanent damage to the hardware. However, it is worth noting that a transient fault could be latent and long

lasting.

C. Safety Mechanisms and ISO 26262 Metrics

ISO 26262 prescribes the use of hardware and software safety mechanisms that detect random faults, to prevent

or control hardware failures [1]. Modern automotive SoCs may include a variety of software and hardware safety

mechanisms (see Fig. 2), depending on their target application and associated safety integrity level. Software safety

Figure 1. Relations between faults, errors and failures

3

mechanisms may be implemented with self-checking

routines, running at system power-up or even during

operation. Hardware safety mechanisms, on the other

hand, often involve some form of redundant logic

responsible to detect and potentially correct errors, and

report to other modules in the SoC, e.g. to a safety

management unit (SMU).

ISO 26262 requires a quantitative analysis of the

effectiveness of safety mechanisms, which must take

into account faults occurring in the safety logic itself.

For example, a fault compromising the error detection

and correction capabilities of the safety logic could

remain undetected and stay latent. When another fault

occurs, the detrimental effect of the latent fault could

finally become apparent. Single point faults , residual faults and latent faults as defined in Figure 3 are a threat to

safety and must be minimized. For ASIL D applications, for example, engineers might have to demonstrate that the

proportion of single point faults is below 1%.

D. Fault Injection and Fault Analysis

Fault injection is an established technique to understand the effects of faults on fault -tolerant systems [11,12].

ISO 26262 highly recommends fault injection as a method to verify the completeness and correctness of safety

mechanisms against safety requirements , during hardware, software and system development [1]. When analyzing

RTL and gate-level designs, the verification environment shall be able to inject faults and keep track of how they

propagate through the design. The main challenges are to implement an easy-to-use and scalable environment

capable to either quickly provide evidence that the design achieves its intended fault coverage targets, or clearly

point out to shortcomings.

Fault simulation has gained widespread adoption as a method for fault injection and analysis. Simulation does

scale to large designs, however, even for small designs, it cannot be exhaustive, and thus cannot prove that a fault

will never propagate to critical design’s outputs or registers. Even if a fault appears to be safe when exercising the

design with a large and smartly constructed set of input stimuli, there is always the chance that a new test could

show the very same fault causing a dangerous failure. Moreover, engineers might have to examine millions of

faults, which is not feasible with simulation. The typical workaround is to examine a sample of faults and provide

statistical evidence for fault coverage metrics.

Figure 2. Examples of safety mechanisms

Figure 3. Classification of faults in ISO 26262

4

III. FORMAL FAULT PROPAGATION ANALYSIS

Most formal tools for assertion-based verification are optimized to work on RTL models . Modern tools can

perform structural analysis on the design, including cone-of-influence analysis on signals and assertions, have apps

to automatically generate assertions for specific tasks, and rely on numerous proof engines and strategies that users

can tune to reduce proof runtimes or turn inconclusive results into pass or fail ones. Formal equivalence checking

tools for synthesis verification, on the other hand, are routinely applied on large gate-level netlists. In recent years,

sequential equivalence checking algorithms complementing traditional combinatorial equivalence checking have

enabled the verification of advanced synthesis optimizations, including in FPGA flows. All these methods can play

a role in formal FPA.

Applying formal technology to fault propagation analysis entails the injection of faults into hardware models

and the setup of proof problems to assess if one or more signals in the corrupted design, typically referred to as

observation points or safety-critical signals, have a different functional behavior compared to the original fault -free

design. Moreover, should a fault affect an observation point, it may be important to know if a fault detection signal

is activated. A crucial advantage of formal verification over simulation is that it does not require input vectors. The

formal analysis is equivalent to examining all input sequences, enabling engineers to provide rigorous evidence that

a certain fault is safe.

Ideally, engineers with no knowledge on formal methods should be able to apply the same push-button formal

flow on any RTL or netlist design of arbitrary complexity, and quickly find all safe faults. In practice, this is not

possible due to complexity issues, and engineers may have to explicitly select methods and proof strategies,

depending on the design and the set of faults under analysis. The pragmatic approach we propose in this paper

consists in defining two formal FPA modes, fast and deep, targeting two generic application scenarios. The main

goal is to achieve optimal computational performances with two highly automated solutions covering all the

application scenarios of advanced automotive SoCs developments .

A. Fast Mode

The Fast FPA mode requires as inputs a list of observations points, and an RTL or gate-level design model, and

targets large fault populations. Runtimes to examine the entire fault population could range from minutes to several

hours, with overnight runs acceptable for complex designs. In the fast mode the formal tool should automatically

select appropriate proof methods and strategies to find the majority of safe faults, while aborting the analysis of

hard-to-prove faults as soon as possible, thus minimizing effort spent on inconclusive results . To easy the task, the

generation of debug information for propagatable faults can be dropped.

B. Deep Mode

The Deep FPA mode requires as inputs a list of observation points and a small list of faults. The methods and

algorithms used in this mode shall be targeting hard-to-prove faults and produce detailed debug information for

faults that are proven to propagate to observation points. Acceptable runtimes could range from seconds to a few

hours per fault. In deep mode, it shall also be possible to leverage design knowledge in order to achieve performance

improvements. For designs with long initialization sequences, for example, the user might benefit from starting the

formal analysis after design initialization, a feature available on most modern formal tools.

