Extendable Messaging Technigues for Debugging an
Analyzing UVM Testbench Structure and Transaction

Flo

Jun Zhao, Bindes

W

h Patel, Rex Chen

Research & Development
Synopsys, Inc.
Mountain View, California and Hsinchu, Taiwan

Abstract— This paper first outlines current debug capability
embedded within the UVM library and then proposes dditions
to this capability that can significantly add visiklity and
debugability into the execution of the testbench aan integral
part of the entire environment. Ideas for presentig the
additional acquired debug information to the user @ also
introduced.

Keywords— UVM; SystemVerilog; testbench;
debugging; tracing message; transaction; recording

The Universal Verification Methodology (UVM) haswo
established itself as the standard methodologyhaice for
improving verification efficiency and data portétyi
including reuse and interoperability. The methodglomcludes
a SystemVerilog class library that allows usersfficiently
build realistic transaction-based testbenches.

debug;

INTRODUCTION

The raw SystemVerilog language does not provide an
standard mechanisms for recording simulation agtifar the
class-based structures used in UVM as it does Bt kignals
and nets with the callback-driven Verilog Procetiimgerface
(VPI) standard. It can be further argued that eWfesuch an
application programming interface (API) exists, tbhe-level
data returned would be of limited use in today'ghhievel
verification environments in which the transactierthe atom
of data. In fact, the library itself is turning ot be the best
candidate for acquiring useful debug data at thercapiate
abstraction level.

Ideally, a debugging system should be able to taetzd to
the UVM Class Library as a library extension, satth can
dynamically access and process the internal testbelata
during simulation. Unfortunately, the UVM Class taby does
not provide an open mechanism to allow the devetynof
reusable extensions. It does provide so-called baeckl
functions, but these are actually virtual functicsfsa base
class. The virtual function-based callbacks arerioted and
only the extended class can make use of theseackdb In
other words, the implementations of the callbacks loe only
developed inside a specific testbench. They arelibcary
extensions and, therefore, cannot be reused inr oth
testbenches.

In this situation, the system messages inside thé1U
Class Library become very important for users ideorto
understand or debug the testbench execution. Glyrénere
are some system messages in the UVM library, famgpte,
tracing messages for phasing/objection, and agditiessages
for config_db/resource_db. However, these are nough to
cover all the key UVM functions and important stagd the
testbench execution. Without system messages a&ingra
points, it is virtually impossible to collect angaful dynamic
testbench data.

In this paper, we are going to discuss the bentfis can
be derived from inserting some additional systenssages
inside the UVM Class library. We have experimenta from
adding system messages on two major aspects b the
testbench structure and transaction flow. The peydefurther
illustrate how to capture the data from UVM system@ssages
directly into a debug database and how to makeofishe
database to improve the efficiency of post-simafatnalysis
¥nd debug. Enhanced visualization applicationsbeahuilt on
top of the collected data to better understand detalg the
UVM testbench simulation.

II. CURRENTUVM DEBUGGING CAPABILITIES AND

LIMITATIONS

The UVM Class Library [1] provides the building blks
needed to efficiently develop well-constructed, sahle
verification components and test environments usthg
SystemVerilog language and especially relies onofigect-
oriented syntax and semantics. While the UVM isntyyto
strike a balance on reuse, portability, and endapsn of the
verification components for testbenches, the issuds
extensibility and debug have yet to be fully addeels

Extensibility, in this case, means the UVM shoutdvide
open interfaces so that library extensions caneweldped by
vendors or CAD groups and attached to the UVM iijora
During simulation, all the library extensions coudd closely
combined with the UVM library and passively joirettuVM
execution. These extensions could transparentlieatobnd
process the dynamic data and monitor the flow inrvbased
estbenches, without modifying the testbench beinavihe
ibrary extension should be separate from the walglUVvM
library, and there should be no need to modify arginal

code inside the UVM library. The library extensigmuld also
be separate from the user’'s UVM-based testbendh that it
is attached to the UVM library and can be reusedrpyUVM-

based testbenches. The testbench developers doegdt to
have any knowledge about the library extensionste Nbat
fundamentally, extensibility is one aspect of rdil#tg. Here
we are focusing on library extensible and reuseajmbilities.

