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Introduction: We are presenting a formal verification effort of a complex SOC architectural and 

microarchitectural specification. We started with an architectural specification in a tabular format. These architectur-

al tables define high-level design behavior using finite state machines models. These tables also contain information 

for the microarchitecture actions. We first identified the different roles that can be played by the different compo-

nents of the architecture and divided the architectural tables into sub-tables according to this analysis. We then iden-

tified the messages passed around among the components and defined the message channels accordingly. Finally, we 

figured out microarchitecture steps needed to implement each role for each sub-table transition. We created a verifi-

able, formal verification environment based upon these findings with the following challenges: 1) ensure that all the 

tables’ transitions are reachable, 2) ensure that all design specific properties were passing, and 3) ensure that all the 

functional sequences were executable. Tens of architectural and microarchitecture bugs were found and fixed.  

This work builds upon earlier reported works [2, 3, 4]. The innovations reported in this paper are: 

1) Implementation of the micro-steps for verification of the microarchitecture. 

2) Implementation of the macro-steps for verification of the multicycle operations. 

3) Automatic stimuli generation. 

4) Sequence coverage simplification and debug acceleration using unique identifiers. 

 

Architecture: Figure 1 shows an overview of the architecture. The system can be configured to work as a one-

chip or a two-chip system. In the two-chip system, a single system illusion is created through a complex proprietary 

architectural protocol. Each chip consists of a set of ARM cores and company-specific IPs and maintains its own 

memory. Furthermore, each chip may have multiple IOB bridges, accessing data from the memory space of any of 

the chips. An IOB bridge may facilitate multiple I/O devices through the IOB protocol. The memory agents are the 

memory-request handling components which provide interfaces to the system memory. The AP agents are interfaces 

to the CPU cores and handle read/write requests generated by CPUs. The interconnection fiber emulates multidirec-

tional channels. The protocol presents an interesting challenge to formal verification. The protocol captures the in-

teraction of AP agents, memory agents, IOB agents, and an interconnection fiber. The protocol was defined on per 

instruction basis. This feature facilitated the generation of a subset of protocol by selecting a subset of instructions. 

That was a big help in formal verification where state space explosion is always a challenge.  

 

 

 
Figure 1: The SOC Architecture 



Table 1: Transient states in a Protocol Table 
 

Current State Next State Outputs Inputs 

Cmd H N1 Cmd H N1 N1 Req/Resp/Frwd 

none E I none S S Read_Response 

RD_R 

(Read from remote 

node) 

none S S Local_Write S S->I INV (Invalidate) 

LCL_WR_LCL_A 

(local write to home 

address) 

Local_Write S S->I none M I - 
INV_RSP (Invalidate 

response) 

 

Formal Specification:  The core of our effort was based on an extended Table-based formal specification [1] 

[2]. The table generation was partially automated. We used Perl scripts to facilitate the table generation. The helper 

routines were used to enlist generic rules, and to provide the default states (i.e. only need to enter the changing 

bits/states for that state). However, most of the cases were fairly unique and hence a significant amount of the work 

in table generation was manual. The amount of the manual effort implied introduction of many inadvertent errors in 

the specification. Therefore, a formal verification was needed to weed out these potential oversights as well as to 

validate the global interaction of the architectural components.  
A sample of a hypothetical table for the home node is shown in Table 1. The idea is to extend the protocol tables 

in such a way that all the transient states are also described explicitly as shown in the third row of Table 1. A transi-

ent state represents status of a component while it is in the middle of a transaction. It results in much larger protocol 

tables, but at the same time eliminates all the guess work from the specification. We verified these tables directly 

using formal verification and then used the same tables verbatim in the RTL, in the design verification environment 

as part of a predictor, and in the coverage collection as transition coverage. 

The generation of these formal specification tables depends upon a number of steps. The effort requires the parti-

tion of the protocol in a systematic way and therefore needs a deeper understanding of the protocol. Next, we de-

scribe these steps in detail. 

Agents and messages: The first challenge was to identify the actors or agents involved in the architectural speci-

fication. The second set of items was to figure out what is the minimum vocabulary the actors need to communicate 

with each other. The rest of the effort built upon this analysis. In our particular architecture, the protocol was built 

around the notion of maintaining consistent valid states. As mentioned earlier, the protocol was defined on per in-

struction basis. For a given instruction, there was a home agent and a probable remote agent. Also, there were local 

and remote IOB agents that could be accessed by this instruction. Finally, there was a probable memory agent for the 

instruction.  

