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Abstract— This paper first outlines current debug capability 
embedded within the UVM library and then proposes additions 
to this capability that can significantly add visibility and 
debugability into the execution of the testbench as an integral 
part of the entire environment.  Ideas for presenting the 
additional acquired debug information to the user are also 
introduced. 
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I.  INTRODUCTION 

The Universal Verification Methodology (UVM) has now 
established itself as the standard methodology of choice for 
improving verification efficiency and data portability, 
including reuse and interoperability. The methodology includes 
a SystemVerilog class library that allows users to efficiently 
build realistic transaction-based testbenches.    

The raw SystemVerilog language does not provide any 
standard mechanisms for recording simulation activity for the 
class-based structures used in UVM as it does for HDL signals 
and nets with the callback-driven Verilog Procedural Interface 
(VPI) standard. It can be further argued that even if such an 
application programming interface (API) exists, the low-level 
data returned would be of limited use in today’s high-level 
verification environments in which the transaction is the atom 
of data. In fact, the library itself is turning out to be the best 
candidate for acquiring useful debug data at the appropriate 
abstraction level. 

Ideally, a debugging system should be able to be attached to 
the UVM Class Library as a library extension, so that it can 
dynamically access and process the internal testbench data 
during simulation. Unfortunately, the UVM Class Library does 
not provide an open mechanism to allow the development of 
reusable extensions. It does provide so-called callback 
functions, but these are actually virtual functions of a base 
class. The virtual function-based callbacks are restricted and 
only the extended class can make use of these callbacks. In 
other words, the implementations of the callbacks can be only 
developed inside a specific testbench. They are not library 
extensions and, therefore, cannot be reused in other 
testbenches.  

In this situation, the system messages inside the UVM 
Class Library become very important for users in order to 
understand or debug the testbench execution. Currently, there 
are some system messages in the UVM library, for example, 
tracing messages for phasing/objection, and auditing messages 
for config_db/resource_db. However, these are not enough to 
cover all the key UVM functions and important stages of the 
testbench execution. Without system messages as tracing 
points, it is virtually impossible to collect any useful dynamic 
testbench data. 

In this paper, we are going to discuss the benefits that can 
be derived from inserting some additional system messages 
inside the UVM Class library. We have experimental data from 
adding system messages on two major aspects of the UVM: the 
testbench structure and transaction flow. The paper will further 
illustrate how to capture the data from UVM system messages 
directly into a debug database and how to make use of the 
database to improve the efficiency of post-simulation analysis 
and debug. Enhanced visualization applications can be built on 
top of the collected data to better understand and debug the 
UVM testbench simulation. 

II. CURRENT UVM  DEBUGGING CAPABILITIES AND 

LIMITATIONS  

The UVM Class Library [1] provides the building blocks 
needed to efficiently develop well-constructed, reusable 
verification components and test environments using the 
SystemVerilog language and especially relies on its object-
oriented syntax and semantics. While the UVM is trying to 
strike a balance on reuse, portability, and encapsulation of the 
verification components for testbenches, the issues of 
extensibility and debug have yet to be fully addressed.  

Extensibility, in this case, means the UVM should provide 
open interfaces so that library extensions can be developed by 
vendors or CAD groups and attached to the UVM library. 
During simulation, all the library extensions could be closely 
combined with the UVM library and passively join the UVM 
execution. These extensions could transparently collect and 
process the dynamic data and monitor the flow in UVM-based 
testbenches, without modifying the testbench behavior. The 
library extension should be separate from the original UVM 
library, and there should be no need to modify any original 



code inside the UVM library. The library extension should also 
be separate from the user’s UVM-based testbench, such that it 
is attached to the UVM library and can be reused by any UVM-
based testbenches. The testbench developers do not need to 
have any knowledge about the library extensions. Note that 
fundamentally, extensibility is one aspect of reusability. Here 
we are focusing on library extensible and reusable capabilities. 

