
1

Experiencing Checkers for a Cache Controller Design

Ben Cohen
VhdlCohen Publishing

ben@SystemVerilog.us

Srinivasan Venkataramanan
and Ajeetha Kumari

CVC Pvt.Ltd., Bangalore, India
srini@cvcblr.com

akumari@cvcblr.com

Lisa Piper
IC Verification Consultant

lisa_piper@systemverilog.us

ABSTRACT
The checker construct is a new feature defined in IEEE 1800-2009; it

is intended to facilitate the definition and usage of libraries of

assertions and to delineate verification code from RTL. In this paper,

we describe our experience in using checkers for the evaluation of a

cache controller design. The goal was to evaluate how easy it is to

define and then utilize the checkers in a variety of configurations.

Checkers were defined to include static concurrent assertions,

procedural concurrent assertions, immediate and deferred immediate

assertions. The checkers were then instantiated statically and

procedurally in the design module. We also experimented with

where the checkers are defined and how formal arguments were

used. Simulation was used to confirm our results, with both pass and

fail assertion results expected.

We start with a brief description of the design in evaluation and the

verification environment, including a list of the checkers that were

defined. We then provide an overview of some of the key aspects of

the testing, including 1) how static and procedural assertions inside a

checker are treated when the checker is instantiated statically or

procedurally in the design; 2) use of deferred assertions to prevent

transient errors; 3) argument passing; and 4) configuration checks

(e.g., elaboration time checks). These are all areas where the 2009

release of the standard professes to have improved usability. We then

show the checker definitions and instantiations and discuss our

personal experiences in the use of checkers.

Categories and Subject Descriptors
IEEE 1800-2009 SystemVerilog checkers and assertions.

General Terms
Verification.

Keywords
IEEE 1800-2009, checker, SystemVerilog Assertions, verification.

deferred immediate assertion, concurrent assertion, static assertion,

procedural assertion, static checker instantiation, procedural checker

instantiation.

1. INTRODUCTION
The checker construct provides an encapsulation of all assertion and

coverage related code for use in RTL / behavioral designs and in

verification environments. In this paper, we share our experience in

creating checkers for the verification of a cache controller design.

Section 2 defines the design and verification environment, including

an overview of the checkers that were created. Section 3 provides an

overview of the important concepts that were the focus of our

analysis. These are the features that distinguish checkers from their

predecessor module-based libraries. Section 4 shows the checkers

that were created. Finally, Section 5 summarizes our impressions

after creating and using checkers to evaluate our design. The

presentation and the SystemVerilog code used on this project are

available for download.[7]

2.0 DESIGN AND

 VERIFICATION ENVIRONMENT
This section defines the cache controller model and the key

requirements that will be tested. The design requirements were

intended to be very simplistic so as not to overly complicate the

analysis. The verification strategy, including the overview of

checkers to be defined, is also described.

2.1 Cache Controller Model
Many systems have a cache for storage of temporary data that is

likely to be used again. The advantage of the cache is that access is

typically much faster than accessing that data in main memory or

external memory via a network. A cache controller is used to access

its internal cache and to control what data is contained in the cache.

An address/data pair and entry status (valid/invalid) is referred to as

a cache line. The cache is implemented using three cache memories

to emulate the cache entries; these consist of cache_entry,

cache_mem_addr, and cache_mem_data. To quickly determine that

an entry is valid (i.e., the "exists" function), a large 1-bit wide

memory (cache_valid) with depth identical to the main memory is

used. Figure 2.1-1 represents an overview of the cache memory

model.

Figure 2.1-1 Cache Memory Overview

Cache reads will either result in a hit (i.e., cache_exists, the desired

addressed data was found in the cache) or a miss (i.e., the desired

addressed data is not available in the cache). A miss is defined in the

model as the invert of cache_exists. When a miss occurs, the cache

2

controller will retrieve the data from main memory and then add the

data to the cache.

For a read or a write transaction, if the cache is full and the cache

does not contain the data, the oldest address/data in the cache is

replaced. The oldest address/data algorithm for this design uses a

first-in first-out (FIFO) to implement the oldest address/data

replacement because it is simple. The addresses are stored in a

FIFO. Address/data in the cache is replaced by popping the oldest

address from the FIFO, and adding the new data and address to the

cache, and the address to the FIFO.