Next, we need to see the kind of messages these agents pass around. There will be request messages like a local 

AP agent or remote AP agent or an IOB agent requesting a datum. The servicing agent (the home agent of the datum) 

may respond with an acknowledge message as well as a data carrying message. Moreover, a servicing agent, while in 

the middle of a transaction (not a transition, as transitions are atomic), may receive a second request from a different 

agent and hence may need to generate a forwarding request. Therefore, we need at least four types of channels, one 

for each of the message types i.e. request channels, response/acknowledge channels, data channels, and forwarding 

channels. These channels must be independent to avoid deadlocks. We have found a deadlock in one of our earlier 

efforts because RTL decided to use a common pool of the registers for the different channels [2].  

Each agent also has to maintain its current state. For instance, if an agent is already processing a request, it may 

be in a transient state like “S->I” in the last row of Table 1. Finally, there is a set of configurations that defines the 

behavior of an agent. For instance, we may configure the home agent for a write-back policy or a write-through poli-

cy. We include a dirty bits indicator, a replacement cycle indicator etc., in this set. The set also has a fault bit to 

model a random address fault. 

We are sharing an abstracted snapshot of the input columns of the protocol in Table 2. We process only one type 

of message at one time i.e. if there is more than one message available from the different channels at the same time, 

we randomly pick one of the available messages. Please note, there is no correlation between the rows shown in this 

table. The entries are chosen to show samples of different types of commands. The first row shows a ‘read’ request 

from the remote node. The second row shows a forwarding message from the remote node.  

 



Table 2: Input columns of a Protocol Table 
 

Current State New Request Cmd New Ack Cmd New Data Cmd 

Transient 

State 
Home Remote Requester Server Cmd Requester Cmd Requester Cmd 

NONE I I Local Local Read none none none none 

WI00 I K Remote Local 
For-

ward 
none none none none 

CSFH S->I K->E none none none Remote PRE none none 

ED00 I D->E none none none none none Remote PRD 

 

The forwarding messages and request messages share the same columns in the table but represent different chan-

nels. The third row shows an acknowledge message from “Remote” as it is moving from a pending state “K” to ex-

clusive state “E”. The last row shows reception of a data command from Remote to Home. The inputs column set 

also includes configuration fields. The total number of columns in the input part of the protocol tables was around 

fifty. The total number of rows in the tables was around 6000. We also enumerated the total number of states of each 

agent. The total number of states of the agents including the transient states was around 500. 

Roles Identification: The agents involved in the architectural level behaviors are essentially finite state machines. 

Ideally, we can use one home table and one remote table for the home agent and the remote agent respectively. Let 

us assume each of them contains 300 states. It means the composite finite state machine modeling the protocol will 

have a possible 90000 states. That is generally too big to be handled by a formal tool. Luckily, we can divide and 

conquer this problem. 

Please notice that the agents exhibit different roles in the different states of a given datum. These states can be 

grouped into functional sets called roles, for instance, how a Home will behave to a new request from IOB when it 

already has an outstanding request from the remote node. This can be best captured in a forwarding role that includes 

all the states of the home node, where it may have to handle forwarding cases.  

A home agent may be serving a local request or responding to a remote request or handling a forward. If Home is 

handling a forward, it cannot process a new local request. Similarly, if Home is responding to a remote request, it 

cannot handle a forward at the same time. On the other end, if the remote agent is processing a remote request, it will 

not process a forwarding request at the same time. These observations allowed us to divide home, remote, and IOB 

tables into smaller role tables. Depending upon the state of the agent and the type of the incoming message, each of 

the agents can play exactly one role at given time. Each transition is atomic, and messages per channel are delivered 

in order. However, we chose randomly among all the available messages from the different channels. Therefore, we 

covered all the possible scenarios of the protocol messages’ ordering with respect to the message types.  

 

 
Figure 2: Architectural Agents and Roles 



Table 3: Microarchitecture Steps 
 

R0..R7 Mem Reads Mem Writes Comment 

000xx 0x000 W00S0 R0..R7->T, T->Bus, Bus-> (MDR,MAR) MDR-> 

Memory 

I00xx 0x000 0V000 IR -> Bus, Bus->MAR, MAR->Memory,… 

0W0xV 0x000 0V0S0 R0..R7->ALU,…,(MAR,MDR)->Memory) 

0W0xF RF000 00000 Memory->MDR, MDR->Bus, Bus->R0..R7 

 

A generic roles’ description for the protocol is shown in Figure 2. Again, we are presenting an abstract view of 

the architectural agents and their roles. The actual implementation has had around 20 roles in total. Also, IOB tables 

had far fewer columns and were modeled in a different manner. We defined four role statemachines, one for home, 

one for remote, one for memory agents, and one for IOB agents. They captured different roles of these agents as 

states and legal transtions between these states. 

