

1

Extending functionality of UVM components

by using Visitor design pattern

Darko M. Tomušilović

Vtool LTD

Belgrade, Serbia

darkot@thevtool.com

Abstract—Visitor is a software design pattern used to add a new operation to classes in an existing class

structure, suitable to be implemented for classes within a well-defined class hierarchy, such is the UVM

based environment. All the necessary infrastructure for the usage of Visitor is provided within UVM

library. The paper will briefly introduce the pattern elements and show examples how the functionality can

be incorporated into the verification environment.

Keywords—visitor design pattern, UVM

I. INTRODUCTION

Over the course of verification environment development cycle, a common requirement that developers face is

to add a new operation to each class in existing class hierarchy. The operations may include check of correct static

and dynamic configuration, environment connectivity check, reporting and statistics collection, etc.

The most common solution the developers might opt for is the most obvious one: adding code that will perform

each operation into each class in the environment. Unfortunately, in many cases, the approach is not even possible

to implement due to limitations such as encrypted codebase of VIPs bought from EDA vendors, or company

standard proven code, that might become unstable by applying changes to it. Also applying such solution might

pollute the existing codebase. The other option of creating derived classes that would perform newly added

operations might lead to a very inflexible system, as all the places the base classes are used would need to be

changed. This way, code readability and understanding can also be seriously hindered.

However, the alternative to this approach has been well established in the software development world, in a

form of Visitor design pattern, and can be equally applicable to tackle similar challenges in the verification world.

“Represent an operation to be performed on the elements of an object structure. Visitor lets you define

a new operation without changing the classes of the elements on which it operates.” [1]

Visitor is a software design pattern used to add a new operation to each class in an existing class structure,

suitable to be implemented for classes within a well-defined class hierarchy, such is the UVM based environment.

According to Visitor design pattern principles, each operation should be encapsulated within a dedicated visitor

class. Managing the operation in a single place – within a dedicated class, rather than having it spread across the

whole environment, in its each and every class, significantly decreases code complexity and facilitates its

maintenance. As all the changes to be done when extending the functionality are localized, the code stability and

overall code quality are improved. An additional ability Visitor brings is to extend a class functionality where the

class code cannot be changed.

The situation in which the Visitor can be utilized to its full power is to perform certain action on every item in

a defined collection. The object of a Visitor class then traverses each node in the tree, and according to the type of

visited object, performs a different set of actions. As a general rule of thumb, Visitor should be applied if the class

structure is stable and unlikely to change, otherwise it can create an unnecessary overhead. While adding a new

operation using a Visitor is straightforward, adding a new type of object a Visitor should visit is costly, as it requires

changes in core Visitor code.

mailto:darkot@thevtool.com

2

As it relies on polymorphism, the usage of Visitor should be planned in advance, so that every class in the

environment would be compliant with the Visitor flow. Fortunately, UVM library provides all the necessary

support, and therefore any class directly or indirectly extending from uvm_component is capable of handling Visitor

access.

II. VISITOR DESIGN PATTERN INFRASTRUCTURE

UVM library [2] defines two main elements that represent the Visitor design pattern infrastructure:

1. uvm_visitor – abstract class defining a general visit operation on a node. For each of new functionalities

the node should support, a concrete visitor that extends uvm_visitor is defined, giving implementation

to visit operation according to the action the visitor needs to accomplish. A simple example is shown

in Figure 1. It presents a concrete visitor that displays the name of the component that is being visited.

uvm_visitor also contains pre-processing and post-processing hooks begin_v and end_v that can be

utilized for initialization and activity summary, respectively. In the example, the hooks are not utilized

and are left empty by inheritance.

It is worth noting that in this example, the visitor uses polymorphic method get_full_name defined in

base uvm_object class to query the name of a component being visited. Therefore, every component

that is visited can be processed uniformly, regardless of its actual type, as all of them inherit the method

from their base class. The situation is a bit more complex if the visitor needs to utilize some of the

fields or methods that are not common across all components that are being visited, but are rather

specific only for the derived classes. Examples I, II and III presented later in this paper propose the

solution to such problem.

Figure 1. Concrete visitor - name display visitor

2. uvm_visitor_adapter – abstract class defining a general accept operation that in turn applies the

corresponding visitor on every element of the structure that the adapter wraps. The definition of a

simple adapter that wraps just a single uvm_component is shown in Figure 2, whereas the full-working

example flow is displayed in Figure 3, with corresponding log output in Figure 4. It can be seen that

the context invokes method accept of an object of adapter class, providing the component to be visited

(in this case, the environment itself, using reference this), and also the visitor object as arguments.

Figure 2. Basic visitor adapter

3

Figure 3. Visitor with basic visitor adapter usage

Figure 4. Visitor with basic visitor adapter usage - output log

UVM library offers a number of predefined adapters that are used to traverse elements in a complex

composite structure in a specific way and apply visitor operation upon each of them: top-down

(uvm_top_down_visitor_adapter), bottom-up (uvm_bottom_up_visitor_adapter), level-by-level

(uvm_by_level_visitor_adapter). To facilitate the traversal, abstract uvm_structure_proxy class used

to provide all children subelements of a certain element in a structure is also defined in the UVM

library. Its specialization class uvm_components_proxy provides all subcomponents for a given UVM

component. The traversal is presented in Figure 5 along with the log output in Figure 6. The name of

all the components instantiated either directly inside the environment or inside any of its

subcomponents is logged recursively.