One analogy of such extensibility is the Verilog PLI 
(Programming Language Interface) as an open simulation 
interface. The PLI allows users to extend Verilog by creating 
user-defined system tasks and registering user-defined hook 
functions, such that the hook functions are called when a signal 
value or any other simulation state changes. The hook functions 
can collect many current-state values from the simulation and 
can return values back to simulation. The Verilog PLI has been 
the key technology to facilitate the post-simulation debugging 
for HDL designs, without which we would be stuck in the 
stone age of interactive simulation debugging. The waveform 
of value changes for each signal in the HDL design can be 
recorded into a database for further processing and 
visualization using the Verilog PLI technology. Unfortunately, 
this technology does not work well for the object-oriented part 
of the SystemVerilog language, which is more like a software 
language. The SystemVerilog Testbench (SVTB) class 
variables are dynamic data and therefore cannot be dumped. 

However, library extensions as previously discussed would 
greatly facilitate a proper debugging system for the UVM 
library and UVM-based testbenches. For example, testbench 
developers or users may want to log or record the important 
details of UVM execution to help with testbench 
comprehension or post-simulation debugging. Currently, they 
have to manually instrument debugging code within the 
testbench code or inside the library which is generic to all 
UVM-based testbenches. They are forced to duplicate these 
debug instrumentation in all the testbenches, or alternatively, 
modify the UVM library and put the code inside the library. 
The modified UVM library will, however, have the portability 
issue. 

In fact, the current UVM library does include a minimal set 
of useful features for debugging purpose. For example, a 
transaction recording scheme [2] is provided to record UVM 
sequence behavior and contents into preferred database via 
uvm_recorder. The uvm_recorder maintains a set of   virtual 
functions that are originally empty but can be re-implemented 
by extending the uvm_recorder and replacing the 
uvm_default_recorder. These so-called “hook” functions in 
uvm_default_recorder are automatically called at the key stages 
of sequence generation, and the transaction timing, payload and 
layering information can be recorded through the “hook” 
functions. It is up to the user’s implementation of “hook” 
functions how, where and what information is recorded, which 
leaves space for extensibility. While it is a good utility for 
debug, the transaction recording only covers one part (sequence 
generation) of the UVM at a fairly high level. It is of no help 
when the user wants to look at the transaction transitions across 
the UVM component hierarchy or between two verification 
components. 

Tracing messages are another mechanism provided by the 
UVM library to dump debug information, similar to debugging 
messages that can be output from any software system. These 
messages are embedded inside the UVM library at the major 
points of the execution, enabling important runtime data to be 
observed, collected and printed to the screen or a log file. Users 
can turn on each portion of the tracing messages by activating 
them from the command line options.  The following lists the 
command line arguments provided by UVM to turn on these 
tracing messages: 

 

+UVM_PHASE_TRACE turns on tracing of phase 
executions 

+UVM_OBJECTION_TRACE turns on tracing of 
objection activities 

+UVM_RESOURCE_DB_TRACE turns on tracing of 
resource DB access (read 
& write) 

+UVM_CONFIG_DB_TRACE turns on tracing of 
configuration DB access 

 

These tracing messages turn out to be a very convenient 
and efficient mechanism for debugging. Nevertheless, there are 
two major drawbacks: 1) it does not cover all the functionalities 
of the UVM; 2) it can only be output to a text format log file, 
which is difficult for post processing. We will address these 
two issues in the following two sections. 

III.  ADDING NEW TRACING MESSAGES INTO THE UVM  

CLASS LIBRARY 

For the first issue of limited tracing messages being 
recorded, the resolution is quite simple: add new tracing 
messages into the UVM library. We propose that tracing 
messages be added at least in the following categories of UVM 
functionalities: 

• Trace how the component hierarchy is built and how 
the ports/sockets are connected; 

• Trace the UVM factory registration and override 
configuration; 

• Trace the traffic at the TLM1 port interface and 
capture the pass-through transactions, requests and 
responses, etc.; 

• Trace the TLM2 socket interface and capture the pass-
through transaction (the generic payload), sync, phase, 
and basic protocol, etc.; and 

• Trace the register access (read and write, mirror, etc) 
and how the register hierarchy has been built. 

