Fault Campaign Framework for FuSa Verification of ISO 26262 Compliant Automotive Products

Prashantkumar RavindraMangesh PandeVinay RawatAnalog DevicesCadence Design SystemCadence Design System

Introduction

- Electrification of Automobiles + Battery EVs = Complex Automotive Electronics
- FuSa is critical to assure safety-critical systems offer risk reduction to ensure safety

ISO 26262 recommends Fault Injection as a methodology for

- Supporting the evaluation of the HW architectural metrics
- Pre-silicon SM Verification

Planning a fault <u>campaign to validate FMEDA metrics</u>:

2

Challenges

- FMEDA is quantitative in nature, and this is over and above the SM verification
- FMEDA metrics validation requires highly automated EDA solution

Deploying EDA Safety Solution

• Learning curve

Flow failures

Setup bring-up time

Setup complexities

Challenges:

Time v/s Productivity Graph

- Large fault node list
- Long campaign run-time
- Large set of UU faults
- Detailed analysis of fault/s

•

3

Fault Campaign Framework

- Incorporate recommendations from
 - FuSa experts (Internal and Vendor)
 - Industry-standard practices
- Bring up project fault campaign setup in less than a day
- Flow failures are easy to debug

© Accellera Systems Initiative

- Standardized, Unified framework based on Cadence[®] Safety Solution
- Adapted for internal tools, flows and methodologies
- Agnostic to tool/scripting complexities

Fault Campaign Improvement Methodolgies

Fault Space Reduction

Total: 3973 Equivalent: 0		(3973)		
Unobservable	725	[18%]	(725	[189
COI: 588				
Constant: 96				
Unpropagatable:	41			
Dangerous:	0	[0%]	(0	[0%
Unknown:	3248	[81%]	(3248	[819
Unprocessed:	0	[0%]	(0	[0%
Undetectable:	1579	[39%]	(1579	[399
COI: 1442				•
Constant: 96				
Undetectable:	41			
Detected: 0	[0%]	(0	[0%])	
Unknown:	0	[0%]	(0	[0%
Unprocessed:	2394	[60%]	(2394	[609
To be injected:	3248 of 3973	[81%]		
Reduction:	725 of 3973	[18%]		

FST Step

Total: Equivalent:	3248 914		(2334)		
Unobservable COI: Constant:	0 1118	1498	[46%]	(1024	[43%])
Unpropagata	ble:	380		10	1 00/ N
Dangerous:		1750	[0%]	(0	[0%])
Unprocessed:		0	[0%]	(0	[0%])
Undetectable: COI: Constant:	910 733	1883	[57%]	(1321	[56%])
Detected:	0	[0%]	(0	[0%])	
Unknown:		0	[0%]	(0	[0%])
Unprocessed:		1365	[42%]	(1013	[43%])
To be injected:		1310 of 3248	[40%]		
Reduction:		1938 of 3248	[59%]		

FSV TC Ston

>50% reduction in fault space

CONFERENCE AND EXHIBITION

Fault Campaign Improvement Methodolgies

Throughput Improvement

- Concurrent FI
- Setup: GLS + w/o SDF + STL
- Fault nodes: 38k
- 2k faults per sim
- 21 hrs with 5 parallel runs

Bridging Safety Analysis and Safety Verification

- End-to-End traceability is a key requirement in safety verification and validation
- Unified flow with seamless integration is critical
- Cadence[®] Midas[™] Safety Platform was evaluated for ADI usecases & flow

Vendor tools/solutions do not have common/standard format for data exchange

CONFERENCE AND EXHIBITION

Summary

- ISO 26262 compliance is quantitative and requires fully automated semiconductor specific solution
- Fault Campaign Framework built upon Cadence[®] Safety Solution significantly improves productivity of engineers and the efficiency of the fault campaigns
- Methodologies such as Formal, Save and Restart and Concurrent fault simulation improves the fault campaign throughput
- Fault campaigns must be thoughtfully planned to close on DC faster and efficiently
- Standardizing FS Data : Accellera FuSa WG's efforts could enable FS data sharing

Questions

