
Failure Triage: The Neglected Debugging Problem 
 

Sean Safarpour, Evean Qin, Yu-Shen Yang 

Vennsa Technologies, Inc. 
Toronto, Canada 

{sean, evean, terry}@vennsa.com 

Brian Keng 

University of Toronto 
Toronto, Canada 

briank@eecg.toronto.edu

ABSTRACT 
Verification and functional debug are important challenges in the 

design of integration circuits. With the proportion of time spent on 

debug increasing, all facets of the problem must be analyzed and 

improved. Failure Triage¸ which is an important and challenging 

phase of the debug effort has been mostly neglected by the 

verification community. Triage is commonly known as the initial 

phase of debug where a large set of failures are analyzed and 

grouped together based on the likelihood of sharing the same root 

cause. Another important aspect of triage is the task of identifying 

the rightful owners of the problems as quickly and efficiently as 

possible without wasting other engineer’s time. Triage is an 

important step of verification since it can greatly affect the speed 

at which bugs get fixed and the general efficiency of the debug 

process. In this paper, we present a novel failure triage framework 

that is fully automated and results in much higher accuracy than 

existing techniques. The framework relies on generating unique 

signatures for failures based on the suspects derived by root cause 

analysis engines as well as binning the failure based on clustering 

algorithms. We use two case studies to illustrate the effectiveness 

of the proposed framework. 

Keywords 

Debug, Triage, Regressions, Root cause analysis. 

1. INTRODUCTION 

Functional verification is a major bottleneck in the design 

process of integrated circuits. An increasingly large portion of the 

verification challenge is due to the debug of functional failures. It 

is estimated that up to 50% of the total verification time can be 

attributed to debug [1].  In the context of functional verification 

debug tasks can include determining the root cause of a failure, 

analyzing the conditions that led to the error, and rectifying the 

incorrect behavior. With the size of designs increasing, their 

associated trace lengths getting longer, and verification 

environments becoming more complex, the debug challenge is 

becoming more prominent. Furthermore, there is an inherent 

uncertainty surrounding the debug process in terms of time, 

engineering resources and difficulty. For instance, it is hard to 

predict from an error message whether a bug will be fixed in a 

matter of minutes, or hours, or days.  

In the recent past, debug has received some attention from 

the industry in terms of better tools and methodologies. For 

example, one of the main benefits of Assertion Based Verification 

(ABV) is catching failures earlier and thus reducing the time to 

debug. The main challenge with ABV is that there is seldom 

enough resources available to implement the desired quantity and 

quality of assertions. On the tools side, debuggers such as Verdi, 

DVE, SimVision and Questa have put a big emphasis on 

accelerating debug tasks, while a new breed of root cause analysis 

tools such as OnPoint automate some of the manual analysis 

tasks. On the academic front, there is a constant stream of effort in 

more effective circuit diagnosis techniques and post-silicon debug 

[3-4]. While these methodologies, technologies and tools help 

engineers identify the precise cause of the originating error, the 

industry as a whole appears to have neglected another face of the 

debugging problem, that of Failure Triage.  

Failure triage is often defined as the first phase of 

debugging in a regression verification flow. It entails identifying 

the cause of a problem at a higher level than required for root 

cause analysis and correction of the design. Consider a design 

where nightly regression tests are run and correctness checking is 

performed with the aid of multiple checkers, assertions, protocol 

monitors and Verification Intellectual Property (VIP). When 

dozens or hundreds of functional failures occur overnight, 

determining the relationship between these failures is not a trivial 

task. For instance, how can one quickly determine which of the 

failures are due to the same bug? If one bug is fixed how many 

other failures will it also fix? One of the toughest problems is 

quickly determining which engineer to assign the problem to.  

Imagine that there are a dozen design engineers and another dozen 

verification engineers in a group. If the error message is not 

localized, it is quite difficult to determine which engineer is the 

best suited person to deal with the problem. Chances are that the 

problem will be passed from one engineer to another, wasting 

many people’s time, before the rightful owner of the bug is 

identified. 

