
Exquisite modeling of verification IP: Challenges and

Recommendations

Anuradha Tambad (Anuradha.tambad@lsi.com), Adiel Khan (adiel@synopsys.com)

Subashini Rajan (Subashini.rajan@lsi.com), Synopsys (Northern Europe) Ltd, UK

Shivani Upasani (Shivani.upasani@lsi.com),

Prashanth Srinivasa (Prashanth.srinivasa@lsi.com),

Imran Ali (Imran.ali@lsi.com)

LSI India R&D Pvt Ltd, Bangalore, India

Abstract— Standard verification methodologies like

UVM/VMM provide guidelines for developing reusable

verification IPs. But for complex designs with huge amount

of data transfers and whose interface protocol could be

upgraded for better performance, special care needs to be

taken for architecting verification IP’s. Further, large

number of interdependent parameters in design poses

another challenge of complex stimulus generation to the

constraint solver and to the random verification. This paper

describes the challenges faced and the innovative steps

followed in developing an efficient reusable VIP. These steps

enable us to reduce the overhead on tool constraint solver

engine, to save system run-time memory and to reduce the

rework when interface protocol changes.

Acronyms:

SoC: System On Chip

VMM: Verification Methodology Manual

UVM: Universal Verification Methodology

DMA: Direct Memory Access

DUT: Design Under Test

VIP: Verification Intellectual Property

I. INTRODUCTION

With the growing size of complex SoCs, the VIPs involved
in the verification have to be more efficient, faster and
reusable to traverse various design features at different
hierarchies. The most important feature of a VIP is to have an
efficient generation mechanism to randomize and control the
stimulus through right set of constraints.

When there is huge amount of data transfers involved, it
becomes equally important to develop efficient data models
along with other components considering the system memory
consumption. In addition, constantly evolving specification
during design cycle, require repeated updates to the
verification IP. Any reusable VIP should be built to
accommodate the changes with minimal effort and concentrate

more on the verification aspects, thus reducing the verification
effort and time to market

Following are the challenges encountered while
developing the reusable verification IP.

1. Simulator takes longer time to solve large set of inter-

related constraints, since all the constraints are solved in
parallel. If the constraints are replaced with procedural

code, maintaining interdependency between the

parameters and controlling the transaction from test case

becomes very difficult.

2. Generating large amount of pre-generated data for each

transaction consumes significant runtime memory since

each transaction is stored in reference models till the

scoreboard check is complete. Hence the memory

requirement can easily go beyond the available system

runtime memory.

3. Frequent changes in interface protocol for architectural

reasons (better performance etc) affects the verification IP

development as well. A high degree of configurability has

to be provided to the verification IP to enable reuse at

sub-chip or chip levels and in different modes.

The following sections describe how all these challenges

were addressed in the VIP without compromising its quality

and performance.

II. CHALLENGES FACED AND RECOMMENDATIONS

A. Efficient way to break down complex constraints in

different randomization phases:

Constrained random verification environment needs to

take charge of the inadequacy of the constraint solver in

mailto:Anuradha.tambad@lsi.com
mailto:adiel@synopsys.com
mailto:Subashini.rajan@lsi.com
mailto:Shivani.upasani@lsi.com
mailto:Prashanth.srinivasa@lsi.com
mailto:Imran.ali@lsi.com

solving of large number of inter-related parameters in parallel.
When the number and size of properties to be constrained
keeps increasing, the constraint solver times out as it takes
longer to arrive at a possible value for the random properties.
Replacing the parallel constraint code with procedural code
increases the lines of coding and is also prone to errors mainly
because of interdependent constraints. On randomization of
the class, independent member properties and inter-dependent
properties are solved in parallel. In order to lessen the burden
on the constraint solver, the different type of class properties
like independent, inter-dependent and dependent fields are
segregated for procedural and parallel generation.

In Figure.1 Constraints „size_c‟ and „cfg_c‟ indicate
„cfg_descr‟ and „size_decoder‟ are inter-dependent.

Figure 1. Inter-dependent properties

Due to the large interdependency of certain properties in a
class, it becomes increasingly difficult for the user to convert
the constraints into procedural code maintaining the same
valid dependencies between them. Hence such constraints are
better solved in parallel by the constraint solver rather than by
the verification engineer.

Figure 2 is an example with complex constraints, where
„jd_D.mode’, „rate’ and „rep’ are inter-related with lot of
dependencies. If the order of solving these properties is
decided by the verification engineer, all the dependencies
involved must be taken care manually. When large numbers of
such interdependent properties are used segregation of such
constraints to procedural and parallel code becomes difficult.

