
Formal Architectural
Specification and Verification

of A Complex SOC

Shahid Ikram, Isam Akkawi, David Asher, Jim Ellis
Cavium Inc.

Outline

• The Problem Definition.
• Architecture.
• Formal Specification.
• Formal Verification.
• Results.

The Problem Definition

• Ever increasing complexity of SOCs.
• Moving to higher levels of abstraction helps.
• At higher levels of abstraction,

– We may think in terms of subsystems.
– Each subsystem have its own protocols.

• These protocols need to be validated.
– The subsystems interact with each other.

• Protocol interaction verification.
– The subsystem are implemented using micro-architecture.

• Micro-architecture verification.

The Architecture

Formal Specification

Extended Table-based Specification

Current State Next State Outputs Inputs
Cmd H N1 Cmd H N1 N1 Req/Resp/Frwd

none E I none S S Read_Response
RD_R

(Read from remote
node)

none S S Local_Write S S->I INV (Invalidate)
LCL_WR_LCL_A

(local write to home
address)

Local_Write S S->I none M I - INV_RSP (Invalidate
response)

Agents, States, Roles and Messages

• A hardware architecture is defined with reference to an instruction set.
• An instruction’s definition may involve multiple subsystems’ execution.
• This execution is captured as protocol tables for each of the

subsystems.
– We may think of these subsystems as agents.
– Agents can have different states and play different roles depending on the

state.
– Agents may need to send messages to each other.
– We need to identify these messages:
– Response to a message depends upon the current state of the agent.

Architectural Agents and Roles

Input Columns of An Agent Table

Current State New Request Cmd New Ack Cmd New Data Cmd
Transient

State Home Remote Requester Server Cmd Requester Cmd Requester Cmd

NONE I I Local Local Read none none none none

WI00 I K Remote Local Forwa
rd none none none none

CSFH S->I K->E none none none Remote PRE none none
ED00 I D->E none none none none none Remote PRD

Micro-architecture

• A Micro-architecture represents a possible implementation of an
architecture.

• Each architectural instruction is executed through a set of micro-
operations.

• These micro-operations are executed inside the time-frame of one
architectural steps and hence are combinational in nature.

• The micro-operations’ execution has certain ordering requirements.
• We extended our architectural tables with micro-architectural steps.

A Generic Architecture

Micro-Architecture Steps

R0..R7 Mem Reads Mem Writes Comment
000xx 0x000 W00S0 R0..R7->T, T->Bus, Bus-> (MDR,MAR) MDR->

Memory
I00xx 0x000 0V000 IR -> Bus, Bus->MAR, MAR->Memory,…
0W0xV 0x000 0V0S0 R0..R7->ALU,…,(MAR,MDR)->Memory)
0W0xF RF000 00000 Memory->MDR, MDR->Bus, Bus->R0..R7

Modeling micro-operations

• Using multiple micro-transitions inside one architectural transition.
– Identify all the possible micro-operations.
– Create a table mapping architectural action bits to the micro-operations

list.
– For each architectural role:

• Identify the minimal list of micro-operations possible at the first micro-step.
• Create a table linking the drivers and receivers of micro-operations.
• Repeat the same process for the second and third micro-steps if needed.

• Create tables for each of the possible micro-steps for each of the
architectural roles.

Micro-Transitions

Micro-Operation MEMORY R0..R7 MAR MDR Bus
T->Bus

 T

Bus-> (MDR,MAR) (MAR,MDR)

Memory->MDR

 Address Memory

Bus->R0..R7

Bus

IR->Bus

 IR

Macro-Operations

• Multiple Protocol interaction.
• Concurrent versus interleaved modeling.
• One protocol may have to idle/wait while other is in the middle of

processing. Semaphore is one solution.
• Example:

– An incoming forwarding message.
– Need to compare with all the outstanding requests.

• Multiple requests can share the same datum.
– May takes multiple cycles for an interleaved model.
– The IOB will not honor any other messages during this.

Modeling Out-of-Order Interconnection

• An artificial architectural step is defined to mimic this transition.
• A FIFO of limited size modeling the interconnection.
• When buffer is not full, sender can put a message in it.
• When buffer is not empty, receiver can get a message from a random

valid entry in the buffer.
– Randomness is achieved through usage a free variable as selector.

Constraining Inputs

• Need to create a legal environment.
• Instruction set is the main input.
• Each instruction consists of 20+ subfields and 100+ bits.
• Creating constraints for all these cases is a:

– Huge challenge.
– Error prone.
– Hard to manage to accommodate consistent changes.

• Solution is the automation:
– Generate from the protocol tables
– DV also picked our solution for the random stimuli generation.

Stimuli Generation

Instruction Requester Server CMD Exclusive Partial
12'b000000000000 Local Local Read 1'b0 1'b1
12'b000000000001 Local Local Read 1'b0 1'b0
12'b000000000010 Remote Local Write 1'b1 1'b1
12'b000000000011 Remote Local Write 1'b0 1'b0

Unique Transition Identifiers

• Each transition have been assigned a unique identifier.
• Any protocol failure trace only need to print these identifiers.
• A Tcl script can match these identifiers with the protocol tables to

generate failing interaction in terms of the table transitions.
• Great help in debugging at architectural level.
• Also very useful to transaction coverage.