Today failure triage is performed using one of two widely 

adopted, yet ineffective approaches. One approach is to dedicate 

an engineer to triage failures on a daily basis. The task of this 

engineer is primarily to identify the best suited engineer to further 

debug the problem. The effectiveness of this approach is based the 

amount of time the engineer spends analyzing each failure and 

guided by his inherent knowledge of the system and mostly by his 

“gut feel”. The second approach relies on automation where a 

simple script groups failures into bins based purely on the error 

message and the owners of the failing tests. It is clear that the two 

techniques provide a trade-off between accuracy and speed. The 

downside of these triage techniques range from inefficient use of 

engineering resources to the possible incorrect categorization of 

bugs. 

In this paper we investigate the problem of failure triage in 

detail. First, we summarize the problem and focus on what aspects 

make it a challenging problem to solve. To address the 

shortcomings of today’s strategies, we introduce a new triage 

technique using automated root cause analysis tools. The 

proposed approach is based on the assumption that root cause 

analysis tools can determine the excitation and propagation paths 

of the bugs in the design. These paths can act as signatures to 

differentiate between distinct bug sources. Unlike the signatures 

produced by checkers, which only provide information about the 

observation of the bugs, these signatures contain information 



about the internal behavior of the design in the presence of the 

bugs. With some analysis, distinct bug sources can be 

differentiated and similar ones can be grouped together. The end 

result of the proposed technique is a set of bins where there is a 

high likelihood that failures in the same bin are caused by the 

same bug. Using these bins, bugs can be more confidently 

assigned to their rightful owners with less time wasted due to 

incorrect assignments or due to revisiting the same bugs multiple 

times. 

We use two small case studies to illustrate how the proposed 

flow is applied in practice. We provide experimental data on 

many different types of bugs caught by different types of checkers 

and assertions to assess the effectiveness of the approach. It is 

shown that the proposed approach can be automated in the 

regression flow and that its results consistently outperform triage 

techniques based on checker signatures. We conclude the work 

with in depth discussion on the binning results and their 

significance. 

2. MOTIVATION 

A key aspect of failure triage is determining the general area 

of the bug so that it can be sent to the right engineer.  This may 

appear to be a simple problem but consider this: determining the 

general location of a bug so it can be sent to its owner requires 

debugging, but this debugging is probably best performed by the 

owner himself!  In reality, what commonly ends up happening is 

most failure triage is performed using an error message from 

failing checkers or assertions.  Although this typically provides 

better than random prediction, it can result in imprecise groupings 

especially in cases where the number of checkers or assertions are 

sparse. 

 

For instance, consider a verification regression environment, 

where hundreds of tests are run every night. Some number of 

these tests will fail and will be caught by a small set of functional 

checkers and assertions. Typically, the user will intervene and 

analyze the failures based on the error messages residing in a 

simulation log file. The very first question to address is which of 

these failures originate from the same root causes. A false 

assumption, that is often made, is that all failures caught by the 

same checkers are due to the same bug. Indeed, it is possible that 

many different bugs reside in the design and as the stimulus 

changes through different tests, different bugs are activated, yet 

still caught by the same checker. Figure 1 shows this scenario 

where the different bugs are caught by the same checker and 

ideally grouped in different bins. The opposite scenario is also 

common, where due to different stimulus, a bug will propagate 

through different paths and is eventually caught by different 

checkers. Figure 2 presents the latter scenario in which,ideally, 

both failures are grouped in the same bin. 

 

 

The lack of information about the bug source is the primary 

drawback of just using error messages to triage failures. An error 

message is just one method to generate a signature, i.e. method to 

identify a failure. Error messages give only a small view of the 

resulting failure. One method to enhance the signature is to 

consider more messages from the simulation. For example, 

consider a case where a state machine prints out every state 

transition it performs. Using the error message along with the 

state transition can provide the user a better signature based on the 

state sequences. In general, when more detailed information about 

the failure is available, such as propagation paths, it is possible to 

more accurately group similar failures together. In this paper, our 

aim is to leverage the information available from root cause 

analysis tools to provide insight into the inner workings of the 

design. 

3. AUTOMATED FAILURE TRIAGE 

In this section we present our failure triage methodology 

with a high-level description of the overall algorithm.  This is 

followed by a presentation of how to generate effective signatures 

that capture the unique behaviors of different bug sources. Finally, 

we present our binning algorithm to group similar failures 

together based on their signatures. 