Micro-steps: The enhanced protocol tables with all the transient states present an architectural view. Each transi-

tion in these tables represents the execution of an architectural step. Generally, in any design, an architectural transi-

tion represents a number of microarchitecture transitions (or steps). If a microarchitecture has been realized, we can 

further enhance architectural tables with microarchitecture transitions/steps and investigate their correctness. 

Let us assume a generic computer microarchitecture shown in Figure 3. R0..R7 is the register file. IR is the in-

struction register, MAR is the memory address register, MDR is the memory data register, and PC is the program 

counter. There is also a control unit called CU and a memory system. These microarchitecture components are con-

nected through a bus as well as in some cases through direct connections.  

We have enhanced our protocol tables with additional columns representing microarchitecture transitions/steps. 

A sample table is shown in Table 3. The first row in this table shows the implementation of an instruction that pro-

cesses the data present in one of the registers in the register file. ALU processes the data and puts it in its output 

buffer T. The data is transferred from T to MDR through the bus. Finally, data is written back to the memory from 

MDR using the address present in MAR. The last row in the table shows the micro-operations involved in loading 

the data from memory to the register file. In this case, the data will be transferred from memory to MDR, from MDR 

to Bus and finally from Bus to the register file R0..R7. 

Note that it is important to enforce order among the micro-steps so that the intended control and data flows do 

not breakdown. Unfortunately, this ordering cannot be captured in the architectural tables as these tables only pro-

vide information on which micro-steps are involved in each architectural transition and nothing about their order of 

execution. An additional set of tables is needed to implement this ordering requirement. These tables model the mi-

croarchitecture-level understanding of the design. 

 

 
Figure 3: A Generic Computer Architecture 

 



Table 4: Micro-Operations 
 

Micro-Operation MEMORY R0..R7 MAR MDR Bus 

T->Bus     T 

Bus-> (MDR,MAR) (MAR,MDR)     

Memory->MDR   Address Memory  

Bus->R0..R7  Bus    

IR->Bus     IR 

It is important to note how we model these micro-step tables. We generally assume an architectural transi-

tion/step will take one time cycle and each transition/step takes us to a potential new state in the state machine. The 

micro-steps related to an architectural step occur within the same time step. The microarchitecture steps do not rep-

resent state at this level. Instead, they perform a number of combinational logic functions to achieve the goals of the 

architectural step. In our example case, there were up to five micro-steps for a given architectural step. Following are 

the steps involved in modeling micro-operations using micro-transition tables. 

1. Identify all the possible micro-operations. 

2. Create a table mapping architectural action bits to the micro-operations list. 

3. For each architectural role: 

a. Identify the minimal list of micro-operations possible at the first micro-step.  

b. Create a table linking the drivers and receivers of micro-operations.  

c. Repeat the same process for the second and third micro-steps if needed. 

4. Create tables for each of the possible micro-steps for each of the architectural roles that enable infor-

mation flow between microarchitecture components.  

Table 4 shows a sample micro-operations table. The entries in the first rows are the receivers of the data from en-

tries in their column. The second row shows that if the model sees “T->Bus” signal asserted, it will load ALU buffer 

T into Bus. Unlike role-based transition tables where only one transition table is active during one time slot, many 

micro-operations transition tables’ transitions may execute sequentially inside one time slot. In our case, there are up 

to five tables following the transition table of each role. If an architectural transition required three micro-operations, 

the corresponding transitions in each of the three tables will be executed sequentially hence enforcing the order re-

quired for the micro-operations’ data flow. 

Atomic Actions and orderings: The architectural specification also had the following three challenging require-

ments: 

1. The protocol requires ordering among write messages from the same agent.  

2. There is no ordering requirement among different agents for a given instruction i.e. the interconnection fiber 

between different agents does not guarantee ordering among different agents. 

3. An incoming forwarding message may take multiple cycles (transitions/steps) to complete and no other pro-

tocol transitions should happen during that time. The reason behind this is, a forwarding message has to be 

compared with all the waiting messages in a buffer. Each comparison will take one architectural transi-

tion/step. The maximum number of comparisons is only limited by the depth of the buffer. The agent will 

not honor any new messages during this process. 

We modeled these requirements using FIFOs. Any new incoming write request for an agent is appended at the 

end of its FIFO. The outgoing requests are picked from the top of this FIFO. Each entry in the FIFO is assigned a 

unique transaction ID but the entry’s addresses may not be unique.  

