
Extendable Messaging Techniques for
Debugging and Analyzing UVM

Testbench Structure and Transaction Flow
by

Jun Zhao, Bindesh Patel, Rex Chen
Research & Development

Synopsys Inc.

Sponsored By:

2 of (25)

Overview:
This presentation contains

• Introduction
• Current UVM Debug Capabilities and Limitations
• Adding New Tracing Messages into the UVM Class Library

• Tracing Component Creation and Port Connection
• Tracing Transaction Flow at the Port Level

• Saving UVM Message Data into a Database
• Post-processing UVM Message Data and Enhanced Visualizations
• Conclusion

Sponsored By:

3 of (25)

Introduction
• Universal Verification Methodology (UVM)

– A standard verification methodology
• Reuse and interoperability

– A SystemVerilog class library
• Testbench template

• How to debug UVM based testbenches?
– No VPI standard for dynamic data dumping
– VPI also is too low-level, can incur large overhead

• Transaction level debug v.s. Code level debug
– No standard on transaction dumping
– Acquire transaction level debug data from UVM

Sponsored By:

4 of (25)

Introduction (1)
• Ideal scenario

– Attach a debug system to UVM library as an extension
– Dynamically access and process the internal data

• The fact
– UVM does not allow reusable extensions
– Virtual function-based callbacks does not help

• Only the extended class can make use of these callbacks
• Implementations of the callbacks can be only developed inside of a specific

testbench
• Cannot be reused in other testbenches

– System messages become very important
• Tracing messages for phase/objection, config/resource_db, etc
• But still not covering all the key UVM functions

Sponsored By:

5 of (25)

Overview:
This presentation contains

• Introduction
• Current UVM Debug Capabilities and Limitations
• Adding New Tracing Messages into the UVM Class Library

• Tracing Component Creation and Port Connection
• Tracing Transaction Flow at the Port Level

• Saving UVM Message Data into a Database
• Post-processing UVM Message Data and Enhanced Visualizations
• Conclusion

Sponsored By:

6 of (25)

UVM Extensibility Issue
• How to add vendor-specific or tool-specific extensions?

– For example, people may want to record the important details of
UVM execution to help for post-simulation debugging

• For end users, they have to add codes in their testbenches, but the
codes may be generic to all testbenches

• For tool vendor or design companies, they have to modify the UVM
library, but to think every vendor/company have their own modified
UVM libraries

– There are features in UVM that can help but are limited
• Transaction recorder
• Report Catcher
• etc

Sponsored By:

7 of (25)

Improve UVM Extensibility
• Enable the UVM library to be

extendible and the extension should
be:
– From external
– Intact to UVM library
– Transparent to end user
– Stackable

• The extension can collect, process,
or even modify the dynamic data in
UVM during execution

• Analogy
– PLI in Verilog

UVM

User
perspective

E
X
T
1

E
X
T
2

Sponsored By:

8 of (25)

UVM Transaction Recording
• Record UVM sequence behavior and contents into preferred database via

uvm_recorder

• The following hook functions are provided to be implemented by user or vendor:
– uvm_create_fiber
– uvm_set_index_attribute_by_name
– uvm_set_attribute_by_name
– uvm_check_handle_kind
– uvm_begin_transaction
– uvm_end_transaction
– uvm_link_transaction
– uvm_free_transaction_handle

• These hook functions are automatically called at the key stages of sequence
generation

• Limitation: Only covers sequence part at very high level

Sponsored By:

9 of (25)

UVM Tracing Messages
• Embedded inside of the UVM library at the major points of the execution

• Expose important runtime data into log for debug or post process

• Can be activated from command line options:
+UVM_PHASE_TRACE turns on tracing of phase executions
+UVM_OBJECTION_TRACE turns on tracing of objection activities
+UVM_RESOURCE_DB_TRACE turns on tracing of resource DB

access (read & write)
+UVM_CONFIG_DB_TRACE turns on tracing of configuration DB access

• Limitations
– Not cover all the functionalities of the UVM
– Only output to a text format log file, difficult for post processing

Sponsored By:

10 of (25)

Overview:
This presentation contains

• Introduction
• Current UVM Debug Capabilities and Limitations
• Adding New Tracing Messages into the UVM Class

Library
• Tracing Component Creation and Port Connection
• Tracing Transaction Flow at the Port Level

• Saving UVM Message Data into a Database
• Post-processing UVM Message Data and Enhanced Visualizations
• Conclusion

Sponsored By:

11 of (25)

Adding New Trace Messages
• Trace how the component hierarchy is built and how the ports/sockets

are connected;

• Trace the UVM factory registration and override configuration;

• Trace the traffic at the TLM1 port interface and capture the pass-
through transactions, requests and responses, etc.;

• Trace the TLM2 socket interface and capture the pass-through
transaction (the generic payload), sync, phase, and basic protocol, etc.