3.1 Overall Flow 

Our automated failure triage algorithm helps the triage 

process by automatically analyzing a set of failures for a given 

design and grouping them together according to their bug 

characteristics.  This solves several key aspects of the failure 

triage process. First, it reduces the amount of root cause analysis 

time required for each failure by grouping similar failures together 

and separating dissimilar ones. This translates into more distinct 

failures being analyzed in a given amount of time. Second, it 

reduces the amount of wasted time due to passing failures back 

and forth among engineers when the rightful owner is not 

correctly identified.  By sending the failing testcase to the best 

suited engineer on the first try, significant savings can be gained. 

Finally, it reduces the possibility that a distinct error goes 

unanalyzed due to over grouping based on the same failure 

message.  

The overall failure triage flow is shown in Figure 3. It begins with 

a typical verification flow where many simulation tests are run 

during nightly regression testing. For each failure, a signature 

characterizing the error is generated. A rudimentary signature 

could be as simple as a set of user messages but here an 

automated root cause analysis tools is more effective. It provides a 

stronger characterization of the error by implicitly defining 

possible error excitation and propagation paths. With a signature 

for each failure, they can then be grouped together into bins where 

DUT 

Checker 2 

Checker 1 

 Error Msg2 

 Error Msg1  

Bin 1 

Figure 2: A single bug is caught by different checkers 

Figure 1: Two distinct bugs are caught by the same checker 

Bin 1 

Bin 2 

Error Msg1 

Error Msg1 

 Checker 1 

Checker 1 

DUT 



Simulation / Regression 

Tests 

Multiple 

Failures 

Failure 

Signatures 

Bin 1 Bin 2 Bin N 

Figure 3: Failure Triage Flow 

Automated Root Cause 

Analysis Engine 

 Failure Binning Engine 

… 
 

each bin represents similar failures.  With the bins available, the 

triage engineer can then take the results and send each bin to the 

appropriate engineer.  The signatures (i.e. paths generated) can 

also provide a hint the next engineer in line about where to start 

his own debug and rectification process. These steps are described 

in detail the next sections. 

  

3.2 Signature Generation 

As previously discussed, error messages typically do not 

provide sufficient information to uniquely characterize the failing 

tests. To illustrate this let’s consider two extreme cases. In the 

first case, let’s make the impractical assumption that every signal 

in the RTL has an assertion or checker verifying its correctness. In 

the second case only a single checker on the primary output is 

available. In the first case, the error messages from all the 

checkers will form a very accurate picture of the failure, detailing 

precisely the signals where the bug was first excited up until its 

propagation to the externally observable point (i.e. the final 

checker or primary outputs).  Whereas in the second case, the 

error message on the primary output only provides a very limited 

view of what occurred inside of the design. In these scenarios one 

could easily differentiate between distinct bug sources in the first 

case versus the second case. Our goal is to generate a signature 

that can provide information mimicking the former case, rather 

than the latter, without the unrealistic requirement of adding 

countless assertions and checkers to the design. 

The main problem to overcome is how to find the excitation 

and propagation paths of bugs automatically in order to generate 

the signature. Fortunately, automated diagnosis tools [2, 3] or 

commercial root cause analysis engines such as OnPoint [4] can 

approximate the excitation and propagation path for each failure. 

One of the simplest root cause algorithms is critical path tracing 

[2].  Starting from the failure point, critical path tracing traverses 

paths backward through the circuit to identify paths and circuit 

elements that can be sensitized to change the value of the 

erroneous output.  This provides a proxy for the error propagation 

path.  Other more complex algorithms based on formal techniques 

such SAT, QBF and SMT solvers can also be used to provide 

even more accurate results [2, 3]. In general one can treat these 

tools as a blackbox that outputs a set of paths (or circuit elements) 

given the circuit, an error trace and an expected value as shown in 

Figure 4.  

Commercial root cause analysis tools such as Vennsa’s 

OnPoint can further characterize the failure by providing a set of 

waveforms that depict what values can rectify the failure at every 

circuit node or signal. These waveforms also contain an 

“activation time” that depicts the exact simulation time that the 

bug is active (or that a fix is required). These paths along with the 

fix values and activation times provide the user with insight on 

how the circuit is misbehaving in the erroneous case and how it 

can be fixed.  