In this paper, we will discuss how to add new tracing 
messages in order to observe testbench structure generation 
(including component creation and port connection) and 
monitor the transaction flow at the port level. 



A. Tracing Component Creation and Port Connection 

The testbench structure includes the component hierarchy 
and the TLM (transaction layered modeling) port connections. 
By adding system messages at the build phase, users are able to 
trace how the components (including ports, which are also 
components) are created and record the parent-child 
relationship between the components. Further, by inserting 
system messages at the connect phase, users can also trace how 
the TLM ports (including TLM2 sockets) are connected and 
record the producer-consumer relationship between the 
connected ports.  

The following methods are the points at which tracing 
messages are added for component and port creation: 

 

function uvm_component::new (string name,    
           uvm_component parent); 

function uvm_port_base::new   (string name,    
           uvm_component parent,  
           uvm_port_type_e port_type,  
           int min_size=0,  
           int max_size=1); 

 

The following information is collected and passed as 
additional fields for the message: 

• The parent full name 

• The component/port name 

• The type name, e.g., “ubus_pkg::class 
ubus_master_driver” 

• Other component/port info (e.g., is_port, is_export, 
is_imp, etc.) 

 

The following methods are the points at which tracing 
messages are added for port or socket connection: 

 

function void uvm_port_base::connect (this_type provider); 

 

The following information is collected and passed as 
additional fields for the message: 

• The caller port full name and port type, etc. 

• The provider port full name and port type, etc. 

 

Example 1 illustrates how tracing messages are added for 
component/port creation and port connection: 

 

function uvm_component::new (string name,    
           uvm_component parent); 

… 

// Add a message whenever a new component has been  

// created. The port component will be reported when  

// creating the uvm_port_base, so won’t be reported here. 

    begin 

        uvm_port_component_base port_component; 

        if (!$cast(port_component,this)) 

            `uvm_info ("COMP_TRACE", 

                       {"Creating  component ", 

                        (parent==top?"": 

                       {parent.get_full_name(),"."}),name, 

                        "(type=",get_type_name(),")"}, 

                                 UVM_LOW) 

    end 

endfunction 

  

function uvm_port_base::new (string name, …); 

… 

// Add a message whenever a new base port component  

// has been created. 

`uvm_info ("PORT_TRACE", {"Creating port ", 

          m_comp.get_full_name(), 

          " (type=",get_type_name(),")"}, UVM_LOW) 

endfunction  

 

function void uvm_port_base::connect (this_type provider); 

… 

// Add a message whenever two ports are connected. 

`uvm_info ("PORT_CONN_TRACE", {"Connecting ports ", 

          this.get_full_name(), 

          " with ",provider.get_full_name()}, UVM_LOW) 

endfunction  

Example 1 

 

B. Tracing Transaction Flow at the Port Level 

The transaction (or UVM sequence) flows are from 
component to component through TLM ports. Adding system 
messages at the TLM port-level enables users to observe how 
transaction data is transferred from one port to another and 
what type of methods are used to transfer the data. Here the 
data is not from the transaction point of view, but from the 
perspective of port-to-port interface protocol by way of port 
method calls. The system messages record what method of a 



certain port is called at a certain time, when it finishes, what is 
the content of the data passing to the method, what is the return 
value, etc.  

