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The Problem Definition

• Ever increasing complexity of SOCs.
• Moving to higher levels of abstraction helps.
• At higher levels of abstraction,

– We may think in terms of subsystems.
– Each subsystem have its own protocols.

• These protocols need to be validated.
– The subsystems interact with each other.

• Protocol interaction verification.
– The subsystem are implemented using micro-architecture.

• Micro-architecture verification.



The Architecture



Formal Specification



Extended Table-based Specification

Current State Next State Outputs Inputs
Cmd H N1 Cmd H N1 N1 Req/Resp/Frwd

none E I none S S Read_Response
RD_R

(Read from remote 
node)

none S S Local_Write S S->I INV (Invalidate)
LCL_WR_LCL_A 

(local write to home 
address)

Local_Write S S->I none M I - INV_RSP (Invalidate 
response)



Agents, States, Roles and Messages

• A hardware architecture is defined with reference to an instruction set.
• An instruction’s definition may involve multiple subsystems’ execution.
• This execution is captured as protocol tables for each of the 

subsystems.
– We may think of these subsystems as agents.
– Agents can have different states and play different roles depending on the 

state.
– Agents may need to send messages to each other.
– We need to identify these messages:
– Response to a message depends upon the current state of the agent.



Architectural Agents and Roles



Input  Columns of An Agent Table

Current State New Request Cmd New Ack Cmd New Data Cmd
Transient 

State Home Remote Requester Server Cmd Requester Cmd Requester Cmd

NONE I I Local Local Read none none none none

WI00 I K Remote Local Forwa
rd none none none none

CSFH S->I K->E none none none Remote PRE none none
ED00 I D->E none none none none none Remote PRD



Micro-architecture

• A Micro-architecture represents a possible implementation of an 
architecture.

• Each architectural instruction is executed through a set of micro-
operations.

• These micro-operations are executed inside the time-frame of one 
architectural steps and hence are combinational in nature.

• The micro-operations’ execution has certain ordering requirements.
• We extended our architectural tables with micro-architectural steps.



A Generic Architecture



Micro-Architecture Steps

R0..R7 Mem Reads Mem Writes Comment 
000xx 0x000 W00S0 R0..R7->T, T->Bus, Bus-> (MDR,MAR) MDR-> 

Memory 
I00xx 0x000 0V000 IR -> Bus, Bus->MAR, MAR->Memory,… 
0W0xV 0x000 0V0S0 R0..R7->ALU,…,(MAR,MDR)->Memory) 
0W0xF RF000 00000 Memory->MDR, MDR->Bus, Bus->R0..R7 

 



Modeling micro-operations

• Using multiple micro-transitions inside one architectural transition.
– Identify all the possible micro-operations.
– Create a table mapping architectural action bits to the micro-operations 

list.
– For each architectural role:

• Identify the minimal list of micro-operations possible at the first micro-step. 
• Create a table linking the drivers and receivers of micro-operations. 
• Repeat the same process for the second and third micro-steps if needed.

• Create tables for each of the possible micro-steps for each of the 
architectural roles. 



Micro-Transitions

Micro-Operation MEMORY R0..R7 MAR MDR Bus 
T->Bus 

 
 

 
 T 

Bus-> (MDR,MAR) (MAR,MDR) 
  

  
Memory->MDR 

 
 Address Memory 

 

Bus->R0..R7 
 

Bus 
 

  
IR->Bus   

 
 IR 

 



Macro-Operations

• Multiple Protocol interaction.
• Concurrent versus interleaved modeling.
• One protocol may have to idle/wait while other is in the middle of 

processing. Semaphore is one solution.
• Example:

– An incoming forwarding message.
– Need to compare with all the outstanding requests.

• Multiple requests can share the same datum.
– May takes multiple cycles for an interleaved model.
– The IOB will not honor any other messages during this.



Modeling Out-of-Order Interconnection

• An artificial architectural step is defined to mimic this transition.
• A FIFO of limited size modeling the interconnection.
• When buffer is not full, sender can put a message in it.
• When buffer is not empty, receiver can get a message from a random 

valid entry in the buffer.
– Randomness is achieved through usage a free variable as selector.