• Trace the register access (read and write, mirror, etc) and how the
register hierarchy has been built.

Sponsored By:

12 of (25)

Tracing Component Creation and Port
Connection
• Add tracing points where components/port are created and

report/record the following information:
– The parent full name
– The component/port name
– The full type name, e.g. “ubus_pkg::class ubus_master_driver”, of

the component/port
– Other component information (e.g. is port, export, or imp)

• Add report/recording points where ports are connected, and
record the following information:
– The caller port full name and port type, etc
– The provider port full name and port type, etc

Sponsored By:

13 of (25)

Example Code
function uvm_component::new (string name, uvm_component parent);
…
// Add a message whenever a new component has been created. The port component will be
// reported when creating the uvm_port_base, so won’t be reported here.

begin
uvm_port_component_base port_component;
if (!$cast(port_component,this))

`uvm_info ("COMP_TRACE",{"Creating component ",(parent==top?"":
{parent.get_full_name(),"."}),name,"(type=",get_type_name(),")"},UVM_LOW)

end
endfunction

function uvm_port_base::new (string name, …);
…
// Add a message whenever a new base port component has been created.

`uvm_info ("PORT_TRACE", {"Creating port ", m_comp.get_full_name(),
" (type=",get_type_name(),")"}, UVM_LOW)

endfunction

function void uvm_port_base::connect (this_type provider);
…
// Add a message whenever two ports are connected.

`uvm_info ("PORT_CONN_TRACE", {"Connecting ports ",this.get_full_name(),
" with ",provider.get_full_name()}, UVM_LOW)

endfunction

Sponsored By:

14 of (25)

Tracing Transaction Flow at the
Port Level
• Add report/recording points at each port/export/imp

methods like put(), get(), etc.

• Report/record the following information:
– The request and/or response transactions
– The return value if any
– The function name, e.g. “put”, “get”
– The time entering and leaving the methods
– The port info (full name, type, recording_details, and

other config data, etc)

Sponsored By:

15 of (25)

TLM1 and TLM2 Interface
• TLM Ports

• Sequence Iteem Pull Ports

• Analysis Ports

• TLM2 Sockets

task put (TYPE arg);
task get (output TYPE arg);
task peek (output TYPE arg);

task get_next_item(output REQ req_arg);
function void item_done(input RSP rsp_arg = null);
function void put_response(input RSP rsp_arg);

function void write (input T t);

function uvm_tlm_sync_e nb_transport_fw (T t, ref P p, input uvm_tlm_time
delay);
function uvm_tlm_sync_e nb_transport_bw(T t, ref P p, input uvm_tlm_time delay);
function task b_transport (T t, uvm_tlm_time delay);

Sponsored By:

16 of (25)

Example Code
// The macro to be added at beginning of each port interface method.
// It initiates the container object and records the beginning time.
`define UVM_IF_METHOD_BEGIN \

uvm_port_recording_object port_value = new; \
port_value.begin_time = $time;

// The macro to be added at the ending of each port interface method.
// It records the method name, the base port component,the ending time,
// and the transaction payload. The uvm_report_record() method will
// call the UVM transaction recording hook functions and record the
// data into database.
`define UVM_IF_METHOD_END(req_arg,method_name) \

port_value.func_name = method_name; \
port_value.port_comp = m_comp; \
port_value.end_time = $time; \
if ($cast(port_value.req,req_arg)) \
uvm_report_record (“PortIF”, “Port level recording …”, port_value);

// Add the macros to each TLM or sequence port method
`define UVM_SEQ_ITEM_PULL_IMP(imp, REQ, RSP, req_arg, rsp_arg) \
task get_next_item(output REQ req_arg); \

`UVM_IF_METHOD_BEGIN \
imp.get_next_item(req_arg); \
`UVM_IF_METHOD_END(req_arg,"get_next_item") \

endtask \
function void item_done(input RSP rsp_arg = null); \

`UVM_IF_METHOD_BEGIN \
imp.item_done(rsp_arg); \
`UVM_IF_METHOD_END(rsp_arg,"item_done") \

endfunction \

// A container class that wraps the
// data to be recorded.

class uvm_port_recording_object extend
uvm_object;

// The base port component handle
uvm_port_component_base port_comp;

// The port interface method name
string func_name;

// The transaction payload
uvm_object req;

// The begin time of the method call
time begin_time;

// The end time of the method call
time end_time;

endclass

Sponsored By:

17 of (25)

Overview:
This presentation contains

• Introduction
• Current UVM Debug Capabilities and Limitations
• Adding New Tracing Messages into the UVM Class Library

• Tracing Component Creation and Port Connection
• Tracing Transaction Flow at the Port Level

• Saving UVM Message Data into a Database
• Post-processing UVM Message Data and Enhanced Visualizations
• Conclusion