In addition to the error propagation paths, more information 

from the environment can help further characterize bugs. First, 

user messages, although not sufficient, can provide added 

information about the test setup. For example, consider a case 

where the state machine print outs every time it receives a new 

packet and processes it. The user messages can help build the 

sequence of events that led to the failure. One approach is to do a 

coarse grain binning based on the user information first followed 

by refined binning by the root cause analysis engine. Second, 

change history from source control software provides valuable 

information regarding bug locations. For example, if three files 

have been changed since the last passing regression run, then the 

owners of these files should be first in line to review the failures.  

Lastly, information about the specific stimulus vectors and test 

sets can be used to help identify similar failures.  For example, 

different modes of a system might imply important clues 

regarding the locations of errors. All this information can improve 

the accuracy of the triage process. 

3.3 Failure Binning 

The process of failure binning takes the failure signatures 

and groups them together according to their similarity. Although 

this process can be dependent on the signatures, we show some 

general binning strategies that can be tweaked for individual 

environments. We first discuss how to correlate root cause 

analysis results, then discuss how to use the environmental 

components of the signature to aid in binning, and finally move on 

to using these results to make bins. 

The key idea when dealing with path based signatures is to 

re-construct the error propagation paths. By comparing the 

correlation of two given error paths, the binning algorithm 

determines whether the sources of the failures are the same.  The 

algorithm uses this information about signals and their activation 

times to group and sort them in chronological order. Although not 

always exact, due to cycles in paths or overlapping paths, this 

ordering provides a proxy for the error path. Next, each path is 

assigned a score based on the commonality or similarity with 

Figure 4: Input and Output of Root Cause Analysis Engine 

Circuit 

Error Trace 

Expected 

Value 

Root Cause 

Analysis Engine 
Paths 



        "14540: ERROR: output mismatch. Expected f292e945, Got        

f309efe9 (3ff759808cd7826af292e945) in vector: 4" 

 

      "27540: ERROR: output mismatch. Expected f00007b2, Got 

efcda8a0 (cd7fa2441cff92e8f00007b2) in vector: 17" 

     

      "33540: ERROR: output mismatch. Expected 795a1f75, Got 

79804398 (7b9e426741b9bdbf795a1f75) in vector: 23" 

 

      "34540: ERROR: output mismatch. Expected 35804398, Got 

35dae339 (b3e7a98fbde72f7a35804398) in vector: 24" 

 

      "** Error: Assertion error. 

          Time: 1150 ns Started: 950 ns  Scope: 

test.dut.chk_fpu.a_div File: ../sva/fpu.sv Line: 233" 

 

      "ERROR: Underflow Exception Expected: 0, Got 1 

       45540: ERROR: output mismatch. Expected 00000000, Got 

00000000 (8a314ad1997a7e9b00000000) in vector: 35" 

 

      "24540: ERROR: output mismatch. Expected ceac709c, Got 

cf2c709c (4ef3129a4f4fc19bceac709c) in vector: 14" 

 

      "49540: ERROR: output mismatch. Expected 45aad895, Got 

462ad895 (c17e453045ab57b845aad895) in vector: 39" 

 

      "** Error: Assertion error. 

          Time: 1350 ns Started: 1250 ns  Scope: 

test.dut.u1.chk_pre_norm.a_check_pos_sign File: 

../sva/pre_norm.sv Line: 70" 

 

      "** Error: Assertion error. 

          Time: 2650 ns Started: 2550 ns  Scope: 

test.dut.u1.chk_pre_norm.a_check_neg_sign File: 

../sva/pre_norm.sv Line: 75" 

 

      "43540: ERROR: output mismatch. Expected 6fcfb17a, Got 

efcfb179 (6fcfb17a1bb73bd36fcfb17a) in vector: 33" 

 

      "48540: ERROR: output mismatch. Expected aebaa9dd, Got 

2ebaa9dd (aebaa9de996ed347aebaa9dd) in vector: 38" 

     

      "ERROR: DIV_BY_ZERO Exception: Expected: 1, Got 0 

       28540: ERROR: output mismatch. Expected 00000000, Got 
00000000 (92bf785f9b6e56a400000000) in vector: 18" 

another. If the similarity score is high then two failures should be 

grouped together; if they are low, then they should be separated. 