The cache controller also controls what data is written to the cache

memory. Data written by the user is always copied to the cache and

to the main memory, i.e., a write-through cache. When data is written

to the cache, the cache is checked to see if there already exists data in

the cache at that address. If so, the data is updated. If not, a new

cache line is added, i.e., the data is added to the cache and the

associated address is added to the FIFO.

The cache controller has a user interface and a main memory

interface, as shown in Figure 2.1-2. The cache memory is internal.

The user interface consists of the following signals:

Signal Function

data_vld

If 1’b1 then rd_data to user interface is valid

busy

Instructs user interface to stop sending new read / writes

rd Read command from user interface. If 1’b1 then read

wr Write command from user interface. If 1’b1 then write

addr Address from user interface

rd_data Read data to user interface from cache or main memory

wr_data Data to write from user interface to main memory

clk System clock

rst_n System reset

The main memory interface consists of the following signals:

Signal Function

mem_rd Read command to main memory. If 1’b1 then read

mem_wr Write command to main memory. If 1’b1 then write

mem_addr Address to main memory

mem_rd_data Read memory data from main memory

mem_wr_data Write data to main memory

Figure 2.1-2 Cache Controller Overview

2.2 High level Requirements
This section provides a summary of the requirements. It does not

necessarily define all the needed properties, nor does it define the

implementation, as that could be a risk if the requirements impose an

implementation.

General requirements:

1. Main memory: The main memory is slow, and requires 3 or more

cycles to read or to write. The size and latency of the main memory

are parameterized. The data is latched on the falling edge of the

write signal and is driven on the rising edge of the read signal.

2. Cache: The cache accesses are very fast, minimally 1 clock cycle.

The cache size is parameterized. This cache is a write-through cache,

thus the write to memory always proceeds. Cache lines are either

updated or created on writes. They are also created on cache read

misses.

3. User interface write: If a write from the user interface occurs, then

the write must be forwarded to main memory and to the cache. If

there is a write cache hit, meaning that a cache entry already exists,

then the cache line must be updated because we are doing a write. In

addition, a write through to the main memory must also occur. User

interface writes are always one cycle, and the cache controller is

responsible for the timing to the main memory. That timing is a

minimum of three rising clock edges, but could be more cycles as

defined by a parameter; this latency allows time to update the main

memory. See Figure 2.2-1 for the timing of a user interface write.

4. Cache full: If the cache is full and a new value must be written

into the cache, then the oldest entry must be replaced.

5. User interface read, data in cache: If a read from the user interface

is requested and the data is in the cache, then on the next rising edge

of the clock, data_vld will be asserted, and the data will be supplied

to the user interface on the rd_data bus. Figure 2.2-2 demonstrates

the timing for a read request with data already in the cache.

6. User interface read, data not in cache: If a read from the user

interface is requested and the data is NOT in the cache, then on the

next rising edge of the clock data will be fetched from the main

memory. At the last cycle of the data fetch from the main memory

the main memory data is stored into the cache, and is available to the

user (with data_vld==1’b1). See Figure 2.2-3 for the timing of a

main memory read with a cache miss, assuming a main memory

access time of 3 cycles.

7. User interface busy: The cache controller shall assert a busy signal

to the user interface to instruct it to stop sending read or write

commands.

Figure 2.2-1 User Interface Write

3

Figure 2.2-2 Timing for a Read with data in Cache

Figure 2.2-3 Main Memory Read with Cache Miss

2.3 Cache Controller Architecture
The architecture of the cache controller consists of five main

elements, as shown below.

cache_mem A cache memory instantiation

LRU_fifo Instantiation of a FIFO emulating the

least reusable algorithm

filling_cache_invalidates Provides controls to the LRU_fifo and

the cache memory (e.g., invalidate,

push, pop)

main_mem_valid Controls the main memory

Conditional Select data item rd_data

Figure 2.3 represents a high level view of the model implementation.

Figure 2.3 Cache Controller Architecture

2.3 Verification Environment
A simple testbench was written to provide stimulus to the design

under test. Synopsys’s VCS provided early access to a simulator that

supports many of the new features in the 2009 release of the

standard. A thorough evaluation of checkers should ideally include

formal analysis as well, but the availability of tools is still limited at

this time.

Since the purpose of the cache controller design is evaluating the

new checker construct, we wanted to rely completely on the

assertions in the checkers to verify the design. The checkers to be

developed shall perform the following types of functions:

User writes: This checker checks that the main memory and the

cache are updated for every user write; it also checks that the

minimum access requirements are met. Since the memory is

parameterized, elaboration time checks are used to confirm that the

parameter value has integrity.

