| ‘l‘ DoubleTree, San JOSE sverems mmanve

icati & Exhibition I
\ Design & Verification Conference |

/2073 | February 25-28, 2013 accellrd) !

Extendable Messaging Techniques for
Debugging and Analyzing UVM
Testbench Structure and Transaction Flow
by
Jun Zhao, Bindesh Patel, Rex Chen

Research & Development
Synopsys Inc.

SYNOPSYS

Predictable Success

Overview:

This presentation contains

2 of (25)

Introduction
Current UVM Debug Capabilities and Limitations

Adding New Tracing Messages into the UVM Class Library
» Tracing Component Creation and Port Connection
* Tracing Transaction Flow at the Port Level

Saving UVM Message Data into a Database
Post-processing UVM Message Data and Enhanced Visualizations
Conclusion

Sponsored By:

SYSTEMS INITIATIVE

Introduction

e Universal Verification Methodology (UVM)

— A standard verification methodology
e Reuse and interoperability

— A SystemVerilog class library
e Testbench template

e How to debug UVM based testbenches?
— No VPI standard for dynamic data dumping
— VPI also is too low-level, can incur large overhead

e Transaction level debug v.s. Code level debug
— No standard on transaction dumping
— Acquire transaction level debug data from UVM

3 of (25)

Sponsored By:

SYSTEMS INITIATIVE

Sponsored By:

Introduction (1) a@

SYSTEMS INITIATIVE

e |deal scenario
— Attach a debug system to UVM library as an extension
— Dynamically access and process the internal data

e The fact
— UVM does not allow reusable extensions

— Virtual function-based callbacks does not help
e Only the extended class can make use of these callbacks

e Implementations of the callbacks can be only developed inside of a specific
testbench

e Cannot be reused in other testbenches

— System messages become very important
e Tracing messages for phase/objection, config/resource_db, etc
e But still not covering all the key UVM functions

4 of (25)

Overview:

This presentation contains

5 of (25)

Introduction

Current UVM Debug Capabilities and Limitations

Adding New Tracing Messages into the UVM Class Library
« Tracing Component Creation and Port Connection
* Tracing Transaction Flow at the Port Level

Saving UVM Message Data into a Database
Post-processing UVM Message Data and Enhanced Visualizations
Conclusion

Sponsored By:

SYSTEMS INITIATIVE

Sponsored By:

UVM Extensibility Issue a@

SYSTEMS INITIATIVE

e How to add vendor-specific or tool-specific extensions?
— For example, people may want to record the important details of
UVM execution to help for post-simulation debugging

e For end users, they have to add codes in their testbenches, but the
codes may be generic to all testbenches

e For tool vendor or design companies, they have to modify the UVM
library, but to think every vendor/company have their own modified
UVM libraries

— There are features in UVM that can help but are limited
e Transaction recorder
e Report Catcher
e efc

6 of (25)

Improve UVM Extensibility

e Enable the UVM library to be
extendible and the extension should
be:

— From external
— Intact to UVM library

— Transparent to end user
perspective
— Stackable

e The extension can collect, process,
or even modify the dynamic data in
UVM during execution

e Analogy
— PLI in Verilog

7 of (25)

UVM

III _[_y ‘?073 I|
| i it I.

) _Sponsored By:

SYSTEMS INITIATIVE

Sponsored By:

UVM Transaction Recording a@

SYSTEMS INITIATIVE

e Record UVM sequence behavior and contents into preferred database via
uvm_recorder

e The following hook functions are provided to be implemented by user or vendor:
— uvm_create_fiber
— uvm_set_index_attribute_by name
— uvm_set_attribute_by name
— uvm_check_handle_kind
— uvm_begin_transaction
— uvm_end_transaction
— uvm_link_transaction
— uvm_free_transaction _handle

e These hook functions are automatically called at the key stages of sequence
generation

e Limitation: Only covers sequence part at very high level

8 of (25) <

Sponsored By:

UVM Tracing Messages a@

SYSTEMS INITIATIVE

Embedded inside of the UVM library at the major points of the execution

Expose important runtime data into log for debug or post process

Can be activated from command line options:
+UVM_PHASE_TRACE turns on tracing of phase executions
+UVM_OBJECTION_TRACE turns on tracing of objection activities