Other information can be used as additional metrics to either 

bias the weights when comparing separate error paths, or simply 

used as tie-breakers when two failures are borderline similar. For 

example, recently changed code could act as a simple filter to 

disregard, or change the weight of the different components in the 

path.  Another example is using different operation modes as a tie 

breaking score for borderline similar failures.  These metrics are 

much more dependent on the environment and can be tuned for 

optimal use. 

Once a similarity score is generated from two signatures, 

there are many clustering algorithms that can be applied to group 

them.  These algorithms typically involve a threshold parameter 

that will decide how easily two similar failures can be grouped 

together.  This threshold value need not be static either as it can 

change based on the environment information as well.  In fact, it 

may be best to experiment with many such variables until settling 

on an appropriate set of thresholds and metrics. 

Finally, when the bins are created, the best suited engineer 

to fix the problem must be identified. The source control database 

can tag engineers based on the owner of the most common 

modules/files or the author of the last change committed for each 

bin.  

4. CASE STUDY 

The failure triage infrastructure described in this paper has 

been developed and is available for commercial use. Its industrial 

use has been applied to commercial designs in communication 

applications. Due to the confidential nature of the commercial 

designs, we cannot disclose the level of data required for this 

paper. However, to provide a detailed level of information and 

illustrate the effectiveness of the triage infrastructure, we have 

collaborated with graduate students from the University of 

Toronto where the triage tool was applied on two sample designs. 

To create a realistic verification environment, dozens of “typical” 

bugs were created in the RTL and testbench components of the 

designs. A sample of the bugs are shown in the remaining of the 

paper. 

In this section we describe in detail the two case studies. For 

each we present an overview of the design, provide a sample of 

the failures found during simulation and show the results of the 

triage engine. 

4.1 Design 1: FPU module 

The FPU design used in the case study is a single precision 

IEEE 754 compliant Float Point Unit (FPU) from Opencores [5] 

with some modifications. The design is written in Verilog and is 

composed of eight modules totalling 1415 lines of code. It can 

perform six operations and supports four rounding modes. The 

architecture consists of a floating point exception number units, 

floating point pre-normalization unit that adjust the numbers to 

equal exponents, primitive operation modules, and floating point 

post-normalization that denormalizes and rounds the result. 

The test suite contains a test set for each FPU operation with 

different round modes. The test sequences are pre-generated and 

stored in vector files. Depending on the operation and round 

mode, the corresponding test sequence is loaded into the memory, 

as well as the expected values. There is an end-to-end checker that 

compares the expected value for each operation, exception 

checkers and some assertions throughout the design.  

When simulating the design with the different test 

sequences we get many failures that occur. Due to space 

constraints we only show some of the firings as follows. 

Notice that some errors are due to assertion failures and 

others are due to golden value mismatches and exception 

catching. We run the OnPoint root cause analysis engine and use 

the result to generate the signatures described. The clustering 

algorithm groups all the failures into five bins. After performing 

further manual debugging on each bin, the root cause of each error 

is identified. In these experiments, the grouping is performed 

correctly as the same bugs are grouped together and distinct bugs 

are grouped separately. Note that if binning was done purely 

based on the failure messages there would have been four bins 

where at least two bug sources would have gone unidentified, and 

another bin would have presented a duplicate error.  

 

Next, each of the bins containing the root causes are briefly 

described. The first bin groups four checker failures and one 

assertion failure together, which is typically hard to do manually. 

Bin 1: 4 checkers, 1 assertion 

 

    Bug Location: primitives.v : 90 & 98        

    ->  // Bug: missing one clock delay 

    ->  always @(posedge clk) 

    ->      quo <= #1 opa / opb; 

    ->  always @(posedge clk) 

    ->      rem <= #1 opa % opb; 

 

    ->  // Fix:       

    ->  always @(posedge clk) begin 

    ->      quo1 <= #1 opa / opb; 

    ->      quo  <= #1 quo1; 

    ->  end 

    ->  always @(posedge clk) begin 

    ->      rem1 <= #1 opa % opb; 

    ->      rem  <= #1 rem1;     

    ->  end 

 



        "# ** Error: Assertion error. 