User reads: This checker checks that when a read miss occurs, the

data is fetched from the main memory; it is then provided back to the

user, and the read data is added to the cache. The data_vld signal is

asserted n rising clocks after the rd signal is asserted, where n is the

main memory access time. The checker also checks that when a hit

(!miss) occurs the proper data is returned to the user and that the

main memory is not accessed. The data_vld signal is asserted on the

next rising edge of the clk.

Cache invalidate: When the cache is full and more data needs to be

added, this checker checks that the oldest address is invalidated and

then overwritten.

Data integrity: This checker checks that reads and writes to the

various memories do not collide, and that control and data signals are

never X or Z values.

In addition to the verification checks, cover statements will be added

to the checkers.

3.0 CHECKER CONCEPTS
[2]

The 2009 release of the standard professes to have improved the

usability of assertion libraries with the checker construct. In this

section, we describe what we believe are the key features that

distinguish checkers from their predecessor module-based libraries.

These features form the criteria for our evaluation.

Checkers group related assertions, coverage, and supporting code

into individual verification units. They are designed to be able to be

placed anywhere in the code; thus, they can be placed in close

proximity to the code that is being evaluated. Checkers can contain

static or procedural assertions, and they can be instantiated statically

or procedurally. It is important to understand these classifications in

order to understand how the assertions in the checker will operate.

Another new feature of the standard, not specific to checkers but

allowed in checkers, are deferred immediate assertions. Deferred

assertions help to prevent transient errors. Argument passing and

elaboration time configuration checks make the use of libraries

simpler and more reusable.

4

3.1 Classification of Checker Assertions
Understanding how assertions in a checker are processed requires the

understanding of their classifications. Assertion statements inside a

checker are classified as follows, and are shown in Figure 3.1:

1) Static concurrent assertions: Those are concurrent assertion

statements that appear outside procedural code.

2) Procedural concurrent assertions. A procedural concurrent

assertion is one that is in a procedural block, such an always, initial,
or final procedure.

3) Immediate assertions. The immediate and deferred immediate

assertion statements test that an expression holds. The test is

performed when the statement is executed in the procedural code.

Figure 3.1 Classification of checkers assertion statements

3.2 Classification of checker Instances
A checker can then be instantiated in various units, such as modules,

interfaces or programs. They can be instanced outside of procedural

statements (i.e., always, initial or final blocks), and are called static

checker instances. Checkers can also be instanced inside procedural

statements, and are called procedural checker instances. As

previously stated, the significance of this classification comes into

play because it impacts how assertions defined in the checkers are

processed by SystemVerilog. Figure 3.2 demonstrates the

classification of checker instances.

Figure 3.2 Classification of checkers instances

3.2.1 Static checker Instantiation
Checker static instances behave as instantiated code in module.

When a checker is instantiated as a static checker instance, all of its

code behaves as if it were instantiated directly (or in-block) in the

module after the proper argument associations are made. That code

includes the static concurrent assertions and the procedural

concurrent assertions. Using the checker shown in Figure 3.1, the

equivalent emulation of the static checker instance in a module is

shown in Figure 3.2.1. Notice that in this case, the code of the

checker is directly instanced in the module, in a manner similar to an

instantiation of a module.

Figure 3.2.1 Emulation of Static checker instance (chk1) in a

module

3.2.2 Procedural checker Instantiation
If a checker is instantiated in a module procedurally, then the

checker’s behavior depends on the type of concurrent assertions the

checker includes: procedural concurrent assertions or static

concurrent assertions. The rules are as follows:

Checker’s static concurrent assertions are impacted by the

procedural code in a module

If a module’s procedural code instantiates a checker that includes

static concurrent assertions, then those static concurrent assertions

behave as if they were inserted inline at the point of insertion of the

checker. Thus, the checker’s static concurrent assertions are affected

by the conditions imposed within the module’s always/initial/final
statements. For example, the static concurrent assertions within the

checker will be impacted by an if or case conditions of the always

procedure in the module that instantiates the checker.

Checker procedural concurrent and immediate assertions ignore

procedural code in a module
[1] Procedural concurrent assertion statements in a checker shall be

treated just like other procedural assertion statements. Thus, a

procedural concurrent assertion in a checker behaves as a standalone

procedural concurrent assertion, and does not inherit aspects of its

enclosing checker’s instantiation. The checker’s procedural

concurrent assertions behave as if they were directly inserted within

the module, as procedure statements, and are not sensitive to the

procedural code in the module in which the checker is instantiated.