The following methods add the tracing messages for TLM1 
port and TLM2 socket interface: 

TLM1 Ports: 

 task put (TYPE arg); 

 function bit try_put (TYPE arg); 

 function bit can_put(); 

 task get (output TYPE arg); 

 function bit try_get (output TYPE arg); 

 function bit can_get(); 

 task peek (output TYPE arg); 

 function bit try_peek (output TYPE arg); 

 function bit can_peek(); 

 task transport (REQ req_arg, output RSP rsp_arg); 

 function bit nb_transport (REQ req_arg,  

                                           output RSP rsp_arg); 

 

Sequence Item Pull Ports: 

 task get_next_item(output REQ req_arg); 

 task try_next_item(output REQ req_arg); 

 function void item_done(input RSP rsp_arg = null); 

 function void put_response(input RSP rsp_arg); 

 task get(output REQ req_arg); 

 task peek(output REQ req_arg); 

 task put(input RSP rsp_arg); 

 

Analysis Ports: 

 function void write (input T t); 

 

TLM2 Sockets: 

 function uvm_tlm_sync_e nb_transport_fw (T t, ref P 
p, input uvm_tlm_time delay); 

 function uvm_tlm_sync_e nb_transport_bw(T t, ref P 
p, input uvm_tlm_time delay); 

 function task b_transport (T t, uvm_tlm_time delay); 

 

The following information is collected and passed as 
additional fields for the message: 

• The request and/or response transactions 

• The return value if any 

• The method name, e.g., “put”, “get”, etc. 

• The times entering and leaving the method 

• The port info (full name, type, configurations, etc.) 

• The generic payload, phase/sync, and delay for TLM2 

 

Example 2 shows how tracing messages for transaction 
flow are added at the sequence item pull port level. The 
methods used in this example are get_next_item() and 
item_done(). The uvm_report_record() is a function created to 
print out the messages. Later in this paper we will demonstrate 
how this function can also be used to dump data into a 
database. 

 

// A container class that wraps the data to be recorded. 

class uvm_port_recording_object extend uvm_object; 

uvm_port_component_base port_comp;  

                              // The base port component handle 

string func_name; // The port interface method name 

uvm_object req; // The transaction payload 

time begin_time; // The begin time of the method call 

time end_time; // The end time of the method call 

endclass  

 

// The macro to be added at the beginning of each port  

// interface method. It initiates the container object and records  

// the beginning time. 

`define UVM_IF_METHOD_BEGIN \ 

 uvm_port_recording_object port_value = new; \ 

 port_value.begin_time = $time; 

 

// The macro to be added at the ending of each port interface  

// method. It records the method name, the base port  

// component,  the ending time, and the transaction payload. 

// The uvm_report_record() method will call the UVM  

// transaction recording hook functions and record the data  

// into database. 

`define UVM_IF_METHOD_END(req_arg,method_name) \ 

 port_value.func_name = method_name; \ 

 port_value.port_comp = m_comp; \ 

 port_value.end_time = $time; \ 



 if ($cast(port_value.req,req_arg)) \ 

     uvm_report_record (“PortIF”,  

“Port level recording …”,     port_value); 

  

// Add the macros to each TLM or sequence port method 

`define UVM_SEQ_ITEM_PULL_IMP(imp, REQ, RSP, 
req_arg, rsp_arg) \ 

 task get_next_item(output REQ req_arg); \ 

      `UVM_IF_METHOD_BEGIN \ 

      imp.get_next_item(req_arg); \ 

      `UVM_IF_METHOD_END(req_arg,"get_next_item") \ 

 endtask \ 

 function void item_done(input RSP rsp_arg = null); \ 

      `UVM_IF_METHOD_BEGIN \ 

      imp.item_done(rsp_arg); \ 

      `UVM_IF_METHOD_END(rsp_arg,"item_done") \ 

 endfunction \ 

Example 2 

 

IV.  SAVING UVM  MESSAGE DATA INTO A DATABASE 

The second issue with tracing messages as mentioned 
earlier is that they are only output to a text format log file. 
Since there can be a huge number of messages, the log file can 
be extraordinarily large and very unwieldy in terms of 
organizing and processing the data, or even locating useful 
data. For debug and analysis purposes, users typically want to 
record as much data as possible to narrow down problems. The 
solution is to save the messages into a well-organized database 
and build a good user interface on top of the database to 
retrieve and visualize the data. This requires a database format 
that can easily save message data with predefined properties 
(e.g., verbosity, severity, etc.). The message data should also be 
associated with any user-defined properties and their values in 
different data types, which will help record transactions and 
their payloads. A set of PLI tasks that help record the data 
during simulation and UVM execution can be embedded into 
UVM testbenches or the UVM library. 