         #    Time: 603 ns Started: 603 ns  Scope: 

test.dut.chk_top_i1.assertion_a_fifo_rreq File: 

../sva/vga_top.sv Line: 92" 

 

        "# ** Error: Assertion error. 

         #    Time: 609 ns Started: 603 ns  Scope: 

test.dut.wbm.clut_sw_fifo.chk_fifo_i1._a_read_pointer File: 

../sva/vga_fifo.sv Line: 32" 

 

        "# ** Error: Assertion error. 

         #    Time: 609 ns Started: 603 ns  Scope: 

test.dut.wbm.data_fifo.chk_fifo_i1._a_word_down_counter File: 

../sva/vga_fifo.sv Line: 72" 

 

        "# ** Error: Assertion error. 

         #    Time: 897 ns Started: 897 ns  Scope: 

test.dut.sigMap_i1.assertion_wbs_dat_o File: 

../sva/VennsaChecker.sv Line: 45 

         #     897.0 ns: expected aaaaaaaa, got ffffff9f" 

 

        "# ** Error: Assertion error. 

         #    Time: 633 ns Started: 627 ns  Scope: 

test.dut.wbm.data_fifo.chk_fifo_i1._a_read_pointer File: 

../sva/vga_fifo.sv Line: 32" 

 

        "# ** Error: Assertion error. 

         #    Time: 651 ns Started: 645 ns  Scope: 

test.dut.pixel_generator.rgb_fifo.chk_fifo_i1._a_read_pointer 

File: ../sva/vga_fifo.sv Line: 32" 

 

        "# ** Error: Assertion error. 

         #    Time: 831 ns Started: 831 ns  Scope: 

test.dut.sigMap_i1.assertion_wbs_dat_o File: 

../sva/VennsaChecker.sv Line: 45 

         #     831.0 ns: expected ffffff9f, got ffffffXf" 

 

        "# At time     273.0 ns: ERROR in wishbone: 

golden=0000000000000000, actual=0000000100000000" 

 

        "# ** Error: Assertion error. 

         #    Time: 273 ns Started: 273 ns  Scope: 

test.dut.sigMap_i1.assertion_wbs_dat_o File: 

../sva/VennsaChecker.sv Line: 45 

         #     273.0 ns: expected 00000000, got 00000001" 

 

        "# At time     111.0 ns: ERROR in sync: golden=0, 

actual=1" 

 

The correct and buggy RTL is shown above. In this case the bug 

is that there is a missing pipeline stage.  

 

 

The second bin contains a single exception error. The bug in 

this case resides in the Verilog testbench where bad stimulus is 

generated. Interestingly this failure is distinguished from the 

others and is binned on its own. 

 

The third bin groups two checker failures. In this case a 

basic grouping algorithm would have resulted in a similar result. 

This bug is in the RTL and is due to setting the top-most bit to 

zero instead of one.  

 

Bin four groups two assertion failures and two checker 

failures, which is typically hard to identify manually. The bug is 

in the RTL and is a result of incorrectly decoded signals inside a 

case statement. 

 
 

Bin five captures a single exception on its own. In this case, 

after root cause analysis, it finds that the bug is in the expected 

model used for the exception handling. This strengths the notion 

that the triage approach is also valid for  bugs outside of the DUT. 

4.2 Design 2: VGA controller 

The VGA controller is from Opencores [5] with some 

modification, it is written in Verilog, composed of 17 modules 

totalling 4,076 lines of code and approximately 90,000 

synthesized gates. The controller provides VGA capabilities for 

embedded systems. The architecture consists of a Color 

Processing module and a Color Lookup Table (CLUT), a Cursor 

Processing module, a Line FIFO that controls the data stream to 

the display, a Video Timing Generator, and Wishbone master and 

slave interfaces to communicate with all external memory and the 

host, respectively.  

The operation of the core is as follows. Image data is 

fetched automatically via the Wishbone Master interface from the 

video memory located outside the primary core. The Color 

Processor then decodes the image data and passes it to the Line 

FIFO to transmit to the display. The Cursor Processor controls the 

location and image of the cursor processor on the display. The 

Video Timing Generator module generates synchronization pulses 

and interrupt signals for the host. 

The test suite for the VGA core is constructed using UVM. 