Figure 2. Example for complex constraints

In the example shown in Error! Reference source not
found. there are two random fields, size_decoder and
cfg_descr in class packet. When an instance of packet class is
randomized, these fields get randomized in a bidirectional way
based on the constraint specified. User can add more
constraints on these fields by extending the packet class.
When the variable size_decoder is independent and cfg_descr
is dependent on size_decoder, generating the fields
sequentially will reduce the constraint solver overhead. This
can be achieved by generating size_decoder during
randomize() and cfg_descr during post_randomize() methods.
This way, the constraint solver needs to solve only
size_decoder during randomization instead of being burdened
by solving both variables. But the side effect of this method is
that, user cannot add constraints externally on the field
cfg_descr which gets generated during post_randomize() call.

class turbo_class;

//property declarations

rand mode_e mode;

rand int rate;

rand int blk_size;
…….

//constraints of properties

constraint rate_c { (mode == MAX_MODE) -> (rate

inside {0,2,3,4,6});

};

constraint blk_size_c {

if(mode == MAX_MODE && rate == 0) (blk_size/2

inside

{108,120,144,180,192,216,240,480,960,1440,1920,2400}

) ;

if(mode == MAX_MODE && rate == 2) (blk_size

inside {48,96,144,192,240, 288, 384, 432, 480}) ; };

constraint s_c {

 ((rep == 3) || (rep == 1))-> mode == TE_MODE; };

constraint s_rm_c {

 (so == 1) -> (byp != 0);};

constraint dyn_stop_c {

 (dyn_stop == DYN_STOP) -> (so == 0); };

//functions

………….

endclass

 rand bit[5:0] size_decoder;

 rand bit [3:0] cfg_descr;

 constraint size_c { (size_decoder == 3) -> (cfg_descr

== 1); };

 constraint cfg_c { (cfg_descr == 4) -> (size_decoder ==

5);};

Constraints are segregated when it is easier to partition
them and there is overhead on constraint solver solving them
parallel. But if the constraints are as simple as shown in
Error! Reference source not found.3, then it is better to
generate the random fields in traditional randomization since
the overhead on constraint solver is minimal.

Figure 3. Constraint Dependency

In the example shown in Figure 4, „turbo_pkt_q‟ is a queue
of instances of class „turbo_class‟ (described in Figure 2). The
size of the queue is random and is controlled by the field
q_size. Constraint block cst_list has constraints among the
instances of the queue. During randomization, not only the
constraints within the turbo_class needs to be solved, but also
the constraints among the instances in parallel for the same
randomize() call. As the q_size increases, the overhead on the
constraint solver increases heavily slowing down the
simulation and might even result in constraint timeout.

Figure 4. Queue of class handles

Even though the size of the queue is controlled by the field
„q_size’, maximum number of „turbo_pkt_q’ instances need to
be initialized and pushed into the queue since objects will not
get initialized automatically during randomization. That
means, for every randomization, constraint solver has to solve
all the constraints for the list of maximum size.

Instead of generating all the objects of the queue in
parallel, if the objects are generated one by one in the post
randomize method incorporating the constraints between the
objects procedurally, then the overhead on the constraint
solver can be minimized and any number of objects can be
generated. In this case, user cannot add constraints to the
queue from the test case directly. However, facilities have to
be made to add constraints to the object itself through factory
mechanism and unique ids of the objects. Please refer the
diagram of hierarchical class modeling for procedural solving
of constraints in Figure 5.

Figure 5. Base class for hierarchical data structure

The partitioning of the procedural and parallel constraints
requires in-depth knowledge of the various properties of the
classes and their functionality.

While developing the infrastructure for partitioning the
constraints, we also found the need for similar data structures
in other verification modules. For example, similar to the data
structure handling in „turbo_pkt’, another type of packet
„viterbi_pkt’ is required for „viterbi list‟ generation. Thus for
all designs which require similar hierarchical data structure, a
generic base class was developed. The section given below on
reusable hierarchical class for sequential randomization
explains the usage of reusable base class for different types of
list generation.

 rand bit[5:0] size_decoder;

 rand int q_size;

 rand turbo_class turbo_pkt_q[$];

constraint cst_list {

 foreach (turbo_pkt_q[i] {

 (i!=0) ->

 turbo_pkt_q[i].mode == turbo_pkt_q[i-1].mode;

