
© 2017 Synopsys, Inc. 1

POSTER TEMPLATE BY:

www.PosterPresentations.c
om

Regardless what technology is used, whether simulation or formal, when tasked with functional verification project, verification engineers will need qualitative
and quantitative measurement of the verification progress. Such metrics are to provide measurement regarding the robustness, completeness, and
effectiveness of the verification environment. Fault qualification is an orthogonal mechanism to FormalCore coverage. In this paper, we will discuss how fault
qualification provides an additional metric to further improve the formal verification environment to prevent bugs from escaping. It complements other coverage
metrics and helps to fast track the formal signoff on the design verification.

Abstract

Coverage Models for Functional Verification Signoff

FIFO in design Specification

FormalCore coverage
100%

Assertions

Fault qualification in the last stage of formal verification signoff
• Provide additional metric to further improve the formal verification

environment
• Provide guidance to the weakness in formal environment
• Shed light on cases of vague or incomplete specification, as well

as holes in the verification environment.
• Prevent bugs from escaping, brings closure to fast track the

formal signoff on the design verification.

• Controller IP FormalCore reached 100% with no more bugs found before fault qualification
• 54 more checkers were added after reviewing fault qualification analysis results
• Additional 5 RTL bugs found!

FormalCore Coverage on FIFO
Fault Injection in FIFO

Conclusion

Coverage Models for Formal Verification Signoff

Result Comparison Before and After Fault Qualification

Fault Qualification on FIFO

Fast Track Formal Verification Signoff

Mandar Munishwar Xiaolin Chen, Arunava Saha Sandeep Jana
Qualcomm Inc. San Jose, CA Synopsys Inc., Mountain View, CA Synopsys Indis Pvt Ltd., India

Property Density Coverage Over-Constraint Coverage FormalCore Coverage

Asserts
Covers

Scoreboard
Covergroups

Line
Condition

FSM
Toggle

Code Coverage Functional Coverage Assertion Coverage

Fault Qualification

Behavior faults injected into RTL design

Fault Qualification in a nutshell

Fault Qualification in formal verification

(input clk,
input rst_x,
input push,
input pop,
output logic full,
output logic empty);

logic [3:0] cnt;

always@(posedge clk or negedge rst_x)
if(!rst_x)
cnt <= '0;

else begin
if(push && ~pop && cnt!=4'hf)
cnt <= cnt + 1'b1;

else if (!push && pop && cnt!= 4'h0)
cnt <= cnt - 1'b1;

end

assign full = (cnt == 4'hf);
assign empty = (cnt == 4'h0);

check_full : assert property (@(posedge clk) cnt == 4'hf |-> full);
check_empty: assert property (@(posedge clk) cnt == 4'h0 |-> empty);
check_no_change: assert property (@(posedge clk) ~push&~pop |=>
$stable(cnt));

• The count shFIFO asserts the full or empty flag are set
when the count reaches ‘hf or ‘h0.

• ould not change when there’s no push or pop.

(input clk,
input rst_x,
input push,
input pop,
output logic full,
output logic empty);

logic [3:0] cnt;

always@(posedge clk or negedge rst_x)
if(!rst_x)
cnt <= '0;

else begin
if(0/*push && ~pop && cnt!=4'hf*/) //Condition False
cnt <= cnt + 1’b0 /*1'b1*/; //BitFlip

else if (!push && pop && cnt!= 4'h0)
cnt <= cnt +/*-*/ 1'b1; //Operator

end

assign full = (cnt == 4'hf);
assign empty = (cnt == 4'h0);

Fault Qualification Results
After 100 FormalCove Coverage

Potential RTL
Bug Can Still

Escape!!

Is 100%
FormalCore
Coverage

Good
Enough?

check_push: assert property (@(posedge clk) push&~pop && (cnt!=4'hf) |=> (cnt == $past(cnt) +1));
check_pop : assert property (@(posedge clk) ~push&pop && (cnt!=4'h0) |=> (cnt == $past(cnt) -1));

Non-detected Faults Reveal Missing Checkers for Counter Functionality

Controller IP Before After Missing Properties

Checker properties 208 262 54
New RTL bugs found 0 5 New RTL

bugs found!

Missing
properties

	Slide Number 1