However, the checker’s procedural assertions will be impacted by

their procedural definitions. For example:

 checker chk_test(..);
 always @ (posedge clk1)
 ap1: assert property(
 @ (posedge clk2) req |=> @ (posedge clk3) ack);
 endchecker : chk_test

In the above procedural concurrent assertion, regardless of how the

checker is instantiated, ap1 must first wait for the clocking event

(posedge clk1) before putting the assertion into the procedural

assertion queue. The assertion is insensitive to any condition (if or

case) under which that checker is instantiated (e.g., in a module,

always @ (posedge clk) if(condition) chk_test chk_test_1(…);)

5

Figure 3.2.2-1 highlights a checker declaration that includes a static

concurrent assertion and several procedural concurrent assertions.

That checker is instantiated as a procedural checker instance within a

module.

The equivalent emulation of the procedural checker instance in a

module is shown in Figure 3.2.2-2. Notice that in this case, the

checker’s procedural concurrent assertions are directly instanced

(i.e., in-block) in the module in a manner similar to module

instantiation. However, the checker’s static concurrent assertion is

located at the point of insertion of the checker’s instance (i.e., inline).

Figure 3.2.2-1 Procedural checker instance in a module

Figure 3.2.2-2 Emulation of procedural checker instance in

module

3.3 Deferred Assertions
Deferred assertions are not unique to checkers; however, because

they are new to the standard and they enable the creation of

combinatorial library elements that were previously not possible.

Deferred assertions delay the reporting of failures to later in the time

step after transitioning signals have settled, and all but the last failure

are filtered out. This avoids unnecessary noise in simulation reports.

For example, suppose we have an immediate assertion that checks

that the rd and wr signals are never both active at the same time.

checker cache_integrity;
…
// read and write cannot both be active
never_rd_wr: assert #0 (not(rd && wr))
 $error("Simultaneous read and write are illegal”);
…
endchecker : cache_integrity

If back to back reads and writes were legal, it is possible that the read

write signals will transition from “10” -> “11” -> “01”. Because the

assertion reporting is delayed, the “11” value will not cause a false

report. In effect, each transition flushes the previous transition so

that only the stable ending value is actually evaluated.

3.4 Passing Formal Arguments
Some significant advantages exist in the way formal arguments are

passed to checkers versus modules. IEEE 1800-2009 SystemVerilog:

Assertion-based Checker Libraries[3,4,5] described this in detail.

Unlike modules, the new checker construct allows for passing

arguments like properties, sequences, and events. Also, defaults can

be assigned to any port, including configuration parameters that are

passed as part of the port list.

Inferred value system functions, $inferred_clock and

$inferred_disable, exist that can be used to set the default value of a

clock or a reset. The inferred value is derived from the context in

which the checker is instantiated. The inferred clock is derived from

procedural code first, then from a default clock specification. The

inferred disable is derived from a new default disable iff construct if

it exists; otherwise the inferred value is 1’b0.

While passing formal arguments has been simplified, it is also

possible to take advantage of the checker construct without having to

define any port list. Signals in a checker that are not local and not a

formal parameter will resolve to the signal in the scope in which the

checker is declared. So if you define the checker in the module in

which it is used, it can be instantiated without formal arguments.

However, as of this date, no commercials simulator seems to support

nested declarations.

3.5 Configuration Checks
Configuration checks are not specific to checkers versus modules but

it is new to the standard and is especially useful for library elements.

A configuration check can exist anywhere that is outside of a

procedural code. For example:

checker cache_integrity
// check that user did override the default
if (mem_size == 0)
 $error("User must configure the memory to

 a valid size. The default value of 0 is not legal”);
…
endchecker : cache_integrity

6

These types of configuration checks are identified by procedural

code outside of the always block. They are checked at elaboration

time so that configuration errors are flagged early on, before

simulation even starts.

4.0 CHECKERS AND DESIGN EXPERIENCE

4.1 Checker Experience
 [7]

The ports and anticipated local signals of the cache controller were

first declared. Because the requirements were loosely defined and

needed further clarifications, the designer started to translate some of

the requirements into assertions defined in a single checker. The use

of checkers allowed separating assertions and supporting verification

logic from the controller design. This is a very important feature of

the checkers.

