
Extendable Messaging Techniques for Debugging and
Analyzing UVM Testbench Structure and Transaction

Flow

Jun Zhao, Bindesh Patel, Rex Chen
Research & Development

Synopsys, Inc.
Mountain View, California and Hsinchu, Taiwan

Abstract— This paper first outlines current debug capability
embedded within the UVM library and then proposes additions
to this capability that can significantly add visibility and
debugability into the execution of the testbench as an integral
part of the entire environment. Ideas for presenting the
additional acquired debug information to the user are also
introduced.

Keywords— UVM; SystemVerilog; testbench; debug;
debugging; tracing message; transaction; recording

I. INTRODUCTION

The Universal Verification Methodology (UVM) has now
established itself as the standard methodology of choice for
improving verification efficiency and data portability,
including reuse and interoperability. The methodology includes
a SystemVerilog class library that allows users to efficiently
build realistic transaction-based testbenches.

The raw SystemVerilog language does not provide any
standard mechanisms for recording simulation activity for the
class-based structures used in UVM as it does for HDL signals
and nets with the callback-driven Verilog Procedural Interface
(VPI) standard. It can be further argued that even if such an
application programming interface (API) exists, the low-level
data returned would be of limited use in today’s high-level
verification environments in which the transaction is the atom
of data. In fact, the library itself is turning out to be the best
candidate for acquiring useful debug data at the appropriate
abstraction level.

Ideally, a debugging system should be able to be attached to
the UVM Class Library as a library extension, so that it can
dynamically access and process the internal testbench data
during simulation. Unfortunately, the UVM Class Library does
not provide an open mechanism to allow the development of
reusable extensions. It does provide so-called callback
functions, but these are actually virtual functions of a base
class. The virtual function-based callbacks are restricted and
only the extended class can make use of these callbacks. In
other words, the implementations of the callbacks can be only
developed inside a specific testbench. They are not library
extensions and, therefore, cannot be reused in other
testbenches.

In this situation, the system messages inside the UVM
Class Library become very important for users in order to
understand or debug the testbench execution. Currently, there
are some system messages in the UVM library, for example,
tracing messages for phasing/objection, and auditing messages
for config_db/resource_db. However, these are not enough to
cover all the key UVM functions and important stages of the
testbench execution. Without system messages as tracing
points, it is virtually impossible to collect any useful dynamic
testbench data.

In this paper, we are going to discuss the benefits that can
be derived from inserting some additional system messages
inside the UVM Class library. We have experimental data from
adding system messages on two major aspects of the UVM: the
testbench structure and transaction flow. The paper will further
illustrate how to capture the data from UVM system messages
directly into a debug database and how to make use of the
database to improve the efficiency of post-simulation analysis
and debug. Enhanced visualization applications can be built on
top of the collected data to better understand and debug the
UVM testbench simulation.

II. CURRENT UVM DEBUGGING CAPABILITIES AND

LIMITATIONS

The UVM Class Library [1] provides the building blocks
needed to efficiently develop well-constructed, reusable
verification components and test environments using the
SystemVerilog language and especially relies on its object-
oriented syntax and semantics. While the UVM is trying to
strike a balance on reuse, portability, and encapsulation of the
verification components for testbenches, the issues of
extensibility and debug have yet to be fully addressed.

Extensibility, in this case, means the UVM should provide
open interfaces so that library extensions can be developed by
vendors or CAD groups and attached to the UVM library.
During simulation, all the library extensions could be closely
combined with the UVM library and passively join the UVM
execution. These extensions could transparently collect and
process the dynamic data and monitor the flow in UVM-based
testbenches, without modifying the testbench behavior. The
library extension should be separate from the original UVM
library, and there should be no need to modify any original

code inside the UVM library. The library extension should also
be separate from the user’s UVM-based testbench, such that it
is attached to the UVM library and can be reused by any UVM-
based testbenches. The testbench developers do not need to
have any knowledge about the library extensions. Note that
fundamentally, extensibility is one aspect of reusability. Here
we are focusing on library extensible and reusable capabilities.