One analogy of such extensibility is the Verilog IPL
(Programming Language Interface) as an open simuolat
interface. The PLI allows users to extend Verilggdoeating
user-defined system tasks and registering usenetkfhook

Tracing messages are another mechanism provideteby
UVM library to dump debug information, similar telougging
messages that can be output from any softwaremsy3dthese
messages are embedded inside the UVM library atrtijer
points of the execution, enabling important runtidega to be
observed, collected and printed to the screenlay éile. Users
can turn on each portion of the tracing messageschyating
them from the command line options. The followlisgs the
command line arguments provided by UVM to turn base
tracing messages:

functions, such that the hook functions are callbén a signal
value or any other simulation state changes. Tlo& hanctions
can collect many current-state values from the kitimn and
can return values back to simulation. The Verilag ifas been
the key technology to facilitate the post-simulat@ebugging
for HDL designs, without which we would be stuck time
stone age of interactive simulation debugging. Waseform
of value changes for each signal in the HDL design be
recorded into a database for further processing 4
visualization using the Verilog PLI technology. Qrifinately,
this technology does not work well for the objedented part

+UVM_PHASE_TRACE turns on tracing of phase
executions
+UVM_OBJECTION_TRACE turns on tracing of

objection activities

+UVM_RESOURCE_DB_TRACEturns on tracing pf
resource DB access (read

nd & write)

+UVM_CONFIG_DB TRACE turns on tracing of

configuration DB access

of the SystemVerilog language, which is more likeoftware
language.
variables are dynamic data and therefore canndtbged.

However, library extensions as previously discussed|d
greatly facilitate a proper debugging system foe VM
library and UVM-based testbenches. For examplgbeesh
developers or users may want to log or record iiggortant
details of UVM execution to help with
comprehension or post-simulation debugging. Cuiyetitey
have to manually instrument debugging code withire t
testbench code or inside the library which is genés all
UVM-based testbenches. They are forced to duplita¢se
debug instrumentation in all the testbenches, w@rratively,
modify the UVM library and put the code inside thitgary.
The modified UVM library will, however, have the ppability
issue.

In fact, the current UVM library does include a mial set
of useful features for debugging purpose. For exemp
transaction recording scheme [2] is provided tmmdJVM
sequence behavior and contents into preferred asgabia
uvm_recorder. The uvm_recorder maintains a set waftual
functions that are originally empty but can bemplemented
by extending the uvm_recorder and replacing
uvm_default_recorder. These so-called “hook” fumtdi in
uvm_default_recorder are automatically called atkiby stages
of sequence generation, and the transaction tirpiengoad and
layering information can be recorded through theoli
functions. It is up to the user’s implementation “bbok”
functions how, where and what information is reeokdwhich
leaves space for extensibility. While it is a goaiility for
debug, the transaction recording only covers ome(paquence
generation) of the UVM at a fairly high level. & of no help
when the user wants to look at the transactiorsitians across
the UVM component hierarchy or between two vertfama
components.

the

The SystemVerilog Testbench (SVTB) class

These tracing messages turn out to be a very camnten
and efficient mechanism for debugging. Nevertheltsse are
two major drawbacks: 1) it does not cover all tinectionalities
of the UVM; 2) it can only be output to a text fatrlog file,
which is difficult for post processing. We will adds these

testbench two issues in the following two sections.

I1l. ADDING NEW TRACING MESSAGES INTO THEUJVM

CLASSLIBRARY

For the first issue of limited tracing messagesn@ei
recorded, the resolution is quite simple: add neacing
messages into the UVM library. We propose thatingac
messages be added at least in the following caesgof UVM
functionalities:

Trace how the component hierarchy is built and/ ho
the ports/sockets are connected;

Trace the UVM factory registration and override
configuration;

Trace the traffic at the TLM1 port interface and
capture the pass-through transactions, requests and
responses, etc.;

Trace the TLM2 socket interface and capture tesp
through transaction (the generic payload), synasgh
and basic protocaol, etc.; and

Trace the register access (read and write, mieta)
and how the register hierarchy has been built.