+UVM_RESOURCE_DB_TRACE turns on tracing of resource DB
access (read & write)

+UVM_CONFIG_DB_TRACE turns on tracing of configuration DB access

Limitations
— Not cover all the functionalities of the UVM
— Only output to a text format log file, difficult for post processing

9 of (25) <

Sponsored By:

Overview: atcellerd)

SYSTEMS INITIATIVE

This presentation contains
* Introduction
o Current UVM Debug Capabilities and Limitations
 Adding New Tracing Messages into the UVM Class
Library

« Tracing Component Creation and Port Connection
* Tracing Transaction Flow at the Port Level

« Saving UVM Message Data into a Database
» Post-processing UVM Message Data and Enhanced Visualizations
« Conclusion

10 of (25)

Sponsored By:

Adding New Trace Messages a@

SYSTEMS INITIATIVE

e Trace how the component hierarchy is built and how the ports/sockets
are connected,;

e Trace the UVM factory registration and override configuration;

e Trace the traffic at the TLM1 port interface and capture the pass-
through transactions, requests and responses, etc.;

e Trace the TLM2 socket interface and capture the pass-through
transaction (the generic payload), sync, phase, and basic protocol, etc.

e Trace the register access (read and write, mirror, etc) and how the
register hierarchy has been built.

11 of (25) 0”
D \

Tracing Component Creation and Port
Connection a@

SYSTEMS INITIATIVE

e Add tracing points where components/port are created and
report/record the following information:
— The parent full name
— The component/port name

— The full type name, e.g. “ubus_pkg::class ubus_master_driver”, of
the component/port

— Other component information (e.g. is port, export, or imp)

e Add report/recording points where ports are connected, and
record the following information:
— The caller port full name and port type, etc
— The provider port full name and port type, etc

12 of (25)

DvCon®

Example Code agcellerd)

function uvm_component::new (string name, uvm_component parent);

// Add a message whenever a new component has been created. The port component will be
// reported when creating the uvm_port_base, so won’t be reported here.
begin
uvm_port_component_base port_component;
iT (1$cast(port_component,this))
“uvm_info ("COMP_TRACE",{''Creating component ", (parent==top?
{parent.get_full_name(),"."}),name," (type=",get_type name(),')"},UVM_LOW)

end
endfunction

function uvm_port_base::new (string name, ..);

// Add a message whenever a new base port component has been created.
“uvm_info ('PORT_TRACE™, {''Creating port ", m_comp.get full _name(),
" (type=",get_type name(),")"}, UVM_LOW)
endfunction

function void uvm_port_base::connect (this_type provider);

// Add a message whenever two ports are connected.
“uvm_info ('PORT_CONN_TRACE™, {''Connecting ports ",this.get full _name(),
*with ",provider.get_full _name()}, UVM_LOW)
endfunction

13 of (25)

DvCoi™
Tracing Transaction Flow at the

Port Level atcellrd)

IIIIIIIIIIIIIIIII

e Add report/recording points at each port/export/imp
methods like put(), get(), etc.

e Report/record the following information:
— The request and/or response transactions
— The return value if any
— The function name, e.g. “put”, “get”
— The time entering and leaving the methods

— The port info (full name, type, recording_details, and
other config data, etc)

14 of (25) 0”
D \

Sponsored By:

TLM1 and TLMZ2 Interface a@

SYSTEMS INITIATIVE

TLM Ports

task put (TYPE arg);
task get (output TYPE arg);
task peek (output TYPE arg);

e Sequence Iteem Pull Ports

task get_next_item(output REQ req_arg);
function void i1tem_done(input RSP rsp_arg = null);
function void put_response(input RSP rsp_arg);

e Analysis Ports
function void write (input T t); I
e TLM2 Sockets

function uvm_tIm_sync e nb_transport fw (T t, ref P p, input uvm_tlIm_time
delay);

function uvm_tlIm_sync e nb_transport bw(T t, ref P p, input uvm_tim_time delay);
function task b_transport (T t, uvm_tIm_time delay);

Example Code

DvCon®

Sponsored By:

accellera

SYSTEMS INITIATIVE

// A container class that wraps the
// data to be recorded.