 (i!=0) ->

 turbo_pkt_q[i].start_addr > turbo_pkt_q[i-

1].end_addr;
 }

}

function post

randomize

Randomized

class handles

for loop () begin

randomize obj

end

Push

obj

Queue size

Class handles
function copy

function new

Queue of class handles

 Base class

class packet;

 rand bit[5:0] size_decoder;

 rand bit [3:0] cfg_descr;
 constraint size_c { (size_decoder == 3) -> (cfg_descr

== 1); }

….

endclass

1) Reusable hierarchical class for sequential
randomization

In a verification environment with complex packet based
protocols, multiple packets need to be generated randomly and
inserted into the channel of the signal drivers. This driver in
turn drives the packet as per protocol on the bus. In such
cases, the configuration such as “number of packets” needs to
be generated randomly first and then the individual data
packets are randomized using the additional constraints passed
from the test case. Each randomized packet is then pushed into
a queue. Figure 6 shows the code snippet for the hierarchical
class.

Figure 6. Base class for hierarchical data structure

Generating many random packets after solving large set of
parallel constraints to fill the queue puts overhead on the
constraint solver engine. Randomization is partitioned into 2
phases to lessen the burden on the constraint solver. However,
these data structures involving hierarchical classes have to be
coded in every test bench for different protocols which
requires rework. Also the probability of error is high since it

involves handling of multiple class handles and their
randomizations.

For all designs which require similar hierarchical data
structures, a new parameterized base class is added to the data
class library which is customized by the user according to
requirement. The base class has a property which is a class
handle of parameterized type, which in turn is used as a
factory pattern for the generation of list. The size of the list
depends on the random configuration of the base class.
Extension of the parameterized sub-classes in test case enables
constraining the properties of the class depending on the
packet protocols. This helped in achieving both performance
and controllability of the transaction from the test case level.

Figure 7 provides a code snippet which instantiates generic
base class for generation of „dec_turbo_enabled_turbo_pkt‟
list and also shows use of data_id to control individual object
of list.

Figure 7. Generic Base class Code snippet

Care should be taken in copying the randomized handles
from one to other before pushing into the queue to avoid
pushing the same handle repeatedly. Also constraining
individual packet was a problem which is solved by using a

class base_class #(type child_pkt = vmm_data)

extends vmm_data;

 rand int q_size; //size of queue for class handles

 constraint q_size_c { q_size[31] == 0;};

 child_pkt pkt_obj_q[$];

 rand child_pkt pkt_obj;

 virtual function void post_randomize();

 pkt_obj_q.delete();

 $cast(pkt_obj, pkt_obj.copy(pkt_obj));

 for(int i = 0;i < q_size ; i++) begin

 ………………….

 pkt_obj.randomize();

 pkt_obj_q.push_front(pkt_h);

 ……………..

 end

 endfunction

endclass

program test();

 initial begin

 base_class #(turbo_pkt) tr;

 turbo_pkt tpkt;

 tr.pkt_obj = tpkt; // assigning constrained value

// to baseclass handle

 …………….

 tr.randomize();

 end

endprogram

class dec_turbo_enabled_turbo_pkt extends
dec_turbo_job_desc_pkt;

 constraint dec_turbo_enabled_turbo_pkt_c {

 if(data_id) == 1{

 turbo_jd_D == 3;

 }

 };

……

 virtual function vmm_data copy (vmm_data to = null);

 dec_turbo_enabled_turbo_pkt tc;
……….

 endfunction

endclass

program test();

 initial begin

 base_class #(dec_turbo_enabled_turbo_pkt) tr;

 dec_turbo_enabled_turbo_pkt tpkt;

 tr.pkt_obj = tpkt; // assigning constrained value to

 //baseclass handle

 …………….

 tr.randomize();
 end

endprogram

tag named “data_id” where the data_id is used to control each
packet constraint from the test case.

B. Managing large list size

In verification, maintaining large amount of expected data
for each transaction becomes tricky. For example let‟s
consider a simple DMA design which reads data from source
location and writes that data in destination location. The
number of bytes read and written can be of huge size. For
example, in our DMA design, number of bytes read and write
depends upon 3 fields in the DMA descriptor/instruction. Each
of the 3 fields is 16 bit field. Hence, a total 2^16 * 2^16 *
2^16 = 2^48 bytes can be transferred.

A reference model was developed to generate the expected
data/address list which is stored in respective queues. When
DUT starts reading and writing data, Scoreboard compares the
actual address and data with the expected address and data
from the queues in the reference model. Though the idea
looks fine and simple there are system memory limitations
involved. The amount of data can increase the queue sizes to a
value which is beyond the available run time memory.