PLI tasks to record the information into a database can be 
placed wherever the previously-discussed tracing messages 
have been inserted in the UVM library. However, this is not 
scalable and extendable, nor is it suitable for reuse. We found 
that the UVM Report Catcher utility can be used to hook the 
PLI tasks with UVM messaging without even modifying the 
UVM library. The uvm_report_catcher is a callback 
mechanism and can be used to catch messages issued by the 
UVM Report Server. User extensions of uvm_report_catcher  
(in which the action to be taken on catching the report is 
specified) can be registered as callbacks to capture the 
messages as long as the messages are issued using the UVM 

recommended report API or macros (e.g., `uvm_info(), etc.). 
Using this uvm_report_catcher facility, we implemented an 
extension to intercept the UVM tracing messages, and then 
redirect the messages into the database by using the 
corresponding PLI tasks. This extension does not need any user 
involvement except for the initialization, nor does it require any 
modification to the UVM library.  

Saving the UVM message data into a database enables post-
processing of the recorded message data and helps users to 
analyze and comprehend the data. Post-processing procedures 
include visualization, filtering, searching, ordering, and 
merging, etc. For example, by turning on 
UVM_PHASE_TRACE and UVM_OBJECTION_TRACE, 
the following tracing messages about phase executions and 
objection activities are printed out to the output screen or log 
file: 

… 

UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ 0: 
reporter [PH/TRC/SCHEDULED] Phase 
'uvm.uvm_sched.pre_main' (id=378) Scheduled from phase 
uvm.uvm_sched.post_configure 

UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ 0: 
reporter [PH/TRC/STRT] Phase 'uvm.uvm_sched.pre_main' 
(id=378) Starting phase 

UVM_INFO ../../../../src/base/uvm_phase.svh(1235) @ 0: 
reporter [PH/TRC/SKIP] Phase 'uvm.uvm_sched.pre_main' 
(id=378) No objections raised, skipping phase 

UVM_INFO ../../../../src/base/uvm_phase.svh(1387) @ 0: 
reporter [PH/TRC/DONE] Phase 'uvm.uvm_sched.pre_main' 
(id=378) Completed phase 

UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ 0: 
reporter [PH/TRC/SCHEDULED] Phase 
'uvm.uvm_sched.main' (id=390) Scheduled from phase 
uvm.uvm_sched.pre_main 

UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ 0: 
reporter [PH/TRC/STRT] Phase 'uvm.uvm_sched.main' 
(id=390) Starting phase 

UVM_INFO @ 0: main [OBJTN_TRC] Object 
uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer.l
oop_read_modify_write_seq raised 1 objection(s): count=1 
total=1 

UVM_INFO @ 0: main [OBJTN_TRC] Object 
uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer 
added 1 objection(s) to its total (raised from source object ): 
count=0  total=1 

UVM_INFO @ 0: main [OBJTN_TRC] Object 
uvm_test_top.ubus_example_tb0.ubus0.masters[0] added 1 
objection(s) to its total (raised from source object ): count=0  
total=1 

UVM_INFO @ 0: main [OBJTN_TRC] Object 
uvm_test_top.ubus_example_tb0.ubus0 added 1 objection(s) to 
its total (raised from source object ): count=0  total=1 

… 



For the purposes of this paper, we’ve displayed only a very 
short snippet of the messages in the log file. In contrast, if the 
messages are recorded into a specialized debug database, 
visualization applications can be used to illustrate in one single 
snapshot window the temporal flow or transition of UVM 
phasing and to display the raising/dropping/holding of UVM 
objections and the components that are 
raising/dropping/holding the objections (as shown in Figure 1). 
This goes far beyond text messages by showing the time 
waveform of the relevant dynamic data to further improve 
debug. 

