
Formal Bug Hunting with “River Fishing”
Techniques

1

Mark Eslinger, Mentor

Ping Yeung, Mentor

Agenda

• What is River Fishing

• Traditional approach

• River fishing approach

• Results

• Design bugs

• Summary

2

Why “River Fishing”

3

www.takemefishing.org/freshwater-fishing/types-of-freshwater-fishing/river-fishing

http://www.takemefishing.org/freshwater-fishing/types-of-freshwater-fishing/river-fishing

I

Waypoints, Goal-posting, Cover-points

• [1] Richard Ho, et al., “Post-Silicon Debug Using Formal Verification Waypoints,” DVCon 2009

• [2] Blaine Hsieh, et al., “Every Cloud - Post-Silicon Bug Spurs Formal Verification Adoption,” DVCon 2015
4

T

T

T

G

G

G

G

G

G

I

I

I

River Fishing

• Launching formal verification from interesting fishing spots

• “Selection of initial states for formal verification,” US7454324.

5

T

T

T

Formal Bug Hunting with “River Fishing”

6

Fishing Spots

Bug Hunting Spots

Identify “fishing spots”

• “Selection of initial states for formal verification,” US7454324

7

Outside interactions Inter-module communication and standard protocol interfaces

Control and interrupts FSMs, bus controllers, memory controllers, flow charts, algorithmic controls

Concurrent events Arbiters, interrupts, schedulers, switches, multiplexing logics etc

Feedback, loops, and counts FIFOs, timers, counters, data transfers, bursting, and computations

Assert and cover properties fan-in cones of the user properties are great coverpoints and sub-goals

Identify “fishing spots”

• “Selection of initial states for formal verification,” US7454324
8

Interesting

Fishing spots

Boundary condition spots Rare & unique spots Multiple “hits” spots

Duplicated spots Error & abort spots Initialization & reset spots

The 3 Major Steps

• The “river fishing” formal bug hunting methodology consists of:

9

Identify
fishing spots

Engine health
screening

Concurrent
formal runs

Simulation

trace Interesting

Fishing spots

Prioritized

Fishing spots

Aggregated

Formal

results

1 2 3

Screening with Engine Health

• Formal engine health:

– Formal targets concluded (proven/fired/covered/uncoverable)

– Sequential depth explored or cone of influence analyzed

– Formal knowledge and engine setting acquired
10

Interesting

Fishing spots

Prioritized

Fishing spotsFormal
knowledge

(Proof, Depth, Knowledge)

Screening

Monitoring Engine Health

• Initially most of the 33 targets were inconclusive (I).

• With multi-cores running concurrently, formal verification gradually verified
the targets into one of the following catalogs: firing (F), vacuous (V),
uncoverable (U), covered (C), and proof (P).

11

Formal engine knowledge snapshot

• The “Proven/Unsatisfiable” columns show which engines solve the safety/vacuity checks.
• The “Fired/Satisfied” columns show which engines generate the counterexamples.
• The “Inconclusive Targets” columns (Good, Fair, Poor) show the individual engine health
• Engine 7 is very productive in finding a lot of proofs and firings.
• Engine 0 (the housekeeping engine) and Engine 10 have found some proofs.
• Engines 12 and 17 haven’t been contributing to the results

12

Results

Block Targets Fishing Spot S0 Fishing Spot ∑ SP

Block De 12 12 C, depth 23 12 C, depth 23

Block Pc 71 66 C + 5 I, depth 134 71 C + 0 I, depth 256

Block Cp 81 60 C + 21 I, depth 65 79 C + 2 I, depth 161

13

C: proven/fired/covered/uncoverable. I: inconclusive targets

Block-Level Results

Results

Block Targets Fishing Spot S0 Fishing Spot ∑ SP

Block De 12 12 PF, depth 23 12 PF, depth 23

Block Pc 71 66 PF/CU + 5 I, depth 134 71 PF/CU + 0 I, depth 256

Block Cp 81 60 PF/CU + 21 I, depth 65 79 PF/CU + 2 I, depth 161

14

Design Targets First stage Fishing spot S0 Fishing spot ∑ SP

Design Ct 2356 2319 PF/CU + 37 I
15 min

2338 PF/CU + 18 I
24 hours

2349 PF/CU + 7 I
24 hours

Design Pb 15205 15126 PF/CU + 79 I
15 min

15154 PF/CU + 51 I
24 hours

15161 PF/CU + 44 I
24 hours

PF/CU: proven/fired/covered/uncoverable. I: inconclusive targets

Sub-System Level Results

Block-Level Results

Case #1: Design Interface Bugs

• Ratio-synchronized Data Sampling

– Sub-systems are running at slower frequencies

• Assertions

– Ensure the data is sampled at the right time

• Bug

– The fast clock domain samples the data at the
end of a slow clock period

– In some corner cases, Data Valid condition is
not checked

– As a result, the data is sampled at the incorrect
time, and corrupted data is registered

Slow clock

domain

Data

Fast clock

domain

Data Valid

Fast clock

Data must be sampled at the correct time

Data Valid

Slow clock

Data

(changes on

slow clock)

slow_clk

Unstable Stable Unstable StableStable Unstable

Data

Valid

Gen
fast_clk

enable

15

Case #2: Data Transfer Controller

• DMA Controller

– DMA Controller in WLAN/PDA design

• Assertions

– Monitors for on-chip bus interfaces

– Pointer manipulation, allocation and de-allocation

• Bug

– Channels are set up to handle data with priority

– When >1 channels finish the transfer at the same
time

– One address pointer is de-allocated twice, while
the other is not de-allocated

– Causes memory leak and data corruption

Channel

0

Arbiter

Channel

2

Channel

3

Channel

n

Data Transfer Engine

Bus interface 0

Bus interface 1

Channel

..

PIO

interrupt

c
tr

l
re

g
s

Request

control

16

Summary

• Simulation and formal methodologies can be used together to
accelerate the verification of complex designs.

– Leverage what has been learned or achieved in one for the other

– Some companies have already made organizational changes

• River fishing technique

– leverages the functional simulation activities and starts formal verification
from interesting fishing spots in the simulation traces.

– Identify and extract a set of good fishing spots from the simulation traces

– Screen and prioritize the fishing spots using formal engine health

– Launch and monitor multiple formal runs on the computing servers

17

Thank you