In this paper, we will discuss how to add new tgci
messages in order to observe testbench structureragsmn
(including component creation and port connectiand
monitor the transaction flow at the port level.

A. Tracing Component Creation and Port Connection

The testbench structure includes the componenarciey
and the TLM (transaction layered modeling) portregtions.
By adding system messages at the build phase, arseable to
trace how the components (including ports, which also
components) are created and record
relationship between the components. Further, t®erting
system messages at the connect phase, users caraatshow
the TLM ports (including TLM2 sockets) are connelctend
record the producer-consumer relationship betwebe
connected ports.

The following methods are the points at which mgci
messages are added for component and port creation:

function uvm_component::new (string name,
uvm_component parent);

function uvm_port_base::new (string name,
uvm_component parent,
uvm_port_type_e port_type,
int min_size=0,
int max_size=1);

The following information is collected and passes
additional fields for the message:

The parent full name

The component/port name

The type name, e.g., “ubus_pkg::class
ubus_master_driver”

Other component/port info (e.g., is_port, is_axpo
is_imp, etc.)

The following methods are the points at which mgci
messages are added for port or socket connection:

| function void uvm_port_base::connect (this_typevitter); |

The following information is collected and passes
additional fields for the message:

The caller port full name and port type, etc.

The provider port full name and port type, etc.

Example 1illustrates how tracing messages are added for

component/port creation and port connection:

function uvm_component::new (string name,
uvm_component parent);

the parent-cl

d

q

|

nild

/l Add a message whenever a new component has bee
Il created. The port component will be reported nvhe
/I creating the uvm_port_base, so won't be repoltere.
begin
uvm_port_component_base port_component;
if (I$cast(port_component,this))
‘uvm_info ("COMP_TRACE",
{"Creating component ",
(parent==top?™":
{parent.get_full_name(),),Hame,
"(type=",get_type_name(},’)
UVM_LOW)
end

endfunction

function uvm_port_base::new (string name, ...);

/l Add a message whenever a new base port componer
Il has been created.
‘uvm_info ("PORT_TRACE", {"Creating port ",
m_comp.get_full_name(),
" (type=",get_type_name(),")"}, UVM_LOW)
endfunction

function void uvm_port_base::connect (this_typevter);

/l Add a message whenever two ports are connected.
‘uvm_info ("PORT_CONN_TRACE", {"Connecting ports
this.get_full_name(),
" with ",provider.get_full_name()}, UVYMOW)

endfunction

Example 1

B. Tracing Transaction Flow at the Port Level

component to component through TLM ports. Addingtem
messages at the TLM port-level enables users terebsow
transaction data is transferred from one port totler and
what type of methods are used to transfer the diédee the
data is not from the transaction point of view, Inam the
perspective of port-to-port interface protocol bgywof port
method calls. The system messages record what thetha

The transaction (or UVM sequence) flows are from

certain port is called at a certain time, whennishes, what is
the content of the data passing to the method, istthe return
value, etc.

The following methods add the tracing messaged tidi1
port and TLM2 socket interface:

TLM1 Ports:

task put (TYPE arg);

function bit try_put (TYPE arg);

function bit can_put();

task get (output TYPE arg);

function bit try_get (output TYPE arg);
function bit can_get();

task peek (output TYPE arg);

function bit try_peek (output TYPE arg);
function bit can_peek();

task transport (REQ req_arg, output RSP rsp_arg)
function bit nb_transport (REQ req_arg,

outplBRrsp_arg);

Sequence Item Pull Ports:

task get_next_item(output REQ req_arg);

task try_next_item(output REQ req_arg);

function void item_done(input RSP rsp_arg = null);
function void put_response(input RSP rsp_arg);
task get(output REQ req_arg);

task peek(output REQ req_arg);

task put(input RSP rsp_arg);