The UVM Report Catcher is not the only method for 
recording message data into a database. Modifying and 
replacing the report server is an alternative mechanism that can 
serve a similar function. However, the drawback with both 
these methods is that the data is transferred as a long string that 
must be parsed and processed before saving into the database. 
In Example 2 the UVM messaging facility is not used to 
implement uvm_report_record() function. Instead, because 
what we want to record transaction data, it takes advantage of 
the UVM transaction recording mechanism and directly records 
the port-level transaction data through the UVM recorder. 
Ideally, the UVM messaging system should be enhanced to 
allow users to create messages that can contain additional fields 
and also work like transaction recording. In this way, a user- 
defined recorder could be hooked to the UVM library and all 
messages recorded into a database along with their fields.  

V. POST-PROCESSING UVM  MESSAGE DATA AND 

ENHANCED V ISUALIZATIONS 

As illustrated in the previous section, the visualization of 
phase execution and objection activities after tracing messages 
for UVM_PHASE_TRACE and UVM_OBJECTION_TRACE 
is recorded into the database. Visualization tools can be used to 
display the message data (currently converted from a long 
string into a label and list of properties or attributes) in a 
waveform view, which better illustrates the temporal relations 
between the messages. Temporal relations are more important 
to tracing messages, because these messages usually happen 
across the simulation period. Messages for different tracing 
purpose are put in different streams.  

For example, in Figure 1, the tracing messages for UVM 
runtime phases are put in the stream of “\PH_TRC_[uvm]” and 
the tracing messages for UVM objections affecting the main 
phase are put in the stream of “\OBJ_TRC_[main]”. Operations 
like search, filter and highlight are provided at the application 
level as these are common operations required by users. As 
shown in Figure 1, the messages related to the main phase are 
highlighted in yellow color. More advanced post process and 
visualization are also available. In Figure 1, a signal waveform 
(below the stream “\PH_TRC_[uvm]”) is created based on the 
value of the phase attribute from all messages in the stream of 
“\PH_TRC_[uvm]”. This phase waveform provides a clear and 
intuitive visual indication of the phase transitions along the 
simulation and the time periods of each UVM phase. Similarly, 

 
 

 
Figure 1: Waveform Illustration for Phasing Execution and Objection Activities  



a signal waveform (below the stream “\OBJ_TRC_[main]”) is 
created based on the value of the total attribute from all 
messages in the stream of “\OBJ_TRC_[main]” to visualize 
how the total count of objections for the main phase varies 
along the time. 

Likewise, the testbench hierarchy and connection data 
collected from the added tracing messages can also serve to 
build enhanced visualization applications on top of the 
recorded data. Users can view the testbench hierarchy and 
component parent-child relationship in a tree-type illustration, 
as shown in the left pane of Figure 2. These applications 

 
Figure 2: Illustration of UVM Component Hierarchy T ree and Source Code Synchronization 

 

 
Figure 3: Displaying Ports and Port Connections in UVM Hier Tree 



provide just one example for leveraging the data recorded. 

The UVM Hier Tree in Figure 2 displays the test structure 
of the ubus case with two master agents and four slave agents. 
The tree can be expanded or collapsed to show or hide the 
lower level components. The class type is also displayed beside 
the component name. Users can point the mouse to the 
component in the UVM Hier Tree and click the right mouse 
button (RMB) to pop up a menu, from which operations can be 
chosen to show the definition of the component class in the 
source code pane on the right (Show Definition), or to show 
where in the source code the component has been created 
(Show Creation). The right pane in Figure 2 displays and 
highlights the line of the source code where the component 
ubus0.master[0].driver has been created.  