class uvm_port_recording_object extend
uvim_object;
// The base port component handle
uvm_port_component_base port_comp;

// The port interface method name
string func_name;

// The transaction payload
uvm_object req;

// The begin time of the method call
time begin_time;

// The end time of the method call
time end_time;

// The macro to be added at beginning of each port interface method.
// 1t initiates the container object and records the beginning time.
“define UVM_IF_METHOD_BEGIN \
uvm_port_recording_object port_value = new; \
port_value.begin_time = $time;

// The macro to be added at the ending of each port interface method.
// 1t records the method name, the base port component,the ending time,
// and the transaction payload. The uvm_report_record() method will
// call the UVM transaction recording hook functions and record the
// data into database.
~“define UVM_IF_METHOD_END(req_arg,method name) \

port _value.func_name = method name; \

port_value.port_comp = m_comp; \

port value.end _time = $time; \

it ($cast(port value.req,req_arg)) \

uvm_report_record (“PortlF”, “Port level recording ..”, port value);

// Add the macros to each TLM or sequence port method

endclass “define UVM_SEQ ITEM PULL_ IMP(imp, REQ, RSP, req_arg, rsp_arg) \

task get next_item(output REQ reg_arg); \
~UVM_IF_METHOD_BEGIN \
imp.get_next_item(req_arg); \
“UVM_IF_METHOD_END(req_arg,"get_next_item™) \

endtask \

function void item_done(input RSP rsp_arg = null); \
~UVM_IF_METHOD_BEGIN \
imp.item_done(rsp_arg); \
“UVM_IF_METHOD_END(rsp_arg,"item_done'™) \

endfunction \

16 of (25)

_ a 919

Sponsored By:

Overview: atcellerd)

SYSTEMS INITIATIVE

This presentation contains
* Introduction
o Current UVM Debug Capabilities and Limitations
« Adding New Tracing Messages into the UVM Class Library
» Tracing Component Creation and Port Connection
* Tracing Transaction Flow at the Port Level
 Saving UVM Message Data into a Database
» Post-processing UVM Message Data and Enhanced Visualizations
« Conclusion

17 of (25)

Sponsored By:

Log File v.s. Database accellerd)

SYSTEMS INITIATIVE

e Text format log file
— Huge number of messages
— Extraordinary large file
— Difficult to organize and process the data
— Hard to locate useful data

e Well-organized database with good user interface

— Data organization
e Predefined properties (e.g. verbosity, severity, etc.)
e User-defined properties with values in different data types
e Transactions and their payloads

— User interface — a set of PLI tasks
e Direct PLI task instrumentation
e Use UMV report catcher to capture the messages and hook PLI tasks
 Take advantage of UVM recorder

18 of (25) “
Y 9 .

DvCon®

Sponsored By:

Log File Example agcellerd)

SYSTEMS INITIATIVE

UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ O: reporter [PH/TRC/SCHEDULED]
Phase “uvm.uvm_sched.pre _main® (id=378) Scheduled from phase
uvm.uvm_sched.post_configure

UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ O: reporter [PH/TRC/STRT] Phase
"uvm.uvm_sched.pre_main® (id=378) Starting phase

UVM_INFO ../../../../src/base/uvm_phase.svh(1235) @ O: reporter [PH/TRC/SKIP] Phase
"uvm.uvm_sched.pre_main® (id=378) No objections raised, skipping phase

UVM_INFO ../../../../src/base/uvm_phase.svh(1387) @ O: reporter [PH/TRC/DONE] Phase
"uvm.uvm_sched.pre_main® (id=378) Completed phase

UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ O: reporter [PH/TRC/SCHEDULED]
Phase "uvm.uvm_sched.main® (id=390) Scheduled from phase uvm.uvm sched.pre _main
UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ O: reporter [PH/TRC/STRT] Phase
"uvm.uvm_sched.main® (id=390) Starting phase

UVM_INFO @ O: main [OBJTN_TRC] Object

uvim_test _top.ubus_example tb0.ubusO.masters[0].sequencer.loop read modify write_ seq
raised 1 objection(s): count=1 total=1

UVM_INFO @ O: main [OBJTN_TRC] Object

uvm_test top.ubus_example tb0.ubusO.masters[0].sequencer added 1 objection(s) to its
total (raised from source object): count=0 total=1

UVM_INFO @ O: main [OBJTN_TRC] Object uvm_test_top.ubus_example_tb0.ubusO.masters[0]
added 1 objection(s) to its total (raised from source object): count=0 total=1
UVM_INFO @ O: main [OBJTN_TRC] Object uvm_test_top.ubus_example_tb0.ubusO added 1
objection(s) to its total (raised from source object): count=0 total=1

19 of (25) O’Q
o 9 .