To mimic the interconnection fiber and the out-of-order requirement, we inserted a buffer and an artificial archi-

tectural role/step between the agents and interconnection fiber. If this buffer is not full, an outgoing request from any 

agent lands into this buffer. When this artificial architectural step is executed, the interconnection buffer may pick 

randomly any valid entry from this buffer and hence models the actual out-of-order behavior. 

This requirement was equivalent to having a macro-step (as compared to micro-steps above) and was imple-

mented using a semaphore concept from the concurrent systems. We devised a global forward signal. All the archi-

tectural steps/roles were disabled when this global forward signal is asserted. The only exception was the forward 

message processing role/step of the active agents. When the active agent started processing a forwarding message, it 

asserted this global forward signal, disabling all other possible architectural steps. Once all the valid entries in the 

active agent’s FIFO were processed, this global signal was de-asserted and at that point, any of the enabled roles 

could start executing. 



Table 5: Stimuli Generation 
 

Instruction Requester Server CMD Exclusive Partial 

12'b000000000000 Local Local Read 1'b0 1'b1 

12'b000000000001 Local Local Read 1'b0 1'b0 

12'b000000000010 Remote Local Write 1'b1 1'b1 

12'b000000000011 Remote Local Write 1'b0 1'b0 

 

Legal stimuli generation: An architecture executes a well-defined legal instruction set. An instruction consists of 

multiple fields. Each field may have a legal set of values. All the combinations of the values from the different fields 

may not form the legal instructions. In fact, the legal instruction set is only a small subset of this. One way to restrict 

input space is to constrain these legal combinations using assumptions. However, that process is error prone and hard 

to maintain. We worked with the architects to auto-generate a legal instruction set and used it as our stimuli. Still, 

there were thousands of possible instructions. Each legal instruction was assigned a unique ID from a 12-bit counter 

called “instruction”. FV randomly chose a value from this counter to pick a legal instruction and used it as stimuli to 

our architectural model. The chosen instruction asserted proper command fields as well as configuration settings. 

Table 5 shows a sample of our stimuli table. The first column in Table 5 assigns a unique number to each legal 

instruction. The rest of the columns define the instruction. For example, the first row defines a partial local read in-

struction that will be executed if “instruction” counter is randomly assigned a value of “12'b000000000000”. The 

last row of the table defines an exclusive write instruction for a remote requester if the “instruction” counter gets a 

value of “12'b000000000011”. 

Unique transition identifiers: An important piece of the specification was the assignment of a unique identifica-

tion (ID) number to each transition. It was a great facilitator in debugging, as any failure trace only needed to print 

these unique IDs. A Tcl script used this list of IDs with protocol tables to print a complete failure transaction in 

terms of the agents’ transitions. It was a great help and saved an enormous time in debugging. These annotations also 

helped in simplifying sequence coverage, as described later. 

  

 
Figure 4: Formal Verification Flow 

 

Stimuli Table 



Formal Verification: A formal verification effort requires creation of a logically consistent model that captures 

the behavior of the design. It also needs a set of checks and coverage properties which capture the intent of the de-

sign in a declarative way [7]. Figure 4 describes our flow for the creation of the formal model and its formal verifica-

tion. Further details on this flow can be found here [6]. The key addition to this flow is the stimuli generation from 

FSpecGen as discussed earlier. Once we have a model in place, the following steps are required to reach complete 

verification. 

Path clearing: We define path clearing as checking if our model is alive and executing legal instructions. Here is 

a list of items we went through for path clearing. 

1. We created a set of assumptions. It was important that these assumptions should not over-constrain or under 

constrain the model. We were generating our legal stimuli set using scripts. This reduced our assmuptions to 

a relatively small set. For such a big model, we had only around 10 assumptions. A few example assumptions 

are: 

a. Assuming address space is of size 2. 

b. Assuming agents’ FIFO depth is 4. 

c. Assuming if an address is faulty, it can or cannot become fault-free. 

d. Assuming the depth of different channels. 

e. Assuming only a subset of instructions is available by constraining the “instruction” counter. 

2. We ensured the reachibility of all the architectural transitions. This, in turn, validated that the assumptions 

made in step one were not over-constraining the model. 

3. All the legal states were reachable. 

4. We ensured reachibility of all the states of the role statemachines for each of the agents. We also validated 

that all the legal transitions of these role statemachines are executeable. 