Four main tests are used for verifying this design. These include 

register, timing, pixel data, and FIFO tests. The transaction has 

randomly generated control-data pairing packets under certain 

constraints. These transactions are expected to cover all the VGA 

operation modes in the tests (and they may be reused to test other 

video cores such as DVI, etc). The sequencer exercises different 

combinations of these transactions through a given testing scheme 

so that most corner cases and/or mode switching are covered. The 

monitors are connected to the DUT and the reference model 

Bin 5: 1 exception 

 

    Bug Location: test_top.v : 302 - 306 

    ->  // Bug: incorrect reference model 

    ->  if(div_by_zero != exc4[2]) 

    ->      begin 

    ->          exc_err=1; 

    ->          $display("\nERROR: DIV_BY_ZERO Exception: 

Expected: %h, Got %h\n",exc4[2],div_by_zero); 

    ->      end 

Bin 4: 2 assertions, 1 checker, 1 exception 

 

    Bug Loaction: pre_norm.v : 213 - 216 

    ->  always @(signa or signb or add ... 

    ->         ...              

    ->         // Bug: switched assignments 

    ->         3'b0_0_0: sign_d = 1; 

    ->         3'b0_1_0: sign_d = !fractb_lt_fracta; 

    ->         3'b1_0_0: sign_d = fractb_lt_fracta; 

    ->         3'b1_1_0: sign_d = 0; 

 

    ->         // Fix: 

    ->         3'b0_0_0: sign_d = fractb_lt_fracta; 

    ->         3'b0_1_0: sign_d = 0; 

    ->         3'b1_0_0: sign_d = 1; 

    ->         3'b1_1_0: sign_d = !fractb_lt_fracta; 

  

Bin 3: 2 checkers 

 

    Bug Location: post_norm.v : 354 

    ->  // Bug: Incorrect padding bit 

    ->  assign {exp_rnd_adj0, fract_out_rnd0} = round ? 

fract_out_pl1 : {1'b1, fract_out}; 

 

    ->  // Fix: 

    ->  assign {exp_rnd_adj0, fract_out_rnd0} = round ? 

fract_out_pl1 : {1'b0, fract_out}; 

     

Bin 2: 1 exception 

    

    Bug Location: test_top.v : 322 - 326 

    ->  // Bug: incorrect stimulus 

    ->  ... 

    ->  @(posedge clk);          

    ->  #1; 

    ->  ... 

    ->  oper  = tmp[103:96]; 

    ->  ... 

    ->  case(oper) 

    ->      8'b00000001: fpu_op=3'b000; // Add 

    ->      ... 

    ->      8'b01000000: fpu_op=3'b110; // rem 

    ->      default: fpu_op=3'bx; 

    ->  endcase 

    ->  ... 



respectively. They check the protocols of the responses, and make 

sure that the data being sent to scoreboard has correct timing. The 

scoreboard and checkers contain all the field checkers which 

compare the data from the DUT, and reports the mismatches. 

The golden reference model is implemented using C++. It 

receives the same set of stimulus from the driver (uvm_driver 

class) and produces the expected value of the outputs. Along with 

the reference model, 50 SystemVerilog Assertions (SVA) are used 

to do some instant checks. While running simulation, SVA can 

catch unexpected behaviours of the design and prevent corrupted 

data going through the flow. 

A sample of the failures that occurred during a suite of 

simulation tests is shown. Notice that there are a set of assertions 

and correctness checkers that fire. As in the FPU case, OnPoint is 

run on the test to generate the suspects which are used as 

signatures during the triage process.  

If triage were performed based purely on the error message 

the result would be six bins. In contrast there are only four errors 

in this case, thus time would have been wasted analyzing 

redundant failures.  Furthermore, two of the errors could also have 

been missed if only one failure is analyzed within each bin. In 

contrast, the triage infrastructure proposed correctly generates 

four bins, one for each error. The resulting triage bins and the root 

cause of the failures are shown below. 

 
Bin one groups four assertions failures based on three 

different assertions thus eliminating wasted time by analyzing 

each one separately. The single bug source is due to an incorrect 

assignment based on the state of the vga color processor. 

 

Bin two catches three distinct assertion failures once again. 

In this case, the RTL bug is due to picking the wrong bit of a read 

pointer inside a fifo. 