IV. INTEGRATION WITH SIMULATION

A key benefit of the two-mode formal FPA approach outlined in the previous section is that it integrates with

fault simulation flows, boosting quality of results (QoR) and productivity. Engineers can run formal FPA in fast

mode on the whole fault population (see Fig. 4), before simulation. Faults that are proven safe immediately

contribute to the fault coverage metrics and do not need to be further analyzed in simulation. Fault simulation is

then applied to the reduced fault population, providing evidence to classify the majority of faults into detected and

propagatable. Before spending effort analyzing the remaining potentially propagatable faults and attempting to

improve the simulation testbench, engineers can run formal FPA in deep mode to identify additional safe faults that

were missed by fast FPA, and to automatically generate input stimuli demonstrating how certain faults propagate

5

to safety-critical outputs or registers. This approach reduces simulation effort and speeds up achieving the fault

coverage results required to attain ISO 26262 certification.

V. RESULTS

We applied the two formal FPA modes using the Fault Propagation Analysis App (FPA™) from OneSpin’s

Safety Critical Verification Solutions portfolio. This app enables the two-mode approach through a simple interface,

which also allows the user to adjust high-level proof settings. However, the complexity of proof methods and

strategies employed by the tool is kept under the hood. The FPA app accepts a user-defined fault population, but

can also create one that includes all potential stuck-at-0 and stuck-at-1 faults within the design. For each design, we

provided a list of observation points that were the targets of the fault propagation analysis. The chosen observation

points consisted in safety-critical outputs or registers. We also provided a small list of control inputs that were tied

to their inactive logic values during the analysis. This list typically included test mode and debug mode inputs. The

goal was to identify most of the safe faults during fast FPA. For deep FPA the goal was to reach conclusive results

on a small set of faults. A subset of faults that were proven propagatable to observation points were further

investigated to analyze their propagation path. Table I and Table II show results for the fast and deep FPA modes

respectively. It is worth noting that the overall runtime in fast mode is usually proportional to the size of the fault

population. In the deep mode, on the other hand, the runtime per fault can vary significantly.

Table I. Formal Fast FPA Results

Identify Safe Stuck 0/1 Faults

RTL Gate-level

Description

Open Core Processor – 10K LoC – 794
FFs

Summary of various designs

Fault
Population

12.260 faults
Up to 2 million faults

CPU Time 2 minutes
Up to several hours

Safe Faults 3257 (26%)
Up to 14%

Figure 4. Integration of formal FPA with fault simulation

6

Table II. Formal Deep FPA Results

Identify Safe and Propagatable Stuck 0/1 Faults

RTL Gate-level

Description

Open Core Processor – 10K LoC –
794 FFs

Summary of various designs

Fault
Population

12.260 faults
Up to 2 million faults

CPU Time Averaging at 20 seconds per fault
Averaging at several minutes per fault

Safe Faults 13%
Up to 2.1% of the remaining faults

VI. CONCLUSION

Modern automotive SoCs include complex safety-critical functions and safety-mechanisms. To comply with

ISO 26262 demands and compute the required fault metrics, engineers might have to inject and analyze millions of

fault scenarios on both RTL and gate-level design models. Formal verification tools can provide a powerful means

for the injection and rigorous analysis of faults. The method presented in this paper requires minimal user input,

exploits a pragmatic divide-and-conquer approach, and integrates with simulation-based methods. Large fault

populations can be addressed before any simulation effort. Dedicated formal algorithms can quickly derive results

that reduce the subsequent simulation workload. Small fault populations, typically representing faults that could

not be classified after simulation, can be addressed with a different set of algorithms and proof strategies that require

longer runtimes but are more likely to provide conclusive results. The results presented demonstrate the

applicability of this method to modern safety-critical designs.

REFERENCES

[1] “ ISO 26262. Road vehicles - Functiona safety- Parts 1-10”. First edition, Nov 2011.

[2] https://shemesh.larc.nasa.gov/fm/fm-what.html

[3] H. Busch, “An automated formal verification flow for safety registers”, in proceedings of DVCon Europe 2015, Munich, Germany.

[4] H. Busch, “Formal safety verification of automotive microcontroller parts”, ITG/GMM-Workshop ZuE 2012, Bremen.
[5] H. Busch, “Automated safety verification for automotive microcontrollers”, in proceedings of DVCon 2016, San Jose, CA, USA.

[6] H. Busch, “Quantification of formal properties for productive automotive microcontrollers”. in proceedings of DVCon 2013, San Jose,

CA, USA.

[7] A. Traskov, T. Ehrenberg, S. Loitz, A. Ayari, A. Efody, J. Hupcey III, “Fault proof: using formal technques for safety verification and

fault analysis”, in proceedings of DVCon Europe, 2016, Munich, Germany .

[8] R. Baranowski, M. Trunzer, “Complete formal verification of a family of automotive DSPs”, in proceedings of DVCon Europe, 2016,

Munich, Germany.

[9] T. Blackmore, S. Marchese, F. Bruno, “Formal verification of a key block of the TriCore2 microprocessor”, Euro DesignCon, 2004.

[10] T. Blackmore, F. Bruno, J. Bormann, S. Beyer, A. Maggiore, M.Siegel, S. Skalberg, “ Complete formal verification of TriCore2 and

other processors”, in proceedings of DVCon 2007.

[11] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault injection techniques”, in The International Arab Journal of Information

Technology, Vol. 1, No. 2, July 2004.

[12] Hsueh M. C., Tsai T . K., and Iyer R. K, “Fault injection techniques and tools,” IEEE Computer, vol. 30, no. 4, pp. 75-82, April 1997.