Analysis Ports:

function void write (input T t); |

TLM2 Sockets:

function uvm_tim_sync_e nb_transport_fw (T t,R¢
p, input uvm_tim_time delay);

function uvm_tlm_sync_e nb_transport_bw(T t, re
p, input uvm_tim_time delay);

function task b_transport (T t, uvm_tim_time dglay

The following information is collected and passes
additional fields for the message:

The request and/or response transactions

The return value if any

The method name, e.g., “put”, “get”, etc.
The times entering and leaving the method
The port info (full name, type, configuration$;.g

The generic payload, phase/sync, and delay foAZ L

Example 2 shows how tracing messages for transaction

flow are added at the sequence item pull port leVdle
methods used
item_done(). The uvm_report_record() is a functtomated to
print out the messages. Later in this paper we deithonstrate
how this function can also be used to dump data &t
database.

q

p// transaction recording hook functions and rectitd data

|

/I A container class that wraps the data to be rded.
class uvm_port_recording_object extend uvm_object;
uvm_port_component_base port_comp;
/I The base port comgnt handle
string func_name; /I The port interface method nam
uvm_object req; /I The transaction payload
time begin_time; /I The begin time of the methdd ¢
time end_time; /I The end time of the method ca

endclass

// The macro to be added at the beginning of each p

Il interface method. It initiates the containeretijand records

Il the beginning time.

“define UVM_IF_METHOD_BEGIN\
uvm_port_recording_object port_value = new; \

port_value.begin_time = $time;

// The macro to be added at the ending of eachiptatface
/I method. It records the method name, the base por
/l component, the ending time, and the transagimyload.
/I The uvm_report_record() method will call the UVM

// into database.
“define UVM_IF_METHOD_END(req_arg,method _name) \
port_value.func_name = method_name; \

port_value.port_comp = m_comp; \

port_value.end_time = $time; \

in this example are get next item@ an

if ($cast(port_value.req,req_arg)) \

uvm_report_record (“PortlF”",

recommended report APl or macros (e.g., ‘uvm_infe(g.).
Using this uvm_report_catcher facility, we implerash an
extension to intercept the UVM tracing messages, tuen

“Port level recording ...", port_value); redirect the messages into the database by usieg th

- corresponding PLI tasks. This extension does ned @&y user
involvement except for the initialization, nor daesequire any

/I Add the macros to each TLM or sequence portodeth modification to the UVM library.
‘define UVM SEQ ITEM_PULL IMP(Imp, REQ, RS$P, Savmg the UVM message data into a database emabtes
req_arg, rsp_arg)\ - - processing of the recorded message data and _hsdaps to
- - analyze and comprehend the data. Post-processitgdures
task get_next_item(output REQ reg_arg); \ include visualization, filtering, searching, ordej and

‘UVM IE METHOD BEGIN\ merging, etc. For example, by turning on

imp.get_next_item(req_arg); \
"UVM_IF_METHOD_END(req_arg,"get_next_item")
endtask \

—

function void item_done(input RSP rsp_arg = null);
"UVM_IF_METHOD_BEGIN \
imp.item_done(rsp_arg); \
"UVM_IF_METHOD_END(rsp_arg,"item_done") \
endfunction \

Example 2

IV. SAVING UVM MESSAGEDATA INTO A DATABASE

The second issue with tracing messages as mentio
earlier is that they are only output to a text fatnog file.
Since there can be a huge number of messagesgfidel can
be extraordinarily large and very unwieldy in terno$
organizing and processing the data, or even logatiseful
data. For debug and analysis purposes, users ltypreant to
record as much data as possible to narrow dowrlgamsh The
solution is to save the messages into a well-orgahilatabase
and build a good user interface on top of the deatabto
retrieve and visualize the data. This requirestaldese format
that can easily save message data with predefinguegies
(e.g., verbosity, severity, etc.). The message stztald also be
associated with any user-defined properties anid viagues in
different data types, which will help record tractsans and
their payloads. A set of PLI tasks that help rectitd data
during simulation and UVM execution can be embedit¢al
UVM testbenches or the UVM library.

