

1

Extending the UVM register model generation and

integration flow to support user-defined scenarios

and register mask values

Shuang Han, Kees van Kaam, Martin Barnasconi

 NXP Semiconductors,

Eindhoven, Netherlands

 (shuang.han@nxp.com, kees.vankaam@nxp.com, martin.barnasconi@nxp.com)

 Abstract—This paper describes a methodology and flow which extends the UVM register model generation and

integration flow to support user-defined scenarios and register mask values. It presents the usage of IP-XACT to

generate UVM register model and extra register mask values. This generated register and register mask is then

integrated together with the adapter and predictor functionality in a UVM-based verification environment. By means

of an example, the methodology and flow are demonstrated to explain the practical usage for user-defined scenarios

and register mask values accordingly.

Keywords—UVM, Register-Model, IP-XACT, Multiple User Scenarios, Multiple register mask values

I. INTRODUCTION

The UVM register abstraction layer provides a convenient way to verify the implementation of registers in a

design under verification (DUV). Due to the large number of registers in a DUV and the numerous small details

involved in properly configuring the UVM register layer classes, it is common practice to automatically generate

the UVM register model by using a code generator, to guarantee that the register is fully identical to the one in the

DUV. This improves the test bench quality and avoids making human errors.

The generated register model will contain a pre-defined register field access policy for each register field.

Normally this is enough for the design of registers behavior. But sometimes, a register could be designed to have

different access policies in different user-defined scenarios, like writing the same value into a register in

configuration mode, user mode or test mode, the final result written into the register is varying by the different

register mask value associated with that specific running mode. How to use model generator to generate those extra

access policies (register mask values) and how to apply them in the UVM verification environment is a challenge.

Therefore, a methodology has been developed which extends the UVM register model generation and

integration flow to support verifying registers design with multiple access policies in different user-defined

scenarios.

This paper is organized as follows: Section II will present the register verification requirements, which are used

as starting point for the methodology and flow development described in section III. The flow implementation is

presented in Section IV, and explains the register model and mask generation and implementation. Section V

presents the results. The conclusions are given in section VI.

II. REGISTER VERIFICATION REQUIREMENTS

When using a UVM register model to verify the register implementation in the DUV, it should reflect all the

registers in the design and should be structured as a set of hierarchically nested register blocks following the design

hierarchy of the DUV. The UVM register abstraction layer should support front-door access (via a bus interface)

and back-door access to quickly set or get a register value without the overhead to communicate over the actual bus

interface. Furthermore, to communicate with bus-specific UVC’s, the register model should implement a register

adapter to translate between register transaction and bus sequences and should offer implicit or explicit prediction

to update register mirrored values, etc.

mailto:shuang.han@nxp.com
mailto:kees.vankaam@nxp.com

2

Besides these general requirements, we have the following additional requirements for our register verification:

• Verify the register behaviour within n different user scenarios and 2*n register mask values (each user

scenarios associated with 2 register mask values, one for read mask and one for write mask).

• Automatic UVM register model and mask generation flow based on the register description captured in an

Excel sheet.

• Implement project-specific register access interface adapter to pass extra information regarding user

scenarios with generic uvm_reg_bus_op

• Extend UVM predictor to update mirrored value in the register model with different register mask values.

Our register description example in excel sheet is illustrated in Figure 1. It contains register names, field names

inside of one register, register address, fields offset, register reset values, all the register mask values in different

user scenarios, etc. This excel sheet is owned by the architect; RTL designers and verification engineers are

involved to review it. The register description is used as the single source for registers RTL code generation, UVM

register model generation and software development in our project team.

III. PROPOSED METHODOLOGY AND FLOW

Based on the register verification requirements described in section II, we proposed a new methodology which

extends existing UVM register model generation and integration flow to fulfil our special requirements.

In the normal generated UVM register model, the multiple access policies for one register field will not be

generated. So first, we need to define a data structure to save all the extra register mask information listed in Figure

1, then extending model generator function to automatically generate extra register mask information in this defined

data structure.

Figure 1. Register description excel sheet example

Figure 2. Proposed methodology

3

When integrating the UVM register model into the UVM test environment, both UVM register model and extra

register mask information should be created and can be accessed by the unique register name. The observed register

value from the register access interface should be integrated together with the register mask value before updating

register model. Proposed methodology is illustrated in Figure 2.

A flow for register model and mask generation and integration has also been developed according to the

methodology we discussed above. The register model and mask generation flow is illustrated in Figure 3.

Generated register model and mask integration flow is illustrated in Figure 4.

IV. FLOW IMPLEMENTATION

As illustrated in section III, the flow is divided into 4 steps. We will use example implementation to show how

the flow is implemented in details.

A. Proposed data structure to save all register mask values

To save all extra register mask values and use them in the UVM test environment, a generic reg_mask class and

a reg_mask_block class are implemented. The reg_mask class contains members of all the 2*n (n is the number of

mode) register masks and provides basic function like add_mask and get_mask based on read/write and user

scenarios. The reg_mask_block class instantiated an associated array of reg_mask. A generated file called

“myblock_reg_mask.sv” is also included in build() function to fill the reg_mask_array with all 2*n register mask

Figure 3. Register model and mask generation flow

Figure 4. Register model and mask integration flow

4

values. The add_reg_mask and get_reg_mask function are also implemented in reg_mask_block class. Figure 5

shows the example implementation snippet of the reg_mask class.