Sponsored By:

18 of (25)

Log File v.s. Database

• Text format log file
– Huge number of messages
– Extraordinary large file
– Difficult to organize and process the data
– Hard to locate useful data

• Well-organized database with good user interface
– Data organization

• Predefined properties (e.g. verbosity, severity, etc.)
• User-defined properties with values in different data types
• Transactions and their payloads

– User interface – a set of PLI tasks
• Direct PLI task instrumentation
• Use UMV report catcher to capture the messages and hook PLI tasks
• Take advantage of UVM recorder

Sponsored By:

19 of (25)

Log File Example
…
UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ 0: reporter [PH/TRC/SCHEDULED]
Phase 'uvm.uvm_sched.pre_main' (id=378) Scheduled from phase
uvm.uvm_sched.post_configure
UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ 0: reporter [PH/TRC/STRT] Phase
'uvm.uvm_sched.pre_main' (id=378) Starting phase
UVM_INFO ../../../../src/base/uvm_phase.svh(1235) @ 0: reporter [PH/TRC/SKIP] Phase
'uvm.uvm_sched.pre_main' (id=378) No objections raised, skipping phase
UVM_INFO ../../../../src/base/uvm_phase.svh(1387) @ 0: reporter [PH/TRC/DONE] Phase
'uvm.uvm_sched.pre_main' (id=378) Completed phase
UVM_INFO ../../../../src/base/uvm_phase.svh(1410) @ 0: reporter [PH/TRC/SCHEDULED]
Phase 'uvm.uvm_sched.main' (id=390) Scheduled from phase uvm.uvm_sched.pre_main
UVM_INFO ../../../../src/base/uvm_phase.svh(1158) @ 0: reporter [PH/TRC/STRT] Phase
'uvm.uvm_sched.main' (id=390) Starting phase
UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer.loop_read_modify_write_seq
raised 1 objection(s): count=1 total=1
UVM_INFO @ 0: main [OBJTN_TRC] Object
uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer added 1 objection(s) to its
total (raised from source object): count=0 total=1
UVM_INFO @ 0: main [OBJTN_TRC] Object uvm_test_top.ubus_example_tb0.ubus0.masters[0]
added 1 objection(s) to its total (raised from source object): count=0 total=1
UVM_INFO @ 0: main [OBJTN_TRC] Object uvm_test_top.ubus_example_tb0.ubus0 added 1
objection(s) to its total (raised from source object): count=0 total=1
…

Sponsored By:

20 of (25)

Post-Process and Visualizaton
• Post-process: visualization, filtering, searching, ordering, highlighting,

reorganization

• Waveform illustration for phasing execution and objection activities:

Sponsored By:

21 of (25)

Overview:
This presentation contains

• Introduction
• Current UVM Debug Capabilities and Limitations
• Adding New Tracing Messages into the UVM Class Library

• Tracing Component Creation and Port Connection
• Tracing Transaction Flow at the Port Level

• Saving UVM Message Data into a Database
• Post-processing UVM Message Data and Enhanced

Visualizations
• Conclusion

Sponsored By:

22 of (25)

Testbench Component Hiearchy
• Collect the testbench hierarchy and component parent-child relationship data

from the added tracing messages where components/ports are created

• Illustration of UVM component hierarchy tree and source code synchronization:

Sponsored By:

23 of (25)

Port Connections
• Collect the port connection data and connection path from the added tracing

messages where ports are connected

• Displaying ports and port connections in UVM hier tree:

Sponsored By:

24 of (25)

Port-level Transaction Flow
• The data resulting from the tracing messages added for the transaction flow at

the port level is captured and saved in the debug database

• Illustration of port-level transaction flow in contrast with transaction recording:

Sponsored By:

25 of (25)

Conclusion
• Additional system trace messages, as described in this paper, should be

instrumented in the UVM standard library

• UVM library should be enhanced such that the messages can be easily
captured and diverted into a debug database

• Each message can be a recording point to collect internal runtime data

• Further processing of the database can enable more efficient post-
simulation analysis and greater understanding of UVM testbenches

	Extendable Messaging Techniques for Debugging and Analyzing UVM�Testbench Structure and Transaction Flow
	Overview:
	Introduction
	Introduction (1)
	Overview:
	UVM Extensibility Issue
	Improve UVM Extensibility
	UVM Transaction Recording
	UVM Tracing Messages
	Overview:
	Adding New Trace Messages
	Tracing Component Creation and Port Connection
	Example Code
	Tracing Transaction Flow at the Port Level
	TLM1 and TLM2 Interface
	Example Code
	Overview:
	Log File v.s. Database
	Log File Example
	Post-Process and Visualizaton
	Overview:
	Testbench Component Hiearchy
	Port Connections
	Port-level Transaction Flow
	Conclusion

