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Abstract— Standard verification methodologies like 

UVM/VMM provide guidelines for developing reusable 

verification IPs. But for complex designs with huge amount 

of data transfers and whose interface protocol could be 

upgraded for better performance, special care needs to be 

taken for architecting verification IP’s. Further, large 

number of interdependent parameters in design poses 

another challenge of complex stimulus generation to the 

constraint solver and to the random verification.   This paper 

describes the challenges faced and the innovative steps 

followed in developing an efficient reusable VIP. These steps 

enable us to reduce the overhead on tool constraint solver 

engine, to save system run-time memory and to reduce the 

rework when interface protocol changes. 

Acronyms: 

SoC:   System On Chip 

VMM: Verification Methodology Manual 

UVM: Universal Verification Methodology 

DMA: Direct Memory Access        

DUT: Design Under Test 

VIP: Verification Intellectual Property     

                                                                           

I. INTRODUCTION  

With the growing size of complex SoCs, the VIPs involved 
in the verification have to be more efficient, faster and 
reusable to traverse various design features at different 
hierarchies. The most important feature of a VIP is to have an 
efficient generation mechanism to randomize and control the 
stimulus through right set of constraints.  

When there is huge amount of data transfers involved, it 
becomes equally important to develop efficient data models 
along with other components considering the system memory 
consumption. In addition, constantly evolving specification 
during design cycle, require repeated updates to the 
verification IP. Any reusable VIP should be built to 
accommodate the changes with minimal effort and concentrate 

more on the verification aspects, thus reducing the verification 
effort and time to market 

 

Following are the challenges encountered while 
developing the reusable verification IP.  

 

1. Simulator takes longer time to solve large set of inter-

related constraints, since all the constraints are solved in 
parallel. If the constraints are replaced with procedural 

code, maintaining interdependency between the 

parameters and controlling the transaction from test case 

becomes very difficult. 

 

2. Generating large amount of pre-generated data for each 

transaction consumes significant runtime memory since 

each transaction is stored in reference models till the 

scoreboard check is complete. Hence the memory 

requirement can easily go beyond the available system 

runtime memory.   
 

3. Frequent changes in interface protocol for architectural 

reasons (better performance etc) affects the verification IP 

development as well. A high degree of configurability has 

to be provided to the verification IP to enable reuse at 

sub-chip or chip levels and in different modes. 

  
The following sections describe how all these challenges 

were addressed in the VIP without compromising its quality 

and performance. 

 

II. CHALLENGES FACED AND RECOMMENDATIONS 

A. Efficient way to break down complex constraints in 

different randomization phases:  

 
Constrained random verification environment needs to 

take charge of the inadequacy of the constraint solver in 
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solving of large number of inter-related parameters in parallel.  
When the number and size of properties to be constrained 
keeps increasing, the constraint solver times out as it takes 
longer to arrive at a possible value for the random properties. 
Replacing the parallel constraint code with procedural code 
increases the lines of coding and is also prone to errors mainly 
because of interdependent constraints. On randomization of 
the class, independent member properties and inter-dependent 
properties are solved in parallel.  In order to lessen the burden 
on the constraint solver, the different type of class properties 
like independent, inter-dependent and dependent fields are 
segregated for procedural and parallel generation.   

In Figure.1 Constraints „size_c‟ and „cfg_c‟ indicate 
„cfg_descr‟ and „size_decoder‟ are inter-dependent.  

 

 

 

 

 

Figure 1. Inter-dependent properties 

Due to the large interdependency of certain properties in a 
class, it becomes increasingly difficult for the user to convert 
the constraints into procedural code maintaining the same 
valid dependencies between them. Hence such constraints are 
better solved in parallel by the constraint solver rather than by 
the verification engineer.  

Figure 2 is an example with complex constraints, where 
„jd_D.mode’, „rate’ and „rep’ are inter-related with lot of 
dependencies. If the order of solving these properties is 
decided by the verification engineer, all the dependencies 
involved must be taken care manually. When large numbers of 
such interdependent properties are used segregation of such 
constraints to procedural and parallel code becomes difficult. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example for complex constraints 

 

In the example shown in Error! Reference source not 
found. there are two random fields, size_decoder and 
cfg_descr in class packet. When an instance of packet class is 
randomized, these fields get randomized in a bidirectional way 
based on the constraint specified. User can add more 
constraints on these fields by extending the packet class. 
When the variable size_decoder is independent and cfg_descr 
is dependent on size_decoder, generating the fields 
sequentially will reduce the constraint solver overhead. This 
can be achieved by generating size_decoder during 
randomize() and cfg_descr during post_randomize() methods. 
This way, the constraint solver needs to solve only 
size_decoder during randomization instead of being burdened 
by solving both variables. But the side effect of this method is 
that, user cannot add constraints externally on the field 
cfg_descr which gets generated during post_randomize() call. 