Ports are also included in the UVM Hier Tree, and they are 
the leaves in the tree. A tab (Connected Path) can be opened 
at the bottom of the UVM Hier Tree pane to list all ports along 
the path that are connected to the selected port. In addition to 
the Show Definition and Show Creation operations, ports also 
have the Show Connection operation in the RMB menu to 
display where in the source code one port is connected to 
another port. The right pane in Figure 3 shows and highlights 
the line of the source code where the port 
ubus0.master[0].driver.sqr_pull_port is connected to another 

port. 

Transaction data is more suitable for display using a 
waveform viewer. Sequences and sequence items are dumped 
to the debug database through the UVM Transaction Recording 
system. In Figure 4, the waveform viewer displays recorded 
sequence data along the time meter, which illustrates the begin 
time and end time of the sequence, the contents of the sequence 
in the box, and the timing correlation information between the 
sequences. The parent/child relationships between the sequence 
and sub-sequence are displayed by appropriate highlighting, 
i.e., when a parent sequence is selected, the child sequences are 
highlighted in a bright color. Again the case is the standard 
UVM ubus example. Similarly, the data resulting from the 
tracing messages added for the transaction flow at the port level 
is captured and saved in the debug database. The temporal flow 
of transaction data through a certain port channel and the 
interaction between two connected ports can be illustrated by 
the waveform viewer, which retrieves the related data from the 
recorded debug database.  

The top row in Figure 4 indicates the transaction function 
calls happening at the sequence pull port of a UVM driver. The 
port interface method get_next_item() is called at time 60, 
while item_done() and put_response() are called respectively at 
time 110. Another get_next_time() call happens at time 120. 

 
 
 

Figure 4: Illustration of Port Level Transaction Flow in Contrast with UVM Transaction Recording Waveform 



This is in sync with the sequence timing shown in the bottom 
row and further explains the beginning and ending of the 
sequence. When comparing the sequence waveform at the 
bottom and the port level transaction flow waveform at the top, 
users can get a much better understanding about the transaction 
flow which in turn makes it easier to find and fix bugs in the 
design or the testbench itself. This example depicts a simple 
testbench. For complex testbenches, users can first analyze the 
higher-level sequencer transactions along with waveform 
techniques like zooming, filtering, highlighting, etc. to first 
narrow down the region of interest and then look at the detailed 
port-level transactions as needed. 

The visualization applications for testbench structure and 
transaction flow can be interrelated and synchronized to further 
ease and streamline debug and analysis. For example, users can 
select a port in the hierarchy viewer and display the relevant 
transaction waveform. In addition, since the stack trace can be 
recorded through the PLI tasks as part of the message data into 
the debug database, the event (component creation, port 
connection, or transaction-level interfacing) depicted by the 
message can be correlated to other representations, such as 
source code using drag-and-drop techniques. For example, 
users can drag the get_next_item() box from the waveform 
viewer in Figure 4 and drop it into the source code pane in 
Figure 3 to show the source code where get_next_time() is 
called. 

VI.  CONCLUSION 

Based on our experience, we strongly advocate that 
additional system messages, such as those described in the 

paper, should be included in the default standard UVM Class 
Library, so that the dynamic data at each important stage of 
UVM execution can be captured into a log . Furthermore, the 
UVM Class Library should be enhanced such that the messages 
can be easily captured and diverted into a debug database, 
which can then be used to drive a specialized UVM debug tool. 
Each system message would become a recording point with 
which internal runtime data can be actively collected and 
recorded into a database by reusable UVM library extensions, 
thereby minimizing or eliminating the burden on users to 
instrument directly into their testbenches or modify the UVM 
libraries. Further processing of the database can enable more 
efficient post-simulation analysis and greater understanding of 
UVM testbenches. It is clear that just as the Verilog PLI 
allowed debug to advance to a level in keeping with design 
complexity, so too is the critical requirement for a mechanism 
to record data from modern object-oriented testbenches. The 
mechanisms proposed in this paper make it feasible for users 
and vendors alike to stay in lock-step with the ever-increasing 
complexity that is part and parcel of any modern verification 
environment. 
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