In our system we observed that when queue size grows and
memory usage reaches around 2GB, simulation crashes
because of memory unavailability. Though different systems
will have different amount of allocated run time memory but
beyond a point all will reach their upper memory limit.

 Thus to avoid memory limitation „watermark‟ concept
was adopted. To give a simple analogy, it is just like a water
tank where once water reaches a certain lower level, pump
starts automatically to fill the tank and once water reaches a
certain upper level pump gets auto cutoff. It waits to start
again when water reaches the lower level due to consumption
and the cycle goes on. The concept is explained part of Figure
8 and 9.

Figure 8. Water Mark Concept: Lower Threshold Level

Similar concept is used in managing the queues in which
reference model dynamically generates addresses/data in small
chunks and fills those addresses/data in their respective
queues. These generated address/data are filled only up to a
high threshold level (user can control) in the queue and once
the DUT transfers those addresses/data, Scoreboard compares
actual data with the expected list and deletes the data from the
list. Once it reaches a low threshold level, new chunk of
address/data gets generated and again the queues get filled up.
This way, all the address/data for each transaction gets
generated without affecting the runtime memory.

Figure 9. Water Mark Concept: Upper Threshold Level

In our project we have set the lower threshold level for the
queue size as 256 and upper threshold level as 1024. We set
these values mainly based on the max burst size possible in
our design to fetch data at a time and to keep extra buffer such
that Scoreboard, DUT overlap does not occur i.e. Scoreboard
always has data available before it calls compare method. As
we set only 1024 as upper threshold value, it will work
smoothly in most of the system. User can set any other values
based on their design or available runtime memory.

The same concept is applied in generating the packets as
well to avoid generating huge number of random packets and
storing them in a queue upfront. With this model, more
packets get generated once lower threshold level is reached.
Each packet gets generated after solving many constraints.
Hence solving constraints of many packets at the beginning
will take lot of time and eventually will give constraint time
out error at some point. Using watermark concept we were
able to avoid this issue as well.

 Once water level reaches

lower threshold level,

tank needs to fill again.

Upper

Threshold level

Lower

Threshold level

Upper Threshold

level of the queue

Lower Threshold

level of the queue

Once queue size reaches

lower threshold level,

addr/data need to generate

again to fill the queue.

List of

addr/data

 Water Tank Queue

Upper

Threshold

level

Lower

Threshold level

Water reached upper

threshold level, Stop

filling it more.

List of addr/data reached upper

threshold level. Hence stop

generating more

 Water Tank

Upper Threshold

level of the queue

Lower Threshold

level of the queue

 Queue

List of

addr/data

reached

upper

threshold

level.

C. Interface independent VIPMaintaining the Integrity
of the Specifications

In most designs, the interface protocol is upgraded for
better performance. Also the driver interface for configuring
the registers keeps changing from block level to chip level. In
such cases, the development of the verification IP is impacted
since the engineer has to rework on most components like
command layer protocol monitors and data handler for every
change in the interface as per architectural changes. It also
becomes necessary to maintain multiple sets of VIP for
different interfaces. Only thing which can be reused is
reference model or data integrity logic on the extracted data
received from monitors. Thus to make it generic or enable
reuse at all verification levels with different modes, a high
degree of configurability has to be provided to the verification
IP.

For example, in DMA verification environment, the
functional driver initializes the descriptor memory space with
descriptors and then enables DMA DUT to start the
transactions. In module level, DUT is interfaced with internal
proprietary interface (Data Bus A as per Figure 10), but in Sub
System Level the interface is different (Data Bus X as per
Figure 10).When leveraging the VIP at multiple levels, the
functional driver‟s functionality remains the same, but
formation of data which is passed to signal layer driver
connected to DUT interface needs to be changed. This will
need an update to functional driver to change the format of the
data as per new interface attached.

Figure 10. Design Under Test

Also there were more chances of interface getting changed
as per performance requirement to support more bandwidth.
Thus our VIP design must accommodate these changes to
provide reuse and support different configurations as per
architecture requirements. Similar issue exists with scoreboard
for interface dependent data received from Dut for
comparison.

To minimize the impact of frequent specification changes
at the interface level, interface driver and its transaction class
are separated from the rest of the VIP components. To
implement this, a two step approach is followed, a functional
level VIP transaction data is created which will interact with
rest of the VIP components and a conversion function is
provided to convert VIP transaction to interface level
transaction. By adopting this method, for any change in the
interface level protocol, only the associated driver, its
interface level transaction and the conversion function have to
be changed. The rest of the VIP components remain
unaffected and unchanged.