These assertions clarified enough details to start the controller model.

This process of assertion writing and design expansion was iterated a

few times until the single checker became too complex, and harder to

follow. That single checker encompassed elements dealing with

READS, WRITES, and CACHE accesses. It became obvious that a

split of the single checker into smaller checkers, each addressing a

specific functional target, is not only a better organization but also is

easier to follow and maintain. Those checkers include the following:

Checker

chk_immd.

chk_rd_cntrl.

chk_rd_wr_cntlr

chk_wr_cntrl.

chk_reset.

chk_fifo

chk_invalidate

Function

Inline assertions, instantiated procedurally

Read miss/hit, instantiated statically

RD/WR miscellaneous, instantiated statically

Write through and cache, instantiated statically

Reset, instantiated statically

LRU Fifo assertions, instantiated statically

Cache invalidates, instantiated procedurally

1. The chk_rd_cntrl checker addresses the verification with

assertions of the read transactions. Those transactions include

the read from cache on a hit, the read from main memory on a

miss, and the invalidation of the oldest cache entry when the

cache is full. The chk_rd_cntrl checker also includes the

validation of a cache new entry upon a miss with the verification

of the timing specifications for the read from a user interface and

the read of the main memory.

2. The chk_wr_cntrl checker addresses the verification with

assertions of the write transactions. Those transactions include

the write to the cache and the main memory, and the possible

invalidation and rewrite of the cache entries, per the

requirements. The chk_wr_cntrl checker also includes the

verification of the timing specifications for the write from the

main memory.

3. The chk_rd_wr_cntlr addresses the verification of items that

incorporate the read and write controls, and thus does not really

belong to either of the other checkers. For example, there is a

need to verify that there is never a simultaneous read and write

into the memory. Another example is the verification that data

written to the main memory at a specific address is correctly read

later from that same address, regardless if that data was cached or

not.

4. The chk_invalidate verifies that upon a cache write and the cache

is not full, the cache line is filled. Figure 4.1-1 is the declaration

of the chk_invalidate. Figure 4.1-2 is an example of the checker

instantiated procedurally

5. The chk_fifo represents a move of the assertions previously

written into the FIFO model into a checker.

Figure 4.1-1 Declaration of the chk_invalidate

.

Figure 4.1-2 Example of a checker instantiated procedurally

This splitting of the original common one checker into multiple

checkers, each targeted to a specific aspect of the design, helped in

further understanding the design, and facilitated the coding of the

7

RTL. The designer then used several emacs editor frames to display

the design and the checkers respectively.[6]. Having separate

checkers, each addressing a specific aspect of the assertions, allows

the designer to freely add supporting code without being concerned

about interference or confusion with the RTL. Supporting code

consisted of items such as signal declarations, generation of

registered signals, function declarations, and the declaration of the let
statements

As the design was being refined, more assertions were added into the

checkers and additional checkers were added. The checkers were

statically and procedurally instantiated into the cache controller. As

the requirements were being further reviewed along with the

assertions, several other issues were brought up. In particular:

- The lack of chip select, as most memory interfaces have such a

signal.

- The real purpose of the busy signal,

Those comments were addressed with elaboration time checks, the

let constructs, and the assume assertion statement. Specifically:

Lack of chip select: The design represents a partition of the whole

subsystem. The rd/wr signals are inputs, and chip select (cs) is

outside the DUT. It is the responsibility of the external logic to

enable the rd/wr signals based on some external chip select. To

clarify this point, we added the following IEEE 1800-2009

statements to the chk_rd_wr_cntlr chk:

 let cs = rd || wr; // demonstrates the equivalency of this signal
 always @ (posedge clk) mp_no_simultaneous_rd_wr: assume property (
 not (rd && wr));

Role of the busy signal:
The role of the busy signal is to put the burden of stopping read/write

transactions when the main memory is being accessed. Since this

stopping action.is outside the boundaries of the DUT, an assume
property is used to clarify its intent. That assume statement was

added into the chk_rd_wr_cntlr chk checker:

 always @ (posedge clk) mp_busy_no_rd_wr: assume property (
 busy |-> !rd && !wr);

As key sets of assertions within the checkers were written, RTL code

was then defined. The review process of the checkers with the code

brought up errors in the code. For example, a reviewer questioned

why the push was not in the RTL on a cache miss. That assertion

was later replace in the chk_rd_cntrl checker with:

 always @ (posedge clk) ap_fifo_push_on_miss: assert property(

 rd && miss |=> push);

The review process also brought up the point that an FSM with a

fixed set of states was used to count the main memory access time.