Figure 6 shows the example implementation snippet of reg_mask_block class.

B. Step 1: Converts the register description in XLS/CSV into IP-XACT

Many third-party tools generate the IP-XACT XML format from other sources (such as a specification or

spreadsheet). These third-party register tools may also auto-generate an UVM register model. So, depending on

which tool you are using, the generated IP-XACT file and final UVM register model may differs a bit. Here we

will use our flow to show the basic idea to deal with our multiple user scenarios and multiple register mask values

issue.

In our practice, we developed a Tcl based tool to convert register XLS/CSV descriptions into IP-XACT register

descriptions, then powered by Magillem generator, the UVM register model will be generated. To deal with our

issue, all the extra register mask values will be read out from excel sheet and converted into parameter together

with normal register description in converted IP-XACT file, following IEEE Std 1685-2009 [2]. Generated IP-

XACT file is illustrated in Figure 7.

C. Step 2: Automatically generate register model and mask by model generator

As shown in above Figure, all 10 mask values for each register are recorded as parameter together with normal

register description in the IP-XACT file. Via extending the tcl script used for generating normal UVM register

model, a register mask file which named “myblock_reg_mask.sv” will be generated together with normal UVM

Figure 5. Example of reg_mask class snippet

Figure 6. Example of reg_mask_block class snippet

5

register model. The generated register mask file is included in the reg_mask_block class shown in the proposed ata

structure , containing the function call of add_reg_mask for all the registers in excel sheet. An generated example

of register mask file is shown Figure 8.

D. Step 3: Create register adapter with multi-user scenarios information

Normally adapter is implemented by extending the uvm_reg_adapter class and implementing the reg2bus() and

bus2reg() function. It will convert between generic uvm_reg_bus_op and bus sequence_item. But normal

uvm_reg_bus_op only contains generic bus operation information, like kind of access, the bus address, the data to

write, number of bits being transferred, etc.

For extra information for a register transaction, like register is accessed in which user scenarios, with or without

parity, those information can not passed through the generic uvm_reg_bus_op. To solve this, you need to declare

an extra class from uvm_object containing all extra information you want to pass with your generic bus transaction.

The defined user scenarios include mode 1 (M1), mode 2 (M2), mode 3 (M3), etc. Figure 9 shows an example for

this extra information class.

Figure 7. Generated IP-XACT file with extra register mask values

Figure 8. Generated myblock_reg_mask.sv

Figure 9. Extra information class declaration snippet

6

Then pass all extra information in above class instance into register read/write access method call via the

extension argument. You can either call register read/write access in a register sequence, or in our case, we created

two task (read and write) to encapulate all register access information, and put them in the base virtual sequence

where you can call in all extended virtual sequences. Figure 10 shows an example of base virtual sequence

implementation.

 When user call the read/write task above, the register.read method calls XreadX() method of the uvm_reg

class, then a uvm_reg_item object will be created, which contains all the information for bus sequence. During the

following internal calls, reg2bus() method in uvm_reg_adapter will be called to translate register access into bus

sequence. Figure 11 illustrates how extra information can be passed into bus sequence in the adapter .

Figure 10. Register read/write task with user scenarios example

Figure 11. Register adapter with multi-user scenarios example

7

E. Step 4: Predictor integrate register observed value with register mask value

By default, the register model updates its mirror copy of the register values implicitly, so no need for a predictor.

Every time a register is read or written through the register model, its mirror value is updated. However, if other

agents on the bus interface perform read and write transactions to DUT registers without the register model, then

the register model must learn of these bus operations to update its mirrorred value accordingly [1]. To use a bus

monitor to observe all the transaction on the bus interface, then using predictor to get bus transaction from connected

bus monitor to explicitly update the register model, doing so can guarantee all register accesses via bus interface

will not be missed. In our case, we used an explicit predictor to integrate register observed value from register

access interface with register mask value to update mirrorred vaules in the register model. Figure 12 shows this

process.

Example predictor implementation is illustrated in Figure 13.

Figure 12. Predictor glue logic for mirrored values update

Figure 13. Predictor example snippet

8

V. RESULTS

A new methodology and flow has been developed which extends the UVM register model generation and

integration flow to support verifying registers design with multiple access policies in different user-defined

scenarios. The proposed methodology and flow are clear and easy to be understood. The implementation of the

flow is well structured and easy to apply. Proposed data structure to save all register mask values is simple and fully

aligned with register model structure. With single source, the extra register mask values together with other register

information are automatically converted to IP-XACT and automatically generated UVM register model and mask.

The integration process in predictor is fully aligned with register design behaviour. All the implementation has been

tested in the real project by different blocks register verification and used by different verification engineer, all

users found it easy to be understood and apply. Some simulation log file snippet is shown in Figure 14.

VI. CONCLUSION

The register model and mask generation and integration flow has been used in different block’s UVM test

environments by many verification engineers. The register model flow introduced in the paper is not something

new, only extending the normal register model generation and integration flow to deal with register in multiple user

scenarios with multiple register mask values issue. But maybe the idea of this glue logic can be used in other user

cases.

REFERENCES

[1] Accellera, “Universal Verification Methodology (UVM) 1.2 User’s Guide”, www.uvmworld.org

[2] IEEE, “1685-2009 - IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool Flows”,

https://standards.ieee.org/findstds/standard/1685-2009.html

Figure 14. Simulation log file snippet

http://www.uvmworld.org/