 

class turbo_class; 

 

//property declarations 

rand mode_e mode; 

rand int rate; 

rand int blk_size; 
……. 

//constraints of properties 

constraint rate_c {   (mode == MAX_MODE) -> (rate 

inside {0,2,3,4,6});  

}; 

 

constraint blk_size_c { 

if(mode == MAX_MODE && rate == 0)  (blk_size/2 

inside 

{108,120,144,180,192,216,240,480,960,1440,1920,2400}

) ;  

 
if(mode == MAX_MODE && rate == 2)  (blk_size 

inside {48,96,144,192,240, 288, 384, 432, 480}) ; }; 

constraint s_c { 

   ((rep == 3) || (rep == 1))-> mode == TE_MODE; }; 

 

constraint s_rm_c { 

   (so == 1) -> ( byp != 0);}; 

 

constraint dyn_stop_c { 

   (dyn_stop == DYN_STOP) -> (so == 0);   }; 

 
//functions 

…………. 

 

endclass 

 

   
 rand bit[5:0] size_decoder; 

 

 rand bit [3:0] cfg_descr; 

 

   constraint size_c { (size_decoder == 3) -> (cfg_descr 

== 1); }; 

  constraint cfg_c { (cfg_descr == 4) -> (size_decoder == 

5);}; 

 

 

 



Constraints are segregated when it is easier to partition 
them and there is overhead on constraint solver solving them 
parallel. But if the constraints are as simple as shown in 
Error! Reference source not found.3, then it is better to 
generate the random fields in traditional randomization since 
the overhead on constraint solver is minimal. 

 

Figure 3. Constraint Dependency 

In the example shown in Figure 4, „turbo_pkt_q‟ is a queue 
of instances of class „turbo_class‟ (described in Figure 2). The 
size of the queue is random and is controlled by the field 
q_size. Constraint block cst_list has constraints among the 
instances of the queue. During randomization, not only the 
constraints within the turbo_class needs to be solved, but also 
the constraints among the instances in parallel for the same 
randomize() call. As the q_size increases, the overhead on the 
constraint solver increases heavily slowing down the 
simulation and might even result in constraint timeout.  

 

 

 

 

 

 

 

Figure 4.  Queue of class handles 

Even though the size of the queue is controlled by the field 
„q_size’, maximum number of „turbo_pkt_q’ instances need to 
be initialized and pushed into the queue since objects will not 
get initialized automatically during randomization. That 
means, for every randomization, constraint solver has to solve 
all the constraints for the list of maximum size. 

 

Instead of generating all the objects of the queue in 
parallel, if the objects are generated one by one in the post 
randomize method incorporating the constraints between the 
objects procedurally, then the overhead on the constraint 
solver can be minimized and any number of objects can be 
generated. In this case, user cannot add constraints to the 
queue from the test case directly. However, facilities have to 
be made to add constraints to the object itself through factory 
mechanism and unique ids of the objects. Please refer the 
diagram of hierarchical class modeling for procedural solving 
of constraints in Figure 5. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

Figure 5.  Base class for hierarchical data structure 

 

The partitioning of the procedural and parallel constraints 
requires in-depth knowledge of the various properties of the 
classes and their functionality.  

While developing the infrastructure for partitioning the 
constraints, we also found the need for similar data structures 
in other verification modules. For example, similar to the data 
structure handling in „turbo_pkt’, another type of packet 
„viterbi_pkt’ is required for „viterbi list‟ generation. Thus for 
all designs which require similar hierarchical data structure, a 
generic base class was developed. The section given below on 
reusable hierarchical class for sequential randomization 
explains the usage of reusable base class for different types of 
list generation. 

  rand bit[5:0] size_decoder; 

 rand int q_size; 

 rand turbo_class turbo_pkt_q[$]; 

 

constraint cst_list { 

     foreach (turbo_pkt_q[i] { 

        (i!=0) ->  

          turbo_pkt_q[i].mode == turbo_pkt_q[i-1].mode; 