With new approach DMA verification IP was designed to
follow the layered approach specified by VMM methodology.
The functional layer consists of reference model, scoreboard
and functional driver. The command layer driver/monitor
communicates between the functional layer and signal layer
components. The information passed to command layer need
to be passed to reference/scoreboard model to compare with
the actual transactions received from the DUT. The challenge
is that the functional driver must have the knowledge of the
protocol used to communicate to command layer. Similarly
Scoreboard will also need to generate the expected data list as
per the protocol data format to be compared with the actual
data received from the command monitor.

In order to make the functional layer independent of
interface data a two step process is followed:

1. Create the module related data dma_burst_data to be
used by functional driver/reference model/scoreboard.

2. Have a converter class to convert from interface
(BusA/BusX data) to module specific data class
(dma_burst_data) or vice versa when driving data to command
layer which is specific with respect to DUT.

 Data BusPP X Processor Level DUT

Module level DUT

Config Bus X

 Data Bus X

Data

Bus A

 Data BusPP X Processor Level DUT

Module level DUT

Config Bus X

 Data Bus X

DMA
Data

Bus A

Data

Bus A

 Config Bus A

Data Bus X

Data

Bus A

 Config Bus A

Data Bus X

DUT

Figure 11. DMA Testbench with Interface independent VIP

Thus with this approach DMA VIP is separated from
interface related components and the command layer uses the
converter class output data to communicate to DUT. Figure 11
explains how converter class acts as a mediator between
functional layer and command layer. Figure 12 is an example
of converter class code snippet.

Figure 12. Interface converter class

III. RESULT AND CONCLUSION

 For DMA descriptor list generation similar
hierarchical class modeling was required thus reused the
generic parameterized base class passing dma descriptor class
handle. This helped us not to recode the same data structure.

 Using watermark concept we avoided memory crash
issue. Without using water mark concept tool runs out of
memory when queue(32bit queue type) size reaches around
149314080 value

 In the course of the project, the processor interface
protocol upgraded from AHB to AXI. As the AXI VIP
provided the command layer monitor, only effort was to write
a conversion method to convert VIP specific transfer to AXI.
This took us just half a day effort where as in normal approach
at least 3 days to modify functional driver and scoreboard

The table in Figure 12 shows the reduction in time taken
by following sequential randomization of the class properties
compared to parallel randomization.

No of
Pkt

CPU time in
seconds in Parallel
randomization

CPU time in seconds in
Sequential
randomization

50 8 2

100 19 2

500 86 8

1000 190 18

4000 788 197

 Figure 12. Time - Parallel vs Sequential randomization

The table in Figure 13 shows the reduction in memory
consumed by following sequential randomization of the class
properties compared to parallel randomization.

No of
Pkt

memory in Mb in
Parallel
randomization

memory in Mb in
Sequential
randomization

50 16 16

100 16 16

500 16 556

1000 273 873

4000 465 2788

 Figure 13. Memory - Parallel vs Sequential randomization

 Reference Model

Converter class Converter class

Command layer

driver

Functional

Driver

Command layer

monitor

Generator

DUT

Dma_data

_
 Dma_data

// Convert BUSA data to dma _data and

// passed to SB to comapare with expected list

function tr_post_mon_call(BusA_cmd_monitor

xactor,BusA_pkt pkt_mon);

dma_burst_data out_burst;

out_burst = new();

for(int =0;i<=pkt_mon.BusA_burst_size;i++) begin

 dma_transfer_data dma_tr_temp;

 dma_tr_temp = new();

 dma_tr_temp.address = pkt_mon.BusA_addr[i];

 dma_tr_temp.data = pkt_mon.BusA_data[i];

……….

……….

……….

end

Following above recommendations, a robust VIP is created
to generate random packets which are constrainable and easily
controlled from test case without burdening the constraint
solver. This reusable VIP is efficient, faster, and immune to
interface changes. Also reduces run time memory
consumption.

IV. ACKNOWLEDGEMENT

We would like to thank LSI and DVCon for giving us the
opportunity to present our work and share our experience in a

diversified forum. We also express our gratitude to Dwaraka
Jayendra, our manager for his guidance and help.

V. REFERENCE

[1] IEEE Standard for System Verilog - Unified Hardware Design,
Specification,and Verification Language

[2] Verification Methodology Manual for SystemVerilog by Janick
Bergeron, Eduard Cerny, Alan Hunter and Andrew Nightingale

http://vmm-sv.org/
http://vmm-sv.org/