One analogy of such extensibility is the Verilog PLI
(Programming Language Interface) as an open simulation
interface. The PLI allows users to extend Verilog by creating
user-defined system tasks and registering user-defined hook
functions, such that the hook functions are called when a signal
value or any other simulation state changes. The hook functions
can collect many current-state values from the simulation and
can return values back to simulation. The Verilog PLI has been
the key technology to facilitate the post-simulation debugging
for HDL designs, without which we would be stuck in the
stone age of interactive simulation debugging. The waveform
of value changes for each signal in the HDL design can be
recorded into a database for further processing and
visualization using the Verilog PLI technology. Unfortunately,
this technology does not work well for the object-oriented part
of the SystemVerilog language, which is more like a software
language. The SystemVerilog Testbench (SVTB) class
variables are dynamic data and therefore cannot be dumped.

However, library extensions as previously discussed would
greatly facilitate a proper debugging system for the UVM
library and UVM-based testbenches. For example, testbench
developers or users may want to log or record the important
details of UVM execution to help with testbench
comprehension or post-simulation debugging. Currently, they
have to manually instrument debugging code within the
testbench code or inside the library which is generic to all
UVM-based testbenches. They are forced to duplicate these
debug instrumentation in all the testbenches, or alternatively,
modify the UVM library and put the code inside the library.
The modified UVM library will, however, have the portability
issue.

In fact, the current UVM library does include a minimal set
of useful features for debugging purpose. For example, a
transaction recording scheme [2] is provided to record UVM
sequence behavior and contents into preferred database via
uvm_recorder. The uvm_recorder maintains a set of virtual
functions that are originally empty but can be re-implemented
by extending the uvm_recorder and replacing the
uvm_default_recorder. These so-called “hook” functions in
uvm_default_recorder are automatically called at the key stages
of sequence generation, and the transaction timing, payload and
layering information can be recorded through the “hook”
functions. It is up to the user’s implementation of “hook”
functions how, where and what information is recorded, which
leaves space for extensibility. While it is a good utility for
debug, the transaction recording only covers one part (sequence
generation) of the UVM at a fairly high level. It is of no help
when the user wants to look at the transaction transitions across
the UVM component hierarchy or between two verification
components.

Tracing messages are another mechanism provided by the
UVM library to dump debug information, similar to debugging
messages that can be output from any software system. These
messages are embedded inside the UVM library at the major
points of the execution, enabling important runtime data to be
observed, collected and printed to the screen or a log file. Users
can turn on each portion of the tracing messages by activating
them from the command line options. The following lists the
command line arguments provided by UVM to turn on these
tracing messages:

+UVM_PHASE_TRACE turns on tracing of phase
executions

+UVM_OBJECTION_TRACE turns on tracing of
objection activities

+UVM_RESOURCE_DB_TRACE turns on tracing of
resource DB access (read
& write)

+UVM_CONFIG_DB_TRACE turns on tracing of
configuration DB access

These tracing messages turn out to be a very convenient
and efficient mechanism for debugging. Nevertheless, there are
two major drawbacks: 1) it does not cover all the functionalities
of the UVM; 2) it can only be output to a text format log file,
which is difficult for post processing. We will address these
two issues in the following two sections.

III. ADDING NEW TRACING MESSAGES INTO THE UVM

CLASS LIBRARY

For the first issue of limited tracing messages being
recorded, the resolution is quite simple: add new tracing
messages into the UVM library. We propose that tracing
messages be added at least in the following categories of UVM
functionalities:

• Trace how the component hierarchy is built and how
the ports/sockets are connected;

• Trace the UVM factory registration and override
configuration;

• Trace the traffic at the TLM1 port interface and
capture the pass-through transactions, requests and
responses, etc.;

• Trace the TLM2 socket interface and capture the pass-
through transaction (the generic payload), sync, phase,
and basic protocol, etc.; and

• Trace the register access (read and write, mirror, etc)
and how the register hierarchy has been built.

In this paper, we will discuss how to add new tracing
messages in order to observe testbench structure generation
(including component creation and port connection) and
monitor the transaction flow at the port level.

A. Tracing Component Creation and Port Connection

The testbench structure includes the component hierarchy
and the TLM (transaction layered modeling) port connections.
By adding system messages at the build phase, users are able to
trace how the components (including ports, which are also
components) are created and record the parent-child
relationship between the components. Further, by inserting
system messages at the connect phase, users can also trace how
the TLM ports (including TLM2 sockets) are connected and
record the producer-consumer relationship between the
connected ports.