PLI tasks to record the information into a databeese be
placed wherever the previously-discussed tracingsages
have been inserted in the UVM library. Howeverstls not
scalable and extendable, nor is it suitable foseeiVe found
that the UVM Report Catcher utility can be usechtmk the
PLI tasks with UVM messaging without even modifyitite
UVM library. The uvm_report_catcher is a callbac
mechanism and can be used to catch messages Isgubd
UVM Report Server. User extensions of uvm_repottcher
(in which the action to be taken on catching thport is
specified) can be registered as callbacks to ocapthe
messages as long as the messages are issued hesity' ¥

UVM_PHASE_TRACE and UVM_OBJECTION_TRACE,
the following tracing messages about phase exewutand
objection activities are printed out to the outpateen or log
file:

UVM_INFO ../../l../..Isrc/base/uvm_phase.svh(1410): @
reporter [PH/TRC/SCHEDULED] Phase
‘uvm.uvm_sched.pre_main' (id=378) Scheduled froas@h
uvm.uvm_sched.post_configure

UVM_INFO ../../l../..Isrc/base/uvm_phase.svh(1158): @
reporter [PH/TRC/STRT] Phase 'uvm.uvm_sched.pren'mai
(id=378) Starting phase

UVM_INFO ../../l../l..Isrc/base/uvm_phase.svh(123%): @
reporter [PH/TRC/SKIP] Phase 'uvm.uvm_sched.prenmai
(id=378) No objections raised, skipping phase

h&YM_INFO ../..1..]../src/base/luvm_phase.svh(1380):@
reporter [PH/TRC/DONE] Phase ‘'uvm.uvm_sched.prenimai
(id=378) Completed phase

UVM_INFO ../../l../..Isrc/base/uvm_phase.svh(1410): @
reporter [PH/TRC/SCHEDULED] Phase
‘uvm.uvm_sched.main' (id=390) Scheduled from phase
uvm.uvm_sched.pre_main

UVM_INFO ../../l../..Isrc/base/uvm_phase.svh(1158): @
reporter [PH/TRC/STRT] Phase 'uvm.uvm_sched.main’
(id=390) Starting phase

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[Oksequl
oop_read_modify_write_seq raised 1 objection(syntol
total=1

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[Oksequ
added 1 objection(s) to its total (raised from smuobject):
count=0 total=1

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[Oldatide
objection(s) to its total (raised from source obbjEcount=0
k total=1

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubusO added 1 ajéitito
its total (raised from source object): count=0tatiz1

For the purposes of this paper, we've displayeg antery V. POST-PROCESSINAJVM MESSAGEDATA AND
short snippet of the messages in the log file.dntmast, if the ENHANCED VISUALIZATIONS
messages are recorded into a specialized debupasata Ao jyustrated in the previous section, the viszation of
visualization applications can be used to illugtiatone single !

: - phase execution and objection activities afteritigamessages
snapshot window the temporal flow or transition W¥M for UYM PHASE TRACE and UVM OBJECTION TRACE
gg%ﬂggngnd toag:jsplay tthh: ra|s::r:)gr{1 drgﬁg'ﬂ?g/ ho'%gﬁJVM areis recorded into the database. Visualization toafs be used to

)€ . . . comp - display the message data (currently converted feoriong
ral'_smg/dropplng/holdlng the objections (as showﬁ|gure_ 1. string into a label and list of properties or afiites) in a
This goes far beyond text messages by showing ithe t

waveform of the relevant dynamic data to furthepriave waveform view, which better illustrates the tempaedations
debug betwegn the messages. Temporal relations are mprertant
: to tracing messages, because these messages usagtign
The UVM Report Catcher is not the only method foracross the simulation period. Messages for difteteacing
recording message data into a database. Modifying a purpose are put in different streams.
replacing the report server is an alternative meishathat can . ;
seeve agsimilarpfunction. However, the drawbackhwlitoth For example, irFigure 1, the tracing messages for UYM