Figure 5. Visitor with uvm_top_down_visitor_adapter usage

Figure 6. Visitor with uvm_top_down_visitor_adapter usage – partial output log

UML diagram

UML [3] is a software modelling language used to represent classes, relations and the flow between them in a

graphical form, improving code documentation and understanding. Among software developers, it is a standard

notation that, along with design patterns usage, brings many benefits. It provides an efficient way of

communicating the intention of developed code, facilitates the ramp-up process of new engineers to the

environment, and due to its versitality offers a flexible solution to the problem of class modelling. As verification

environments incorporate more and more complex object orienteed constructs, UML might become equally

powerful means of expressing the verification environment codebase. The UML class diagram of Visitor design

pattern is presented in Figure 7 and UML sequence diagram showing the pattern flow is in Figure 8 [4].

4

Figure 7. Visitor design pattern - UML class diagram

Figure 8. Visitor design pattern - UML sequence diagram

A. Example I: Component configuration check visitor

At the simulation start, after the environment is built, it is recommended to check that every component in the

environment has been properly configured with a configuration object and with a pointer to the bus interface it

5

should drive or observe. Also, over the course of a simulation, many times it is necessary to check whether the

content of the configuration object assigned to a component is valid. Fulfilling such requirements, as well as

debugging in the case any issues appear, becomes straightforward using the visitor given in Figure 9. The output

log in Figure 10 shows that monitor and driver used in the environment are properly configured.

In this example, the visitor needs to access some class members that are not universal for all visited classes, but

are rather common just for some derived classes, e.g. configuration field cfg belongs to user-defined driver and

monitor class. Such requirement is natively supported in some languages mainly used for OOP, such as C++ or

Java, through the usage of method overloading[5]. It allows for methods to have the same name, but a different

signature with different argument types, leading to very elegant visitor implementations. As such feature is not

supported in SystemVerilog, the implementation presented in the example relies on type checking and type

casting. As a future enhancement, the author will explore the possibility of improving the implementation by

utilizing class parametrization.

B. Example II: Reset check visitor

One problem that is very commonly encountered during the verification development cycle is debugging the

rootcause of a simulation getting stuck. As an initial sanity check, it can be helpful to assure that the components

in the environment are not under reset and that they are provided with a properly generated clock. At a point when

a simulation is stuck, a visitor can be utilized to detect and capture the state of the environment. Figure 11 displays

a visitor that observes the values of the reset signal provided to the components of interest. Figure 12 shows the

log at different timepoints, clearly indicating when a certain component is put under reset, without having to

pollute the codebase of the components with such content.

C. Example III: Adding messages and improving reporting system using Visitor

Visitor can be utilized efficiently to improve reporting system in the environment. The visitor, as an external

component can be attached to certain events in the environment and upon their triggering, perform proper

reporting. In this example, the visitor is attached to a queue implemented in the scoreboard. The scoreboard stores

the data received from one interface monitor and later performs matching with data received from another

interface monitor – the case that is very common in verification environments. It is very likely that the queue

content and its changes will be of great interest for the developer, especially during the debugging process. The

visitor shown in Figure 13 upon each change within the queue displays its every element, with output log in Figure

14. Similarly, additional important content within other classes can be observed and displayed by using the same

approach and having related messages about various components localized within one single visitor might be

convenient for the developer. It is also worth noting that in this example, the visitor triggers a time consuming

method visit_sb_tcm as a background task, by using fork..join_none SystemVerilog construct.

SUMMARY

The examples show how some tasks in the verification environment can be performed very elegantly using Visitor

design pattern. They can be integrated alongside with standard UVM compliant components and utilized to

improve overall code quality. Also they can be modelled using UML, improving code documentation. Finally, the

paper aims into introducing verification engineers to techniques and concepts commonly utilized within software

development world. The author hopes that the engineers who try out the solutions presented in the paper, and get

to understand their benefits will also attempt to explore other common software techniques, some of which are

presented in [6]. They can as well become a part of their work and improve and facilitate the verification process.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software” Addison-Wesley,
1994.

[2] Accellera, “UVM User Guide, v1.1”, page 131, www.uvmworld.org

[3] http://www.uml.org/

[4] https://www.vainolo.com/2012/07/30/the-visitor-design-pattern-with-sequence-diagrams/

[5] https://www.tutorialspoint.com/method-overloading-in-Java

[6] Darko Tomušilović, Hagai Arbel, “UVM Verification Environment Based on Software Design Patterns”, DVCon U.S. 2018

http://www.uvmworld.org/
http://www.uml.org/
https://www.vainolo.com/2012/07/30/the-visitor-design-pattern-with-sequence-diagrams/
https://www.tutorialspoint.com/method-overloading-in-Java

6

Figure 9. Component configuration check visitor

Figure 10. Component configuration check visitor - output log

7

Figure 11. Reset check visitor

Figure 12. Reset check visitor - output log

8

Figure 13. Queue display visitor

Figure 14. Queue display visitor - output log