Functional verification: Following is a selected list of formally proven properties: 

1. When there are no outstanding transactions the system only can be in one of the legal states. 

2. The completeness of each architectural role.  

3. Role statemachine verification. 

4. Cache coherence is maintained. 

5. Agents’ messages’ constraints are observed. 

6. There are no deadlocks because of the interaction of the architectural components. 

7. A dirty block in cache will always be written back to the memory before its invalidation. 

We are providing here a sample property used for agents constraints’ check. We used rigid variables[6] to 

randomly choose an agent, a valid write entry in it, and data coming with it. The “start_event” captures the moment 

when a chosen agent gets a write request and puts it into the designated entry into its FIFO. The “end_event” 

captures the moment when we are done with this transaction. We maintained a counter for outstanding write requests 

for each agent and that was passed as “outstanding” into this checker. This checker helped us in cleaning up the 

agent model and found a number of bugs in our modeling effort. 

 

 

 

 

 

 

 

 

 

Functional coverage: We used graph-algorithms to generate all possible paths between the start and end states of 

each agent[3]. The discovered paths are used to generate protocol sequences. The formal model was used to find the 

missing sequences as well as to prove reachability (and/or unreachability) of these sequences. One key advantage of 

this effort was that each transition in the model had a unique identification number. We used a register for each agent 

to capture its latest transtion idenfication number and tracked these registers’ transitions to evaluate the functional 

coverage of each agent. It simplified our coverage modeling greatly as compared to the previous effort[3]. Here is a  

sample of our protocol coverage sequences: 

property agents_constraints(start_event, start_data, end_event, end_data, Outstanding, clk, rst); 

 

      logic [$bits(start_data)-1:0] local_data; 

      logic [$bits(Outstanding)-1:0] numAhead; 

      (start_event, local_data = start_data,numAhead = Outstanding) 

 ##1 (numAhead > 0 ##0 end_event[->1], numAhead--)[*] 

         ##1 (numAhead == 0 ## 0 end_event[->1]) |-> end_data == local_data;       

   endproperty 

 

 

 

srand -i tests/srand_stable_list -c 300 -m 20 -f 50 --args='SVFCOV=1  CCOV=1 CCOVTYPE=line+cond+assert+tgl 

NCVOPTS+="-cm_tgl portsonly+mda"' 

 

 



//A simple sequence to capture the current value of tad_nxm, the register that records Agents’ transitions. 

sequence tnxm(xnm);  (tad_nxm == xnm); Endsequence 

//Auto generated sequences, while assuming default clocking and disable blocks are defined. 

cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h100a9)[*1:$])); 

cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h100aa)[*1:$]##1 tnxm(20'h2001a)[*1:$])); 

cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h1011b)[*1:$])); 

cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h101f3)[*1:$]##1 tnxm(20'h20019)[*1:$])); 

 

 Microarchitecture: Here is a selected list of the microarchitecture properties[4]: 

1. The completeness of the microarchitectural table i.e. all the architetural transitions are completely supported 

at the microarchitecture level. 

2. The data-flow at the microarchitecture level is not broken i.e. there is no data loss because of any missing or 

misplaced or misordered actions for any of the architectural transitions.  

Data Consistency: 

This property ensures that any read will get the latest write into the system. The modeling and verification of this 

property was a challenge as there were multiple write sources, partial-writes, fault cases, etc. We have proven a 

restricted form of data consistency properties in which after a random write instruction is executed in a randomly 

chosen legal state, we force a write back to the memory and check the incoming data against the memory data. We 

are presenting here a template of the data-checker used for this purpose[7]. 

 

 

 

 

 

 

 

 

 

Results and Conclusions:  The complete architectural protocol and its associated microarchitecture actions were 

specified and verified using formal verification. We developed an innovative set of techniques and methods to han-

dle this complex protocol. A number of bugs were found and fixed. Here is a generic list of the bugs found during 

this effort: 

1. The first and biggest challenge is the completeness of the tables. There were missing transitions in 

home, remote, and IOB tables. The missing transitions cause dead-ends (a benign form of deadlocks).  

2. The second biggest set of bugs originated from the bad transitions. The architect inadvertently inserted 

wrong transition of a few operations. For example, an ADD instruction is actually doing a MIN or MAX 

operation or has a wrong configuration of flags. 

3. There were missing or wrong micro-operations. 

4. There were few unreachable transitions as well. In this case, the architect thought a particular case could 

happen but it was not possible with the assumed architectural constraints. 

5. Finally, once we have proven that all the transitions were reachable, we verified sequence coverage. We 

found that there were few sequences that were not reachable because of the architectural constraints. 

This enhanced our understanding of the architecture and forced a few modifications. 

The verified tables were used as mapping functions in the RTL design. No protocol bugs escaped to RTL or later 

stages. 
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