. . . runtime phases are put in the stream of “\PH_TR@n]uand
tmhﬁzte t:ge;g?g: d'Sawé"tptrr;igs;gésgg?gge;;?%%ﬁ”nlg g‘sa; the tracing messages for UVM objections affectihg hain
In Example 2 the UVM messaging facility is not used .to phase are putin the stream of “\OBJ_TRC_[maln}ﬂe_&tlo_ns
implement uvm_report_record() function. Instead, because like search, filter and highlight are provided la @pplication
what we want to record transaction data, it takh&iatage of level as these are common operations requw_ed Bys UBS
the UVM transaction recording mechanisr’n and diyaeettords zhor\lllynr:nlzdlg_ure 1” the mless?;l}es rel(;;\ted todrhaln phase arg
§ : ighlighted in yellow color. More advanced postqess an
fggaﬁ;rtt&v%\}ﬁnﬁ]ae?;gir?;tgygg%uinoﬁg g:hgr?r:ggge visualization are also available. Figure 1, a signal waveform
' - . (below the stream “\PH_TRC_[uvm]”) is created basecdthe
:lrttéwalljssc?rv?/;(r)kclriigt(ter;eszsc?i%isr?grg?:gcﬁgtmﬂﬁls%sr- value of thephaseattrit_)ute from all messages i_n the stream of
defined recorder could be hooked to the UVM librand all \PH_TRC_[uvm]'. This phase waveform provides aatland

messages recorded into a database alona witHigidis intuitive visual indication of the phase transisoalong the
9 9 : simulation and the time periods of each UVM ph&smilarly,

File Esploration Signal Wiew ‘Waveform Analog Tools Window

lazlostmal 1% 0 - -195 Q& P|ey £« xins sl Goto: [of /
T T A R R R R R R R

Help

=

STRT: pre_main X STRET: pre_configure STRT: pre_main

. ! . .
SCHEDULED: pre_mailn SCHEDULED: pre_configqure SCHEDULED: pre_mailn

b= “\PH_TRC_[uwn] [: e [et5e]

DONE: post_configqure , DONE: post_reset

SKIP: post confiqure X SKIP: post reset SKIP: post_configqure
— —
: |STRT: main ! STRET: post reset @ STRT: confiqure : |STRT: main
— = —
SCHEDULED: main : | SCHEDULED: post_re|SCHEDULED: configqure SCHEDULED: main
: |DONE: pre_main : main - reset DOME: pre_configure : |DONE: pre_main
!

ADD 1 {coun total=3)

W 0BT _TRC_[main] ADD 1 (count=0 total=Z) BOD 1 (count=0 total=2)
ADD 1 {count=0 total=1)

DONE: post confiqure

WBPH_TRC_ [uwm])

ADD 1 {count=0 total=1)

[main]):total[31:0]

Figure 1. Waveform lllustration for Phasing Execution and Objection Activities

a signal waveform (below the stream “\OBJ_TRC_[rjiaiis
created based on the value of ttmtal attribute from all
messages in the stream of “\OBJ_TRC_[main]" to alize

how the total count of objections for tmain phase varies

along the time.

F|Ie Wig Source Trace Debug Toolg MWindow Help

“_!__!_J “ehroil =te

L |

<OVM:’U\-"M Hier.=

A 47

EI- uvm_test top (test Zm ds) [48
EI- uhus example th0 (ubus example thi 49

@ &5 scoreboardd (ubus_example scoreboard) 50
Bz ubusl {ubus_env) a1

El 52

éﬁ bus monitor (wbus bus monitor)
sters[0] (ubus_master agent)
idriver (ubus master dri

r?’|-ma
B

Likewise, the testbench hierarchy and connectiota da
collected from the added tracing messages cansase@ to
build enhanced visualization applications on top tbe
recorded data. Users can view the testbench higraaad
component parent-child relationship in a tree-tilastration,
as shown in the left pane d¢figure 2. These applications

st_read_modify_write ubus_example_thO.ubusd.masters. build_phaseinovas/integ”y P/Dai

fumction void build_phasefusn_phaze phase)

super,build_phase(phaze):
monitor = ubus_master_monitor::type_id:icreate("monitor", thisi:

iflget_iz_activel() == UWM_ACTIVE] begin
SEQUENGCEr = Lv Sequencer#(ubus transferiss

d"create('sequencer thizls

@ rep_port {uwm analysis |
@ 2gr_pull port (uwm seq |
. B monitor {ubus master moni|
Easequencer {uvm_sequencer)
Q “i masters[1] (ubus master age