The following methods are the points at which tracing
messages are added for component and port creation:

function uvm_component::new (string name,
 uvm_component parent);

function uvm_port_base::new (string name,
 uvm_component parent,
 uvm_port_type_e port_type,
 int min_size=0,
 int max_size=1);

The following information is collected and passed as
additional fields for the message:

• The parent full name

• The component/port name

• The type name, e.g., “ubus_pkg::class
ubus_master_driver”

• Other component/port info (e.g., is_port, is_export,
is_imp, etc.)

The following methods are the points at which tracing
messages are added for port or socket connection:

function void uvm_port_base::connect (this_type provider);

The following information is collected and passed as
additional fields for the message:

• The caller port full name and port type, etc.

• The provider port full name and port type, etc.

Example 1 illustrates how tracing messages are added for
component/port creation and port connection:

function uvm_component::new (string name,
 uvm_component parent);

…

// Add a message whenever a new component has been

// created. The port component will be reported when

// creating the uvm_port_base, so won’t be reported here.

 begin

 uvm_port_component_base port_component;

 if (!$cast(port_component,this))

 `uvm_info ("COMP_TRACE",

 {"Creating component ",

 (parent==top?"":

 {parent.get_full_name(),"."}),name,

 "(type=",get_type_name(),")"},

 UVM_LOW)

 end

endfunction

function uvm_port_base::new (string name, …);

…

// Add a message whenever a new base port component

// has been created.

`uvm_info ("PORT_TRACE", {"Creating port ",

 m_comp.get_full_name(),

 " (type=",get_type_name(),")"}, UVM_LOW)

endfunction

function void uvm_port_base::connect (this_type provider);

…

// Add a message whenever two ports are connected.

`uvm_info ("PORT_CONN_TRACE", {"Connecting ports ",

 this.get_full_name(),

 " with ",provider.get_full_name()}, UVM_LOW)

endfunction

Example 1

B. Tracing Transaction Flow at the Port Level

The transaction (or UVM sequence) flows are from
component to component through TLM ports. Adding system
messages at the TLM port-level enables users to observe how
transaction data is transferred from one port to another and
what type of methods are used to transfer the data. Here the
data is not from the transaction point of view, but from the
perspective of port-to-port interface protocol by way of port
method calls. The system messages record what method of a

certain port is called at a certain time, when it finishes, what is
the content of the data passing to the method, what is the return
value, etc.

The following methods add the tracing messages for TLM1
port and TLM2 socket interface:

TLM1 Ports:

 task put (TYPE arg);

 function bit try_put (TYPE arg);

 function bit can_put();

 task get (output TYPE arg);

 function bit try_get (output TYPE arg);

 function bit can_get();

 task peek (output TYPE arg);

 function bit try_peek (output TYPE arg);

 function bit can_peek();

 task transport (REQ req_arg, output RSP rsp_arg);

 function bit nb_transport (REQ req_arg,

 output RSP rsp_arg);

Sequence Item Pull Ports:

 task get_next_item(output REQ req_arg);

 task try_next_item(output REQ req_arg);

 function void item_done(input RSP rsp_arg = null);

 function void put_response(input RSP rsp_arg);

 task get(output REQ req_arg);

 task peek(output REQ req_arg);

 task put(input RSP rsp_arg);

Analysis Ports:

 function void write (input T t);

TLM2 Sockets:

 function uvm_tlm_sync_e nb_transport_fw (T t, ref P
p, input uvm_tlm_time delay);

 function uvm_tlm_sync_e nb_transport_bw(T t, ref P
p, input uvm_tlm_time delay);

 function task b_transport (T t, uvm_tlm_time delay);

The following information is collected and passed as
additional fields for the message:

• The request and/or response transactions

• The return value if any

• The method name, e.g., “put”, “get”, etc.

• The times entering and leaving the method

• The port info (full name, type, configurations, etc.)

• The generic payload, phase/sync, and delay for TLM2

Example 2 shows how tracing messages for transaction
flow are added at the sequence item pull port level. The
methods used in this example are get_next_item() and
item_done(). The uvm_report_record() is a function created to
print out the messages. Later in this paper we will demonstrate
how this function can also be used to dump data into a
database.

// A container class that wraps the data to be recorded.

class uvm_port_recording_object extend uvm_object;

uvm_port_component_base port_comp;

 // The base port component handle

string func_name; // The port interface method name

uvm_object req; // The transaction payload

time begin_time; // The begin time of the method call

time end_time; // The end time of the method call

endclass

// The macro to be added at the beginning of each port

// interface method. It initiates the container object and records

// the beginning time.