The FSM was replaced with separate read and a write cycle timers

(rd_cycle_timer; wr_cycle_timer) to allow for the parameterization of

the main memory access time for reads and writes. The chk_imm

checker (discussed later on) was used inline in the cache_controller

to verify that the proper conditions of the timer were correct upon a

read.

if(rd && miss) begin : rd_from_main
 chk_immd chk_immd_rd_cycle_timer_not_zero(// checker instantiation
 .the_what(rd_cycle_timer==0),
 .msg("wr signal when memory counter !=0"),
 .clk(clk));
…

As partitions of the RTL design and the checkers were completed

and integrated, the design was verified using a simple testbench that

generated random transactions. The simulation helped in debugging

errors in both the design and the checkers. However, even errors in

the checkers helped the designer in further understanding the

intended operations of the targeted machine.

4.2 Debugging the Design

We experienced tool issues in that not all tools currently support the

checker construct, as it is part of IEEE 1800-2009 that was just

approved in late December 2009. Because of the tight schedule, one

designer used QuestaSim to start the debug process; however, that

tool does not yet support the checker construct. Thus, the debugging

process relied on assertions added directly into the various modules,

instead of using checker instantiations. These were later converted

to checkers in the VCS environment and the results compared.

Some of the most helpful assertions were the immediate assertions

injected directly into procedures at various locations within the

conditional if statements. For example, in the cache memory

module:

if (invalidate) begin : if1
 …
 ap_nothing2invalidate:
 assert(found_existing_entry) else $error("nothing to invalidate");

if (wr_cache) begin : wr_cache_updates
 …
 ap_no_cache_line_found_4write:
 assert(found_empty_line || found_existing_entry) else
 $error("attempt to write a cache line into non existent space %t", $time);

A better methodology that we adopted with the checkers is to create

a checker that handles immediate assertions that are instantiated

procedurally. This would allow consistency in code style, and the

capability to add additional coverage or assertions if needed with

little modifications to the RTL. We thus wrote the following checker

that includes a static concurrent assertion. The checker can be

instantiated wherever immediate assertions are needed. Note that an

immediate assertion in a checker behaves as a procedural assertion

because it has an implied always_comb associated with it. Thus, if a

checker has immediate assertions, they will be instantiated in-block,

regardless of how the checker is instantiated (statically or

procedurally). An immediate static assertion is needed to enable

inline behavior.

checker chk_immd(logic the_what, string msg, logic clk);
 // static concurrent assertion
 ap_test_now: assert property(@ (posedge clk) the_what) else
 $error("msg, the_what=%b at %t", the_what, $time);
endchecker : chk_immd
//---
// cache_controller
always @ (posedge clk) begin : main_mem_accesses
 …
 else begin : else1_mt4wr// find an empty line
 …
 chk_immd chk_immd_no_cache_line(// checker instantiation
 .the_what(found_empty_line || found_existing_entry),
 .msg("L111 attempt to write a cache line into non-existent space"),
 .clk(clk));…

 end : else1_mt4wr

 end : wr_cache_updates

 end : cache_mem_handling

8

As design errors were corrected, the test engineer reached a point

where the design appeared to work correctly. However, to ensure

that data written into the memory is correctly read, the following

assertion was written.

sequence q_wr_wr;
 int v_addr;
 @ (posedge clk) ($rose(wr), v_addr=addr) ##[1:$] wr && addr==v_addr;
 endsequence : q_wr_wr

 property p_wr_rd;
 int v_addr, v_data;
 disable iff(q_wr_wr.triggered)
 ($rose(wr), v_addr=addr, v_data=wr_data) |->
 ##[1:$] rd && addr==v_addr ##[1:3] rd_data==v_data;
 endproperty : p_wr_rd
 always @ (posedge clk)ap_wr_rd : assert property (p_wr_rd);

After a review, it was determined that the above assertion is

incorrect, even though at first glance, it seems to just ignore two

write transactions to the same address. It actually ignores after the

first write, all writes to the same address because of the disable iff
condition. Thus, even though the model worked with no violations,

this poorly written assertion gave a false sense of security. The point:

ASSERTIONS NEED TO BE WELL EXAMINED AND

BLESSED FOR ACCURACY. Having all the assertions

collocated in checkers help in the review process of assertions.