Formal Verification

Formal Verification Flow

Stimuli Table

Assumptions

• Around 10 assumptions because of automatic stimuli generation.
• Here is a selected list.

– Assuming address space is of size 2.
– Assuming agents’ FIFO depth is 4.
– Assuming if an address is faulty, it can or cannot become fault-free.
– Assuming the depth of different channels.
– Assuming only a subset of instructions is available by constraining

the “instruction” counter.

Path Clearing

• Verifying that model is:
– neither over-constrained
– nor under-constrained.

• No conflicting assumptions.
• All transitions are reachable.
• All legal states are reachable.
• The legal transitions of the abstract state machine representing roles of

different agents are reachable.

Functional Correctness

• When there are no outstanding transactions the system only can be in
one of the legal states.

• The completeness of each architectural role.
• Roles’ abstract state machine verification.
• Cache coherence is maintained.
• Agents’ messages’ constraints are observed.
• There are no deadlocks because of the interaction of the architectural

components.
• A dirty block in cache will always be written back to the memory before

its invalidation.

A Sample Property

property agents_constraints(start_event, start_data, end_event, end_data, Outstanding, clk, rst);
logic [$bits(start_data)-1:0] local_data;
logic [$bits(Outstanding)-1:0] numAhead;
(start_event, local_data = start_data,numAhead = Outstanding)

##1 (numAhead > 0 ##0 end_event[->1], numAhead--)[*]
##1 (numAhead == 0 ## 0 end_event[->1]) |-> end_data == local_data;

endproperty

Agents’ message constraints are observed

Start_event captures
the moment when agent

receives a write
request.

End_event captures the
moment when the

transaction is finished.

Functional Coverage

• All possible paths between all the starting and ending states.
• Covered complete instruction set.
• Couple of weeks to finish the run.
sequence tnxm(xnm); (tad_nxm == xnm); Endsequence

cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h100a9)[*1:$]));
cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h100aa)[*1:$]##1 tnxm(20'h2001a)[*1:$]));
cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h1011b)[*1:$]));
cover property((tnxm(20'h00000)[*1:$]##1 tnxm(20'h101f3)[*1:$]##1 tnxm(20'h20019)[*1:$]));

A simple sequence to capture the current value of
tad_nxm, the register that records Agents’ transitions.

Auto generated sequences, while assuming default
clocking and disable blocks are defined.

Results

Results and Conclusions

• The first and biggest challenge is the completeness of the tables.
– There were missing transitions in home, remote, and IOB tables.

• `The missing transitions cause dead-ends (a benign form of deadlocks).
• The next biggest set of bugs originated from the bad transitions.

– The architect inadvertently inserted wrong transition of a few operations.
There were missing or wrong micro-operations.

• There were few unreachable transitions as well.
• The functional coverage using sequence coverage is a powerful

mechanism to prove the completeness of the effort.
• We found that there were few sequences that were not reachable because of

the architectural constraints.

References
• Weber, Ross. (2011) “Modeling and Verifying Cache-Coherent Protocols, VIP, and Designs”. Jasper

Design Automation, June 2011.
• [2] Ikram, Shahid et al. (2014) “A Framework for Specifying, Modeling, Implementation, and

Verification of SOC Protocols”, September 2014, IEEE-SOCC, Las Vegas, Nevada.
• [3] Ikram, Shahid et al. (2015) “Table-based Functional Coverage Management for SOC Protocols”,

March 2015, DVCON, San Jose, CA.
• [4] Ikram, Shahid et al. (2016) “Formal verification of the microarchitectural features in the context of

an architectural model”, November 2016, Jasper User Group Workshop 2017, Cupertino, CA.
• [5] Ikram, Shahid et al. (2015) “Design and Verification of a Multichip Coherence Protocol”, March

2015, DVCON, San Jose, CA.
• [6] Cerny, Eduard et al. (2015) “SVA: The Power of Assertions in System Verilog”, Second Edition,

Springer, ISBN 978-3-319-07138-1.
• [7] Seligman, Erik et al. (2015) “Formal Verification”, Morgan Kaufmann, ISBN 978-0-12-800727-3.

Thank You.

	Formal Architectural Specification and Verification of A Complex SOC�
	Outline
	The Problem Definition
	The Architecture
	Formal Specification
	Extended Table-based Specification
	Agents, States, Roles and Messages
	Architectural Agents and Roles
	Input Columns of An Agent Table
	Micro-architecture
	A Generic Architecture
	Micro-Architecture Steps
	Modeling micro-operations
	Micro-Transitions
	Macro-Operations
	Modeling Out-of-Order Interconnection
	Constraining Inputs
	Stimuli Generation
	Unique Transition Identifiers
	Formal Verification
	Formal Verification Flow
	Assumptions
	Path Clearing
	Functional Correctness
	A Sample Property
	Functional Coverage
	Results
	Results and Conclusions
	References
	Thank You.