       (i!=0) -> 

          turbo_pkt_q[i].start_addr > turbo_pkt_q[i-

1].end_addr; 
    } 

} 

 

 
 

 

 

 

 

 

  

function post 

randomize 
 

Randomized 

class handles 

for loop ()  begin        

randomize obj   

end 

 

Push 

obj 

Queue size 

Class handles 
function copy 

function new 

Queue of class handles 

          Base class  

class packet; 

  

 rand bit[5:0] size_decoder; 

 rand bit [3:0] cfg_descr; 
 constraint size_c { (size_decoder == 3) -> (cfg_descr 

== 1); } 

…. 

endclass 

 



1)  Reusable hierarchical class for sequential 
randomization 

In a verification environment with complex packet based 
protocols, multiple packets need to be generated randomly and 
inserted into the channel of the signal drivers. This driver in 
turn drives the packet as per protocol on the bus. In such 
cases, the configuration such as “number of packets” needs to 
be generated randomly first and then the individual data 
packets are randomized using the additional constraints passed 
from the test case. Each randomized packet is then pushed into 
a queue. Figure 6 shows the code snippet for the hierarchical 
class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Base class for hierarchical data structure  

 

Generating many random packets after solving large set of 
parallel constraints to fill the queue puts overhead on the 
constraint solver engine.  Randomization is partitioned into 2 
phases to lessen the burden on the constraint solver. However, 
these data structures involving hierarchical classes have to be 
coded in every test bench for different protocols which 
requires rework. Also the probability of error is high since it 

involves handling of multiple class handles and their 
randomizations.  

 

For all designs which require similar hierarchical data 
structures, a new parameterized base class is added to the data 
class library which is customized by the user according to 
requirement. The base class has a property which is a class 
handle of parameterized type, which in turn is used as a 
factory pattern for the generation of list. The size of the list 
depends on the random configuration of the base class. 
Extension of the parameterized sub-classes in test case enables 
constraining the properties of the class depending on the 
packet protocols. This helped in achieving both performance 
and controllability of the transaction from the test case level.  

Figure 7 provides a code snippet which instantiates generic 
base class for generation of „dec_turbo_enabled_turbo_pkt‟ 
list and also shows   use of data_id to control individual object 
of list. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Generic Base class Code snippet 

 

Care should be taken in copying the randomized handles 
from one to other before pushing into the queue to avoid 
pushing the same handle repeatedly. Also constraining 
individual packet was a problem which is solved by using a 

class base_class #(type child_pkt = vmm_data) 

extends vmm_data; 

      rand int q_size; //size of queue for class handles 

     constraint q_size_c { q_size[31] == 0;}; 

 

    child_pkt pkt_obj_q[$];   

    rand child_pkt pkt_obj; 

 

 
   virtual function void post_randomize(); 

           pkt_obj_q.delete(); 

           $cast(pkt_obj, pkt_obj.copy(pkt_obj)); 

      for(int i = 0;i < q_size ; i++)      begin 

          …………………. 

         pkt_obj.randomize(); 

          pkt_obj_q.push_front(pkt_h); 

         …………….. 

      end 

   endfunction 

endclass 

 
program test(); 

  initial begin 

      base_class #(turbo_pkt) tr;   

      turbo_pkt tpkt; 

      tr.pkt_obj   = tpkt; // assigning constrained value                   

// to baseclass handle  

      ……………. 

      tr.randomize(); 

   end 

endprogram 

 
 

 

class dec_turbo_enabled_turbo_pkt extends 
dec_turbo_job_desc_pkt; 

 

     constraint dec_turbo_enabled_turbo_pkt_c { 

           if(data_id) == 1{ 

             turbo_jd_D == 3; 

          } 

                  }; 

…… 

 

  virtual function vmm_data copy (vmm_data to = null); 

       dec_turbo_enabled_turbo_pkt tc; 
………. 

   endfunction 

endclass  

 

program test(); 

  initial begin 

      base_class #(dec_turbo_enabled_turbo_pkt) tr;   

      dec_turbo_enabled_turbo_pkt tpkt; 

      tr.pkt_obj   = tpkt; // assigning constrained value to                 

                                    //baseclass handle  

      ……………. 

      tr.randomize(); 
   end 

endprogram 



tag named “data_id” where the data_id is used to control each 
packet constraint from the test case. 