Show Detail Information

Showe Definition
Show Creation

Show Mavigation Text Field Ctrl+S
CirlsD

?n + build_phase

k_Phase

Loid connect_phaseluwn_phase phase):

iz activel) == UMM ACTIVE} begin
L.Seq_item_port,connect(sequencer.seq_item_export);

B2

slaves[2] (ubus_slave agent) 63

é =5 slawves[3] f(ubus_slave agent) Gd
BS

BB

El

4]

I

<Inst_Tree= [<Decl._Tree=> | <Oy M_Hier|

endfunction : connect_phasze

endclass ¢ ubus_master_agent

i

Figure 2: lllustration of UVM Component Hierarchy T ree and Source Code Synchronization

File: Views Source Trace Debuy Toolg Window Help

EA3ER D!

=1

<O MUY M _Hier>

Bl uvm_test top (test 2n ds)

vhus example thl (ubus example th)
r:a scoreboardl (vhus example scorehoard)
B &7 vbusl {ubus_env)

33 bus monitor (ubus bus monitor)

é Efmasters[0] (ubus master agent)

: EE driver f(ubus master driwer)

. f@ rsp port (uvm snalysis port)

*<5rcil =test_read modify_swrite ubus_example_th0.ubusO masters.connect

- pgisgr pull port {(uwm seq 1tem pull port)”
Ea monitor (ubus master monitor)
B E5] sequUencer (Uvm_sequencer)

Sh
~ 3h

58| function woid connect phase(uum phaze phase)
59 1F(get_1s_act1ue() U'u'H HETI'u'E) begin
Bl end
62| endfunction : connect_phaze
g3
Bd|endclass ¢ ubus_master agent
E5
BE
ow Mavigation Text Field Ctrl+3
o Detail Infoarmation Cirl+D
o Diefinition
oy Creation
my Connections

EE Esjmasters[1] (ubus_master_agent)
EB slawves[0] (ubus_slave agent) <
gEs slaves [1] (ubus slave agent) 3h
| sh
Creatian ! Connection | Connected Path|
Fath:
{Ports &

uvm_test top.ubus_

impale _th0.ubus0.m ; r_pull_ [m
uvin_test_top.ubus_example_th0.ubus0. masters[ﬂ]sequencerseq |te

<Inst_Trees | <Decl, Tree}|<okuvm_Hier.>|

Figure 3: Displaying Ports and P

Ei
ort Connections irJVM Hier Tree

provide just one example for leveraging the datanded. port.

The UVM Hier Tree inFigure 2 displays the test structure Transaction data is more suitable for display using
of theubuscase with two master agents and four slave agentaaveform viewer. Sequences and sequence itemsuanpedi
The tree can be expanded or collapsed to showdm thie to the debug database through the UVM TransactegoRling
lower level components. The class type is alsolayggl beside system. InFigure 4, the waveform viewer displays recorded
the component name. Users can point the mouse do tlsequence data along the time meter, which illiesdrtiie begin
component in the UVM Hier Tree and click the righbuse time and end time of the sequence, the conteriteecgequence
button (RMB) to pop up a menu, from which operatican be in the box, and the timing correlation informatioatween the
chosen to show the definition of the componentsciasthe sequences. The parent/child relationships betweesdquence
source code pane on the rigghpw Definition), or to show and sub-sequence are displayed by appropriate idtigihl,
where in the source code the component has beetedre i.e., when a parent sequence is selected, the s#tjdences are
(Show Creation). The right pane irFigure 2 displays and highlighted in a bright color. Again the case ig thtandard
highlights the line of the source code where themmmpmnent UVM ubus example. Similarly, the data resultingnfradhe
ubus0.master[0].drivehas been created. tracing messages added for the transaction fldiveaport level