`define UVM_IF_METHOD_BEGIN \

 uvm_port_recording_object port_value = new; \

 port_value.begin_time = $time;

// The macro to be added at the ending of each port interface

// method. It records the method name, the base port

// component, the ending time, and the transaction payload.

// The uvm_report_record() method will call the UVM

// transaction recording hook functions and record the data

// into database.

`define UVM_IF_METHOD_END(req_arg,method_name) \

 port_value.func_name = method_name; \

 port_value.port_comp = m_comp; \

 port_value.end_time = $time; \

 if ($cast(port_value.req,req_arg)) \

 uvm_report_record (“PortIF”,

“Port level recording …”, port_value);

// Add the macros to each TLM or sequence port method

`define UVM_SEQ_ITEM_PULL_IMP(imp, REQ, RSP,
req_arg, rsp_arg) \

 task get_next_item(output REQ req_arg); \

 `UVM_IF_METHOD_BEGIN \

 imp.get_next_item(req_arg); \

 `UVM_IF_METHOD_END(req_arg,"get_next_item") \

 endtask \

 function void item_done(input RSP rsp_arg = null); \

 `UVM_IF_METHOD_BEGIN \

 imp.item_done(rsp_arg); \

 `UVM_IF_METHOD_END(rsp_arg,"item_done") \

 endfunction \

Example 2

IV. SAVING UVM MESSAGE DATA INTO A DATABASE

The second issue with tracing messages as mentioned
earlier is that they are only output to a text format log file.
Since there can be a huge number of messages, the log file can
be extraordinarily large and very unwieldy in terms of
organizing and processing the data, or even locating useful
data. For debug and analysis purposes, users typically want to
record as much data as possible to narrow down problems. The
solution is to save the messages into a well-organized database
and build a good user interface on top of the database to
retrieve and visualize the data. This requires a database format
that can easily save message data with predefined properties
(e.g., verbosity, severity, etc.). The message data should also be
associated with any user-defined properties and their values in
different data types, which will help record transactions and
their payloads. A set of PLI tasks that help record the data
during simulation and UVM execution can be embedded into
UVM testbenches or the UVM library.

PLI tasks to record the information into a database can be
placed wherever the previously-discussed tracing messages
have been inserted in the UVM library. However, this is not
scalable and extendable, nor is it suitable for reuse. We found
that the UVM Report Catcher utility can be used to hook the
PLI tasks with UVM messaging without even modifying the
UVM library. The uvm_report_catcher is a callback
mechanism and can be used to catch messages issued by the
UVM Report Server. User extensions of uvm_report_catcher
(in which the action to be taken on catching the report is
specified) can be registered as callbacks to capture the
messages as long as the messages are issued using the UVM

recommended report API or macros (e.g., `uvm_info(), etc.).
Using this uvm_report_catcher facility, we implemented an
extension to intercept the UVM tracing messages, and then
redirect the messages into the database by using the
corresponding PLI tasks. This extension does not need any user
involvement except for the initialization, nor does it require any
modification to the UVM library.

Saving the UVM message data into a database enables post-
processing of the recorded message data and helps users to
analyze and comprehend the data. Post-processing procedures
include visualization, filtering, searching, ordering, and
merging, etc. For example, by turning on
UVM_PHASE_TRACE and UVM_OBJECTION_TRACE,
the following tracing messages about phase executions and
objection activities are printed out to the output screen or log
file:

…

UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ 0:
reporter [PH/TRC/SCHEDULED] Phase
'uvm.uvm_sched.pre_main' (id=378) Scheduled from phase
uvm.uvm_sched.post_configure

UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ 0:
reporter [PH/TRC/STRT] Phase 'uvm.uvm_sched.pre_main'
(id=378) Starting phase

UVM_INFO ../../../../src/base/uvm_phase.svh(1235) @ 0:
reporter [PH/TRC/SKIP] Phase 'uvm.uvm_sched.pre_main'
(id=378) No objections raised, skipping phase

UVM_INFO ../../../../src/base/uvm_phase.svh(1387) @ 0:
reporter [PH/TRC/DONE] Phase 'uvm.uvm_sched.pre_main'
(id=378) Completed phase

UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ 0:
reporter [PH/TRC/SCHEDULED] Phase
'uvm.uvm_sched.main' (id=390) Scheduled from phase
uvm.uvm_sched.pre_main

UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ 0:
reporter [PH/TRC/STRT] Phase 'uvm.uvm_sched.main'
(id=390) Starting phase

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer.l
oop_read_modify_write_seq raised 1 objection(s): count=1
total=1

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer
added 1 objection(s) to its total (raised from source object):
count=0 total=1

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[0] added 1
objection(s) to its total (raised from source object): count=0
total=1

UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0 added 1 objection(s) to
its total (raised from source object): count=0 total=1

…

For the purposes of this paper, we’ve displayed only a very
short snippet of the messages in the log file. In contrast, if the
messages are recorded into a specialized debug database,
visualization applications can be used to illustrate in one single
snapshot window the temporal flow or transition of UVM
phasing and to display the raising/dropping/holding of UVM
objections and the components that are
raising/dropping/holding the objections (as shown in Figure 1).
This goes far beyond text messages by showing the time
waveform of the relevant dynamic data to further improve
debug.

The UVM Report Catcher is not the only method for
recording message data into a database. Modifying and
replacing the report server is an alternative mechanism that can
serve a similar function. However, the drawback with both
these methods is that the data is transferred as a long string that
must be parsed and processed before saving into the database.
In Example 2 the UVM messaging facility is not used to
implement uvm_report_record() function. Instead, because
what we want to record transaction data, it takes advantage of
the UVM transaction recording mechanism and directly records
the port-level transaction data through the UVM recorder.
Ideally, the UVM messaging system should be enhanced to
allow users to create messages that can contain additional fields
and also work like transaction recording. In this way, a user-
defined recorder could be hooked to the UVM library and all
messages recorded into a database along with their fields.

V. POST-PROCESSING UVM MESSAGE DATA AND

ENHANCED V ISUALIZATIONS

As illustrated in the previous section, the visualization of
phase execution and objection activities after tracing messages
for UVM_PHASE_TRACE and UVM_OBJECTION_TRACE
is recorded into the database. Visualization tools can be used to
display the message data (currently converted from a long
string into a label and list of properties or attributes) in a
waveform view, which better illustrates the temporal relations
between the messages. Temporal relations are more important
to tracing messages, because these messages usually happen
across the simulation period. Messages for different tracing
purpose are put in different streams.

For example, in Figure 1, the tracing messages for UVM
runtime phases are put in the stream of “\PH_TRC_[uvm]” and
the tracing messages for UVM objections affecting the main
phase are put in the stream of “\OBJ_TRC_[main]”. Operations
like search, filter and highlight are provided at the application
level as these are common operations required by users. As
shown in Figure 1, the messages related to the main phase are
highlighted in yellow color. More advanced post process and
visualization are also available. In Figure 1, a signal waveform
(below the stream “\PH_TRC_[uvm]”) is created based on the
value of the phase attribute from all messages in the stream of
“\PH_TRC_[uvm]”. This phase waveform provides a clear and
intuitive visual indication of the phase transitions along the
simulation and the time periods of each UVM phase. Similarly,

Figure 1: Waveform Illustration for Phasing Execution and Objection Activities

a signal waveform (below the stream “\OBJ_TRC_[main]”) is
created based on the value of the total attribute from all
messages in the stream of “\OBJ_TRC_[main]” to visualize
how the total count of objections for the main phase varies
along the time.

Likewise, the testbench hierarchy and connection data
collected from the added tracing messages can also serve to
build enhanced visualization applications on top of the
recorded data. Users can view the testbench hierarchy and
component parent-child relationship in a tree-type illustration,
as shown in the left pane of Figure 2. These applications

Figure 2: Illustration of UVM Component Hierarchy T ree and Source Code Synchronization

Figure 3: Displaying Ports and Port Connections in UVM Hier Tree

provide just one example for leveraging the data recorded.

The UVM Hier Tree in Figure 2 displays the test structure
of the ubus case with two master agents and four slave agents.
The tree can be expanded or collapsed to show or hide the
lower level components. The class type is also displayed beside
the component name. Users can point the mouse to the
component in the UVM Hier Tree and click the right mouse
button (RMB) to pop up a menu, from which operations can be
chosen to show the definition of the component class in the
source code pane on the right (Show Definition), or to show
where in the source code the component has been created
(Show Creation). The right pane in Figure 2 displays and
highlights the line of the source code where the component
ubus0.master[0].driver has been created.