DyCon®

Sponsored By:

Post-Process and Visualizaton vecellers

SYSTEMS INITIATIVE

e Post-process: visualization, filtering, searching, ordering, highlighting,
reorganization

e Waveform illustration for phasing execution and objection activities:

File Exploration Signal View Waveform Analog Tools Window

|lazoyme| 1% 0 v 1% a® Qe s € xins afGwfer /]
ar . e o, koo, ., Pwo,, Do, ., ||

Help

STRT: pre_main X STRT: pre_configqure STRT: pre_main
: ! " :
SCHEDULED: pre_mailn SCHEDULED: pre_configqure SCHEDULED: pre_mailn
lm \PH_TRC_ [uon] [et5e] : [e15e e Lot
DONE: post confiqure , DOME: post reset DONE: post confiqure

SKEIP: post_configqure X SKIP: post_reset SEIP: post_configqure

—
STRT: |STRT: main hre ! STRT: post_reset @ STRT: confiqure : |STRT: main
—
SCHEDY SCHELULED: main STRT: |SCHEDULED: post re|SCHEDULED: configure SCHEDULED: main
DONE: |DONE: pre_main JUMP: main -» reset DONE: pre_configqure : |DONE: pre_main
!

"main"

WPH_TRC_ [uvm])

AOD 1 {count=0 total=3)

W ‘0BT TRC [main] ADD 1 (count=0 total=z) : ADD 1 (count=0 total=2)

AOD 1 {count=0 total=1) CLR {count=0 total=0) AOD 1 {count=0 total=1)

[main]):total[31:0]

20 of (25)

Sponsored By:

Overview: atcellerd)

SYSTEMS INITIATIVE

This presentation contains
* Introduction
o Current UVM Debug Capabilities and Limitations

« Adding New Tracing Messages into the UVM Class Library
» Tracing Component Creation and Port Connection
* Tracing Transaction Flow at the Port Level

« Saving UVM Message Data into a Database

e Post-processing UVM Message Data and Enhanced
Visualizations

e Conclusion

21 of (25)

Sponsored By:

Testbench Component Hiearchy sccellers

e Collect the testbench hierarchy and component parent-child relationship data
from the added tracing messages where components/ports are created

e [lllustration of UVM component hierarchy tree and source code synchronization:

Eile ‘iew Source Trace Debug Toaols Window Help

<OYMAYM_Hier.> A || - | O] =sroistest read_madify_wiite.ubus_example_th0.ubus0.masters build_phase(hovasintey/VR/Dai
47| function void build_phase{uwnm_phase phase)s
E"]% uvm_test_top (test_Zm 4s) 4g super,build_phase(phaze)
El']% ubus_example th0 (ubus_example th) 43 monitor = ubus_master_monitor:itupe_id:icreate('monitor”, this):
- scorehoardd (wbus_example scorehoacd) [0}
g e ubusl (ubus env) 51 ifl{get_is_active() == UWH_ACTIVE) begin
B bus_monitor (wbus bus_monitor) 52 sequencer = uwm_sequencer#{ubus_transfer):itupe_id:icreatel"sequencer”, thiz):
g masters[0] (ubus_master agent) driver = ubus_master_driver:itupe_id:icreate("driver", this):
Q-Eédriver (uhus_master_driv : —— "_fd e
3 T3P port Tuwh, analyeis Show Mavigation Text Field Cirl+3 bn ¢ build_phaze
: @ sqr_pull port (usm_seq | Show Detail Information Ctrl+D | phase

@B monitor (ubus_master_mond .
| @ sequencer (uvm_sequencer) Showy Definition
Efmasters[1] (ubus_master_age Shawy Creation
slawves[0] f(ubus_slawve agent
slawes[1] f(ubus_slave_agent £

oid connect_phase{uwm_phase phasel:
iz_active() == UWM_ACTIVE) begin
‘seq_item_port‘connect(Sequencer,Seq_item_export)3