The above assertion was correctly rewritten as:

That assertion also led to the need of another related assertion to

verify that if data is written to the main memory, then the data read

from the main memory at that address should not change. The

assertion takes into account that the memory model can be peaked.

 property p_wr_rd_memory;
 int v_addr, v_data;
 first_match(($rose(wr), v_addr=addr, v_data=wr_data) ##1
 !(wr && addr==v_addr)[*1:$] ##1 rd && addr==v_addr) |->
 main_mem[addr] ==v_data;
 endproperty : p_wr_rd_memory
 always @ (posedge clk) ap_wr_rd_memory : assert property(
 p_wr_rd_memory);

Those two assertions helped in the detection of the source of errors

when the ap_wr_rd assertion failed at different time slots. The issue

was the code that selected the source of data to the user interface

from either the cache or from the main memory. Below is copy of

the erroneous code and the corrected code.

// Erroneous code:
// assign rd_data = miss? mem_rd_data : // If miss, return memory data
// cache_data; // If !miss, return cache data
//--

// Corrected code, after assertion pointed to region of the error:
 always @ (posedge clk) begin : rd_data_output
 if (rd && miss) begin : rd_miss_data_from_mem
 data_from_mem <= 1'b1;
 end :rd_miss_data_from_mem
 else if (rd && cache_exists) begin : rd_hit
 data_from_mem <= 1'b0;
 end : rd_hit
 end : rd_data_output

 assign rd_data = data_from_mem && data_vld ? mem_rd_data :
 // If miss, return memory data
 cache_data; // cache[addr]; // If hit, return cache data

Once this correction was done, the design seemed to be fully

functional. Since we worked as a team, we needed to verify the

model with the checkers and the remaining assertions. The model

was then transferred to a test facility where we had access to

Synopsys VCS and simulation with the checkers.

5.0 CHECKER IMPRESSIONS

The use of the checker provided several benefits during the design

and verification of the cache controller. The following lists the set of

observations:

1. Benefits: The most beneficial use of the checkers is that they

provide a clear demarcation between the RTL design and the

verification code.

a. The code within the RTL is reduced in size because the

verification code (assertions and supporting code) is

separately encapsulated. In the cache controller model, we

experienced a 75% ratio of assertion lines of code (LOC) to

DUT lines of code. However, when the assertions are

embedded in checkers, the ratio of checker instantiation

LOC to DUT LOC was less than 3%. These statistics are

shown below.

b. There is no concern about interference or confusion between

the verification code and the RTL. This separation relieves

concerns that verification code can be synthesized

inadvertently. Of course, there are other ways to prevent the

synthesis of code, such as the use of pragmas, but the use of

checkers is much clearer and less error prone.

c. The checker provides an organized and structured solution

that is amenable to building small to medium verification

units.

2. Instantiation impact: Checkers can be instantiated statically or

procedurally within RTL. This allows the insertions of checkers

in locations within the RTL where they make more sense.

Checkers allow for the definition of static or procedural

concurrent assertions. If a checker is instantiated procedurally,

INCORRECT

ASSERTION

9

the static concurrent assertions inside the checker get affected

by the conditions under which the checker is procedurally

instantiated. However, regardless of the instantiation method,

assertions inside of a checker’s procedural code are not affected

by the conditions under which the checker is instantiated. This

demarcation in use model maybe confusing for a first-time user;

however, it has value because a checker is a conglomeration of

several assertions, and there are cases where it is desired that the

instantiation method does not impact the behavior of some

assertions (i.e., the assertions are not affected by a case or if

condition in the instantiation of the checker). That feature is a

flexibility offered to the users. However, caution must be used

in the construction of the assertions within a checker.

3. Multiple checkers: Having separate checkers with each

addressing a grouping of the assertions targeted to specific

functions allowed for a more organized and structured solution;

this is amenable to the building of small to medium verification

units instead of a large set in the RTL or in modules bound to

the design. For the case of the cache controller, we wrote

checkers that addressed the read, write, the read with a cache

hit, the invalidate, and generic violation rules functions,

4. Arguments with default values using inferred functions:

IEEE 1800-2009 allows the use of optional arguments. For

example:

 default disable iff rst;
 default clocking default_clk @(posedge clk1); endclocking
 property pReqAck(request, acknowledge,
 reset = $inferred_disable, clk1 = $inferred_clock);
 @clk disable iff (reset)
 request |=> @ (posedge clk2) acknowledge;
 endproperty : pReqAck

 always @ (posedge clk) begin : reqack
 // with defaulted clock and resets
 apReqAck_ck1 : assert property(pReqAck(req, ack));
 // with specific clock, and defaulted reset
 apReqAck_ck2 : assert property(pReqAck(req, ack,,clk2));
 end : reqack

We did not make use of inferred signals as arguments. We did

not have multiple clocks and we relied on the defaults for resets

and clocks.