 

Bin three contains both a checker and an assertion failure. 

Interestingly, this bug resides in the testbench where some 

stimulus signals are instantiated using the wrong models. As a 

result both the checker and an assertion fail. Debug such cases 

typically would involved multiple designers and verification 

engineers. 

 

Bin four contains a single checker failure. This failure is 

caused by a bug in the testbench where the reference model 

contains the bug. 

In all these cases, we have confirmed that the bins generated 

by the proposed triage approach correctly bin the failure based on 

the same root cause. We confirmed the finding by verifying that 

fixing the bugs remove all the failures for a given bin. It should be 

noted that the proposed triage approach may not always be 

correct, if distinct bugs are close in proximity they may end up in 

the same bin. 

5. Conclusion 

In this work we presented a novel failure triage approach 

that is both automated and generates better results than previous 

script-based and manual techniques. The triage engine relies on 

information from root cause analysis tools that provide visibility 

into the propagation paths of the bug. These paths along with their 

activation times provide unique insight that is used to group 

similar failure together. To illustrate the effectiveness of the 

approach we provide two small case studies where distinct bugs 

are correctly binned separately. Further research in this area will 

focus on improving the resolution and quality of the binning 

algorithms and generating custom heuristics for testbench and 

environment originating bugs.   

6. REFERENCES 

[1] H. Foster, “Assertion-based verification: Industry myths to 

realities (invited tutorial),” in Computer Aided Verification, 

2008, pp. 5–10. 

[2] S. Huang and K. Cheng, Formal Equivalence Checking and 

Design Debugging. Kluwer Academic Publisher, 1998.  

[3] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault 

Diagnosis and Logic Debugging Using Boolean 

Satisfiability,” IEEE Trans. on CAD,vol. 24, no. 10, pp. 

1606–1621, 2005.  
 

[4] Vennsa Technologies Inc., 

http://www.vennsa.com/product_simulation.html 

 

[5] OpenCores, http://www.opencores.org 

 

 

Bin 4: 1 checker 

 

    Bug Location : self_checking.v : 110 - 121 

    ->  // Bug: incorrect "blanc_golden" generated from 

erroreous reference model  

    ->  if(^{hsync_golden, vsync_golden, csync_golden, 

blanc_golden} !==1'bx) 

    ->     if({hsync_golden, vsync_golden, csync_golden, 

blanc_golden} != {hsync, vsync, csync, blanc}) 

    ->     begin 

    ->         $display("At time %t: ERROR in sync: 

golden=%h, actual=%h", $time, 

    ->           {hsync_golden, vsync_golden, 

csync_golden, blanc_golden}, 

    ->           {hsync, vsync, csync, blanc} 

    ->           ); 

    ->         ->ERROR; 

    ->          

    ->     end 

Bin 3: 1 checker, 1 assertion 

 

    Bug Location: test_bench_top.v : 684 

    ->  // Bug: incorrect stimulus "wb_err_i" generated from 

wb_slv model 

    ->  wb_slv #(24) s0(.clk( clk  ), 

    -> .rst(  rst  ), 

    -> .adr( {1'b0, wb_addr_o[30:0]} ), 

    -> ... 

    -> .err(  wb_err_i ), 

    -> .rty(    ) 

    -> ); 

Bin 2: 3 assertions (3 different) 

     

    Bug Location : vga_fifo.v : 191 

    -> always @(posedge clk or negedge aclr) 

    ->     ... 

    ->      // Bug: missing use of function 

    ->     else if (frreq) rp <= #1 {rp[aw-1:1], rp}; 

    ->      // Fix: 

    ->      else if (frreq) rp <= #1 {rp[aw-1:1], lsb(rp)}; 

Bin 1: 4 assertions (3 different) 

     

    Bug Location: vga_colproc.v : 263     

    ->  always @(c_state or vdat_buffer_empty or colcnt or 

DataBuffer or rgb_fifo_full or clut_ack or clut_q or Ba or Ga 

or Ra) 

    ->      begin : output_decoder 

    ->   

    ->       // initial values 

    ->          // Bug incorrect initial value 

    ->       ivdat_buf_rreq = 1'b1; 

    ->          

    ->          // Fix: 

    ->          ivdat_bug_rreq = 1'b0; 