 

B. Managing large list size 

In verification, maintaining large amount of expected data 
for each transaction becomes tricky. For example let‟s 
consider a simple DMA design which reads data from source 
location and writes that data in destination location. The 
number of bytes read and written can be of huge size. For 
example, in our DMA design, number of bytes read and write 
depends upon 3 fields in the DMA descriptor/instruction. Each 
of the 3 fields is 16 bit field. Hence, a total 2^16 * 2^16 * 
2^16 = 2^48 bytes can be transferred. 

A reference model was developed to generate the expected 
data/address list which is stored in respective queues.  When 
DUT starts reading and writing data, Scoreboard compares the 
actual address and data with the expected address and data 
from the queues in the reference model.  Though the idea 
looks fine and simple there are system memory limitations 
involved. The amount of data can increase the queue sizes to a 
value which is beyond the available run time memory.  

In our system we observed that when queue size grows and 
memory usage reaches around 2GB, simulation crashes 
because of memory unavailability. Though different systems 
will have different amount of allocated run time memory but 
beyond a point all will reach their upper memory limit. 

 Thus to avoid memory limitation „watermark‟ concept 
was adopted. To give a simple analogy, it is just like a water 
tank where once water reaches a certain lower level, pump 
starts automatically to fill the tank and once water reaches a 
certain upper level pump gets auto cutoff. It waits to start 
again when water reaches the lower level due to consumption 
and the cycle goes on. The concept is explained part of Figure 
8 and 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Water Mark Concept: Lower Threshold Level 

Similar concept is used in managing the queues in which 
reference model dynamically generates addresses/data in small 
chunks and fills those addresses/data in their respective 
queues. These generated address/data are filled only up to a 
high threshold level (user can control) in the queue and once 
the DUT transfers those addresses/data, Scoreboard compares 
actual data with the expected list and deletes the data from the 
list. Once it reaches a low threshold level, new chunk of 
address/data gets generated and again the queues get filled up. 
This way, all the address/data for each transaction gets 
generated without affecting the runtime memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Water Mark Concept: Upper Threshold Level 

 

In our project we have set the lower threshold level for the 
queue size as 256 and upper threshold level as 1024. We set 
these values mainly based on the max burst size possible in 
our design to fetch data at a time and to keep extra buffer such 
that Scoreboard, DUT overlap  does not occur i.e. Scoreboard 
always has data available before it calls compare method. As 
we set only 1024 as upper threshold value, it will work 
smoothly in most of the system.  User can set any other values 
based on their design or available runtime memory.  

The same concept is applied in generating the packets as 
well to avoid generating huge number of random packets and 
storing them in a queue upfront. With this model, more 
packets get generated once lower threshold level is reached. 
Each packet gets generated after solving many constraints. 
Hence solving constraints of many packets at the beginning 
will take lot of time and eventually will give constraint time 
out error at some point. Using watermark concept we were 
able to avoid this issue as well. 
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C. Interface independent VIPMaintaining the Integrity 
of the Specifications 

In most designs, the interface protocol is upgraded for 
better performance. Also the driver interface for configuring 
the registers keeps changing from block level to chip level. In 
such cases, the development of the verification IP is impacted 
since the engineer has to rework on most components like 
command layer protocol monitors and data handler for every 
change in the interface as per architectural changes. It also 
becomes necessary to maintain multiple sets of VIP for 
different interfaces. Only thing which can be reused is 
reference model or data integrity logic on the extracted data 
received from monitors. Thus to make it generic or enable 
reuse at all verification levels with different modes, a high 
degree of configurability has to be provided to the verification 
IP.  

For example, in DMA verification environment, the 
functional driver initializes the descriptor memory space with 
descriptors and then enables DMA DUT to start the 
transactions. In module level, DUT is interfaced with internal 
proprietary interface (Data Bus A as per Figure 10), but in Sub 
System Level the interface is different (Data Bus X as per 
Figure 10).When leveraging the VIP at multiple levels, the 
functional driver‟s functionality remains the same, but 
formation of data which is passed to signal layer driver 
connected to DUT interface needs to be changed. This will 
need an update to functional driver to change the format of the 
data as per new interface attached. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 10. Design Under Test 

  

 

 

 

Also there were more chances of interface getting changed 
as per performance requirement to support more bandwidth. 
Thus our VIP design must accommodate these changes to 
provide reuse and support different configurations as per 
architecture requirements. Similar issue exists with scoreboard 
for interface dependent data received from Dut for 
comparison. 