B

; — endfunction ¢ conmect_phase
B =] slawes[2] (ubus_slawve_agent) 63
8 slaves[3] (ubus_slawe_sgent) B4|endclass : ubus_master_agent
=]
BE
¥
] |

<lhst_Tree= | <Decl_Tree= | <O%M/AY I _Higr =

]

22 of (25)

Sponsored By:

accellera

SYSTEMS INITIATIVE

e Collect the port connection data and connection path from the added tracing
messages where ports are connected

Port Connections

e Displaying ports and port connections in UVM hier tree:

Eile Wiew Source Trace Debug Toolz Window Help

< OV A _Hier. = ﬂ:l;lil “eire:] =test_read_modify_write ubus_e=ample_thO.ubus.masters.connect
A 53] function woid connect_phasze{uwn_phaze phasel:
G5 uwwm_test top (test Zm ds) 59 iffget_iz_activel) == INM_ACTIVE) begin
=]]E ubus_example th0 (ubus example th) 50 L 28q_1iten_port,connect{sequencer, seq_iten_sxport):
1 scoreboardd (ubus example scorehoacd) E1l
== vbus0 (ubus enw) E?| endfunction : connect_phase
| &= bus_monitor {(ubus_bus_monitor) B3
Eagmasterslﬂ] {ubus_master agent) E4|endclazs 3 ubuz_master_agent
E]% driwver (wbus master driwver)]

~f@ £5p_port (usm_analysis port) BB

¢ lpgisqgr pull port (uwm seq item pull port)’
Ba {T?thtgf (ub_ups mas(ter_mor?;tor) = e il Show MNavigation Text Field Cirl+3
B sequencer [uvm_sequencer) + Ghow Detail Infarmation Ctrl+D
B masters[1] (ubus_master agent) »
= slawves[0] (uvhus_slawve agent) Shaw Definition
|&5 slaves[1] (ubus slawve agent) Show Creation
(| Show Connections
Creation | Connection | Connected Path

Fath:

uym_test_top.ubus example thi. uhusD.masters[D] sequencer.seq_ite

11
23 Of (25) <Inst_Tree= | <Decl_Trees> | <OVM/IWVI_Hier =

i

ﬂ\/ 20713
Sponsored By:

Port-level Transaction Flow a@

SYSTEMS INITIATIVE

e The data resulting from the tracing messages added for the transaction flow at
the port level is captured and saved in the debug database

e [lllustration of port-level transaction flow in contrast with transaction recording:
Eile Signal Miew MWaveform Analog Tools Window -

Ca
A T e 110 A (o A v 110 x1ns - (@) (@) %) = ey: (F]~ (4]

put_response (req)

get_next_itemi{req) item_dnnei get_next_itemi{req)

#driver#sgr pull por

read_byte seql write_hyte seqld

[MW_seq

dmasters [0]#sequencer

24 of (25)

Sponsored By:

Conclusion agcellerd)

SYSTEMS INITIATIVE

e Additional system trace messages, as described in this paper, should be
instrumented in the UVM standard library

e UVM library should be enhanced such that the messages can be easily
captured and diverted into a debug database

e Each message can be a recording point to collect internal runtime data

e Further processing of the database can enable more efficient post-
simulation analysis and greater understanding of UVM testbenches

25 of (25) 0”
D \

	Extendable Messaging Techniques for Debugging and Analyzing UVM�Testbench Structure and Transaction Flow
	Overview:
	Introduction
	Introduction (1)
	Overview:
	UVM Extensibility Issue
	Improve UVM Extensibility
	UVM Transaction Recording
	UVM Tracing Messages
	Overview:
	Adding New Trace Messages
	Tracing Component Creation and Port Connection
	Example Code
	Tracing Transaction Flow at the Port Level
	TLM1 and TLM2 Interface
	Example Code
	Overview:
	Log File v.s. Database
	Log File Example
	Post-Process and Visualizaton
	Overview:
	Testbench Component Hiearchy
	Port Connections
	Port-level Transaction Flow
	Conclusion