Ports are also included in the UVM Hier Tree, ameltare is captured and saved in the debug database. fripotal flow

. of transaction data through a certain port chararel the
g;etr:gat\)/c?tfolrg tohfetr::aeS.V'?\\Ata?gn{'}fecéedarl?:% ﬁg&;gﬁsog%?qed interaction between two connected ports can bsetilited by
P - 9 the waveform viewer, which retrieves the relatethdeom the
the path that are connected to the selected podddlition to recorded debug database
the Show Definition andShow Creationoperations, ports also '
have theShow Connectionoperation in the RMB menu to The top row inFigure 4 indicates the transaction function
display where in the source code one port is cdedeto calls happening at the sequence pull port of a WdfMer. The
another port. The right pane kigure 3 shows and highlights port interface methodyet_next_item()is called at time 60,
the line of the source code where the portwhileitem_done(andput_response(@re called respectively at
ubus0.master[0].driver.sqr_pull_poris connected to another time 110. Anothemet _next_time(kall happens at time 120.

Eile Signal Miews MWaveform Analog Tools Window
S B S 110 dh o Fa L) x1ns - |G @) ¥
All" e By, ... R0, [l

get next itemireq
o304

#driver#sgr_pull por

read_byte_segl write_hyte_seql

[MW_seq

loop_read modify write seq

< 2222222 e]
Figure 4: lllustration of Port Level Transaction Flow in Contrast with UVM Transaction Recording Waveform

This is in sync with the sequence timing shownhia bottom
row and further explains the beginning and endifigthe

paper, should be included in the default standavdLClass
Library, so that the dynamic data at each importdage of

sequence. When comparing the sequence waveforrheat tUVM execution can be captured into a log . Furtteenthe

bottom and the port level transaction flow wavefatthe top,
users can get a much better understanding abotratheaction
flow which in turn makes it easier to find and bugs in the
design or the testbench itself. This example depcsimple
testbench. For complex testbenches, users carafiedyze the
higher-level sequencer transactions along with feawe
techniques like zooming, filtering, highlightingfce to first
narrow down the region of interest and then loothatdetailed
port-level transactions as needed.

The visualization applications for testbench suetand
transaction flow can be interrelated and synchexhio further
ease and streamline debug and analysis. For exanggles can
select a port in the hierarchy viewer and display televant
transaction waveform. In addition, since the stiiake can be
recorded through the PLI tasks as part of the ngesdata into
the debug database, the event (component cregtior,
connection, or transaction-level interfacing) dégic by the
message can be correlated to other representasonf, as
source code using drag-and-drop techniques. Fompgea
users can drag thget next item()oox from the waveform

viewer in Figure 4 and drop it into the source code pane in

Figure 3 to show the source code wheget next time()s
called.

VI. CONCLUSION

UVM Class Library should be enhanced such thatthesages
can be easily captured and diverted into a debugbédse,
which can then be used to drive a specialized U\élidug tool.
Each system message would become a recording wiimt
which internal runtime data can be actively cobectand
recorded into a database by reusable UVM libratgresions,
thereby minimizing or eliminating the burden on ngsé¢o
instrument directly into their testbenches or mpdife UVM
libraries. Further processing of the database cafle more
efficient post-simulation analysis and greater usidading of
UVM testbenches. It is clear that just as the derilPLI
allowed debug to advance to a level in keeping wigisign
complexity, so too is the critical requirement gfomechanism
to record data from modern object-oriented testhesc The
mechanisms proposed in this paper make it feafibleisers
and vendors alike to stay in lock-step with theremereasing
complexity that is part and parcel of any moderrifigation
environment.

REFERENCES

[1] uvM User Guide and Reference Manual,

http://www.accellera.org/activities/vip

[2] R. Chen, B. Patel, and J. Zhao, “UVM Transactioncdréing
Enhancements”, DVCon Proceedings, 2011

Based on our experience, we strongly advocate that

additional system messages, such as those desdribtge