To minimize the impact of frequent specification changes 
at the interface level, interface driver and its transaction class 
are separated from the rest of the VIP components. To 
implement this, a two step approach is followed, a functional 
level VIP transaction data is created which will interact with 
rest of the VIP components and a conversion function is 
provided to convert VIP transaction to interface level 
transaction. By adopting this method, for any change in the 
interface level protocol, only the associated driver, its 
interface level transaction and the conversion function have to 
be changed. The rest of the VIP components remain 
unaffected and unchanged. 

With new approach DMA verification IP was designed to 
follow the layered approach specified by VMM methodology. 
The functional layer consists of reference model, scoreboard 
and functional driver. The command layer driver/monitor 
communicates between the functional layer and signal layer 
components.  The information passed to command layer need 
to be passed to reference/scoreboard model to compare with 
the actual transactions received from the DUT. The challenge 
is that the functional driver must have the knowledge of the 
protocol used to communicate to command layer. Similarly 
Scoreboard will also need to generate the expected data list as 
per the protocol data format to be compared with the actual 
data received from the command monitor.  

In order to make the functional layer independent of 
interface data a two step process is followed: 

1. Create the module related data dma_burst_data to be 
used by functional driver/reference model/scoreboard. 

2. Have a converter class to convert from interface 
(BusA/BusX data) to module specific data class 
(dma_burst_data) or vice versa when driving data to command 
layer which is specific with respect to DUT. 
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Figure 11. DMA Testbench with Interface independent VIP   

Thus with this approach DMA VIP is separated from 
interface related components and the command layer uses the 
converter class output data to communicate to DUT. Figure 11 
explains how converter class acts as a mediator between 
functional layer and command layer. Figure 12 is an example 
of converter class code snippet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

Figure 12. Interface converter class   

 

III.  RESULT  AND CONCLUSION  

 For DMA descriptor list generation similar 
hierarchical class modeling was required thus reused the 
generic parameterized base class passing dma descriptor class 
handle. This helped us not to recode the same data structure. 

 Using watermark concept we avoided memory crash 
issue. Without using water mark concept tool runs out of 
memory when queue( 32bit queue type) size reaches around 
149314080 value 

 In the course of the project, the processor interface 
protocol upgraded from AHB to AXI. As the AXI VIP 
provided the command layer monitor, only effort was to write 
a conversion method to convert VIP specific transfer to AXI. 
This took us just half a day effort where as in normal approach 
at least 3 days to modify functional driver and scoreboard 

 

The table in Figure 12 shows the reduction in time taken 
by following sequential randomization of the class properties 
compared to parallel randomization. 

 

No of 
Pkt 

CPU time in 
seconds in Parallel 
randomization 

CPU time in seconds in 
Sequential 
randomization 

50 8 2 

100 19 2 

500 86 8 

1000 190 18 

4000 788 197 

 

                 Figure 12.  Time - Parallel vs Sequential randomization 

 

The table in Figure 13 shows the reduction in memory 
consumed by following sequential randomization of the class 
properties compared to parallel randomization. 

 

No of 
Pkt 

memory in Mb in 
Parallel 
randomization 

memory in Mb in 
Sequential 
randomization 

50 16 16 

100 16 16 

500 16 556 

1000 273 873 

4000 465 2788 

 

                 Figure 13.  Memory - Parallel vs Sequential randomization 
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driver 

Functional 

Driver 

Command layer 

monitor 

Generator 

DUT 

Dma_data 

_ 
 Dma_data 

 

// Convert BUSA data to dma _data and 

// passed to SB to comapare with expected list 

 

function tr_post_mon_call(BusA_cmd_monitor 

xactor,BusA_pkt pkt_mon); 

 
dma_burst_data out_burst; 

out_burst = new(); 

 

for(int =0;i<=pkt_mon.BusA_burst_size;i++)  begin 

   dma_transfer_data dma_tr_temp; 

   dma_tr_temp = new(); 

   dma_tr_temp.address =  pkt_mon.BusA_addr[i]; 

   dma_tr_temp.data = pkt_mon.BusA_data[i]; 

………. 

………. 

………. 

end 
 



Following above recommendations, a robust VIP is created 
to generate random packets which are constrainable and easily 
controlled from test case without burdening the constraint 
solver. This reusable VIP is efficient, faster, and immune to 
interface changes. Also reduces run time memory 
consumption. 
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