Ports are also included in the UVM Hier Tree, and they are
the leaves in the tree. A tab (Connected Path) can be opened
at the bottom of the UVM Hier Tree pane to list all ports along
the path that are connected to the selected port. In addition to
the Show Definition and Show Creation operations, ports also
have the Show Connection operation in the RMB menu to
display where in the source code one port is connected to
another port. The right pane in Figure 3 shows and highlights
the line of the source code where the port
ubus0.master[0].driver.sqr_pull_port is connected to another

port.

Transaction data is more suitable for display using a
waveform viewer. Sequences and sequence items are dumped
to the debug database through the UVM Transaction Recording
system. In Figure 4, the waveform viewer displays recorded
sequence data along the time meter, which illustrates the begin
time and end time of the sequence, the contents of the sequence
in the box, and the timing correlation information between the
sequences. The parent/child relationships between the sequence
and sub-sequence are displayed by appropriate highlighting,
i.e., when a parent sequence is selected, the child sequences are
highlighted in a bright color. Again the case is the standard
UVM ubus example. Similarly, the data resulting from the
tracing messages added for the transaction flow at the port level
is captured and saved in the debug database. The temporal flow
of transaction data through a certain port channel and the
interaction between two connected ports can be illustrated by
the waveform viewer, which retrieves the related data from the
recorded debug database.

The top row in Figure 4 indicates the transaction function
calls happening at the sequence pull port of a UVM driver. The
port interface method get_next_item() is called at time 60,
while item_done() and put_response() are called respectively at
time 110. Another get_next_time() call happens at time 120.

Figure 4: Illustration of Port Level Transaction Flow in Contrast with UVM Transaction Recording Waveform

This is in sync with the sequence timing shown in the bottom
row and further explains the beginning and ending of the
sequence. When comparing the sequence waveform at the
bottom and the port level transaction flow waveform at the top,
users can get a much better understanding about the transaction
flow which in turn makes it easier to find and fix bugs in the
design or the testbench itself. This example depicts a simple
testbench. For complex testbenches, users can first analyze the
higher-level sequencer transactions along with waveform
techniques like zooming, filtering, highlighting, etc. to first
narrow down the region of interest and then look at the detailed
port-level transactions as needed.

The visualization applications for testbench structure and
transaction flow can be interrelated and synchronized to further
ease and streamline debug and analysis. For example, users can
select a port in the hierarchy viewer and display the relevant
transaction waveform. In addition, since the stack trace can be
recorded through the PLI tasks as part of the message data into
the debug database, the event (component creation, port
connection, or transaction-level interfacing) depicted by the
message can be correlated to other representations, such as
source code using drag-and-drop techniques. For example,
users can drag the get_next_item() box from the waveform
viewer in Figure 4 and drop it into the source code pane in
Figure 3 to show the source code where get_next_time() is
called.

VI. CONCLUSION

Based on our experience, we strongly advocate that
additional system messages, such as those described in the

paper, should be included in the default standard UVM Class
Library, so that the dynamic data at each important stage of
UVM execution can be captured into a log . Furthermore, the
UVM Class Library should be enhanced such that the messages
can be easily captured and diverted into a debug database,
which can then be used to drive a specialized UVM debug tool.
Each system message would become a recording point with
which internal runtime data can be actively collected and
recorded into a database by reusable UVM library extensions,
thereby minimizing or eliminating the burden on users to
instrument directly into their testbenches or modify the UVM
libraries. Further processing of the database can enable more
efficient post-simulation analysis and greater understanding of
UVM testbenches. It is clear that just as the Verilog PLI
allowed debug to advance to a level in keeping with design
complexity, so too is the critical requirement for a mechanism
to record data from modern object-oriented testbenches. The
mechanisms proposed in this paper make it feasible for users
and vendors alike to stay in lock-step with the ever-increasing
complexity that is part and parcel of any modern verification
environment.

REFERENCES

[1] UVM User Guide and Reference Manual,

http://www.accellera.org/activities/vip

[2] R. Chen, B. Patel, and J. Zhao, “UVM Transaction Recording
Enhancements”, DVCon Proceedings, 2011