Constraining Inputs

• Need to create a legal environment.
• Instruction set is the main input.
• Each instruction consists of 20+ subfields and 100+ bits.
• Creating constraints for all these cases is a:

– Huge challenge.
– Error prone.
– Hard to manage to accommodate consistent changes.

• Solution is the automation:
– Generate from the protocol tables
– DV also picked our solution for the random stimuli generation.



Stimuli Generation

Instruction Requester Server CMD Exclusive Partial 
12'b000000000000 Local Local Read 1'b0 1'b1 
12'b000000000001 Local Local Read 1'b0 1'b0 
12'b000000000010 Remote Local Write 1'b1 1'b1 
12'b000000000011 Remote Local Write 1'b0 1'b0 

 



Unique Transition Identifiers

• Each transition have been assigned a unique identifier.
• Any protocol failure trace only need to print these identifiers.
• A Tcl script can match these identifiers with the protocol tables to 

generate failing interaction in terms of the table transitions.
• Great help in debugging at architectural level.
• Also very useful to transaction coverage.



Formal Verification



Formal Verification Flow

Stimuli Table



Assumptions

• Around 10 assumptions because of automatic stimuli generation.
• Here is a selected list.

– Assuming address space is of size 2.
– Assuming agents’ FIFO depth is 4.
– Assuming if an address is faulty, it can or cannot become fault-free.
– Assuming the depth of different channels.
– Assuming only a subset of instructions is available by constraining 

the “instruction” counter.



Path Clearing

• Verifying that model is:
– neither over-constrained 
– nor under-constrained. 

• No conflicting assumptions.
• All transitions are reachable.
• All legal states are reachable.
• The legal transitions of the abstract state machine representing roles of 

different agents are reachable.



Functional Correctness

• When there are no outstanding transactions the system only can be in 
one of the legal states.

• The completeness of each architectural role. 
• Roles’  abstract state machine verification.
• Cache coherence is maintained.
• Agents’ messages’ constraints are observed.
• There are no deadlocks because of the interaction of the architectural 

components.
• A dirty block in cache will always be written back to the memory before 

its invalidation.



A Sample Property

property agents_constraints(start_event, start_data, end_event, end_data, Outstanding, clk, rst);
logic [$bits(start_data)-1:0] local_data;
logic [$bits(Outstanding)-1:0] numAhead;
(start_event, local_data = start_data,numAhead = Outstanding)

##1 (numAhead > 0 ##0 end_event[->1], numAhead--)[*]
##1 (numAhead == 0 ## 0 end_event[->1]) |-> end_data == local_data;      

endproperty

Agents’ message constraints are observed

Start_event captures 
the moment when agent 

receives a write 
request.

End_event captures the 
moment when the 

transaction is finished.



Functional Coverage

• All possible paths between all the starting and ending states.
• Covered complete instruction set.
• Couple of weeks to finish the run.
sequence tnxm(xnm);  (tad_nxm == xnm); Endsequence

cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h100a9)[*1:$]));
cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h100aa)[*1:$]##1 tnxm(20'h2001a)[*1:$]));
cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h1011b)[*1:$]));
cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h101f3)[*1:$]##1 tnxm(20'h20019)[*1:$]));

A simple sequence to capture the current value of 
tad_nxm, the register that records Agents’ transitions.

Auto generated sequences, while assuming default 
clocking and disable blocks are defined.



Results



Results and Conclusions

• The first and biggest challenge is the completeness of the tables.
– There were missing transitions in home, remote, and IOB tables. 

• `The missing transitions cause dead-ends (a benign form of deadlocks). 
• The next biggest set of bugs originated from the bad transitions. 

– The architect inadvertently inserted wrong transition of a few operations. 
There were missing or wrong micro-operations.

• There were few unreachable transitions as well. 
• The functional coverage using sequence coverage is a powerful 

mechanism to prove the completeness of the effort.
• We found that there were few sequences that were not reachable because of 

the architectural constraints. 
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