5. Checkers in design process: The assertions within the checkers

helped in the understanding of the requirements and the definition of

the RTL. During simulation, the checkers pointed to various

errors, most of them attributed to design errors, but a few to

errors in the assertions within the checkers. Even though

checker errors may sound like an overhead because the design

was correct, they were not an overhead; they demonstrated a

misunderstanding in the requirements between the actual design

and the verification code. Resolution of those issues helped in

better solidifying the design and requirements.

6. Checker restrictions: In the definition of the checkers, the use

of static concurrent assertions felt more natural than the use of

procedural concurrent assertions, perhaps from previous

experiences with assertions. Procedural concurrent assertions

were only used when it was important that the assertions are not

impacted by where the checkers were to be instantiated.

However, there are restrictions in the use of checkers. Those

illegal constructs include the inclusion of:

 a) Parameter, localparam and specparam

 b) Module, interface, program, class

 c) Task, void functions, blocking assignments,

 d) Functions with side effects

 e) if, for, while, case statements (in always, and initial
 procedures)

 f) All hierarchical referencing, into or out of a checker, is

 disallowed

Even though those illegal constructs sound like an impactful

deficiency in the use of checkers, we did not experience those

limitations as road blockers. For example, instead of applying

the if, case, or loop statements within the always procedures,

functions can be used in a procedural concurrent assertions to

produce the computational results of an expression. Other

options include the use of those conditional statements from

within the assertions. Specifically, a property statement is

specified as follows:

property_statement ::=
 property_expr ;
 | case (expression_or_dist) property_case_item
 { property_case_item } endcase
 | if (expression_or_dist) property_expr

[else property_expr]

It is important though to understand where these limitations

exist. Final blocks in a checker are no different than final blocks

in RTL code, and the same goes for assertion action blocks;

however, an action block may not call a task, as tasks are

disallowed in checkers. However, an action block may assign a

value to a signal. The limitations apply only to the checker

body. For example, the following is legal:

ap1: assert property(@ (posedge clk) a |=> b) else
 begin
 c<= 1’b1;
 $info (“expected b==1”)
 end) ;

Another restriction in the use of the checkers is where they can

be instantiated. A checker may be instantiated wherever a

concurrent assertion may appear. However, it is illegal to

instantiate checkers in fork...join, fork...join_any, or

fork...join_none blocks. This was not an impactful restriction

in the use of the checkers.

Figure 5.1 is an example of legal and illegal code extracted from

the chk_rdhit checker (not used in the model).

Figure 5.1 Legal and illegal code in a checker declaration

10

7. Elaboration time check: Those checks are part of IEEE

1800-2009; they were used within the checkers to ensure

that the parameters did not exceed intended limits. For

example,

if (CACHE_SIZE > 1024) $error(“cache size is too large”);
Those elaboration time checks serve as good

documentation, and as verification prior to simulation.

8. Instantiation of undefined checkers during RTL

design: Checkers are intended to be totally passive, and do

not in any way impact the environment in which they are

used. For example, checkers can be instantiated during the

design definition of the RTL when one really does not yet

know what is in the checker, but feel that there should be

something. Thus, the marking of such a checker helps in

the initiation of verification code to be done at a later time.

For example,
 module dut(..);
 ...
 always @ (posedge clk) begin
 if (..) begin
 some_code;

 chk_rd_mode_fast chk_rd_mode_fast_1 (.*);

 ...

In the above example, one may not know what is

in chk_rd_mode, but the designer feels that some checks

are needed. In addition, that checker may in time evolve,

and be changed, as the requirements may change.

6.0 SUMMARY

Our overall impression is that the checker construct does provide

many advantages over the module-based library elements or simple

assertions inserted directly into the design module. Checkers enable

the grouping of related code and assertions into entities that can be

instantiated inline with RTL. They also reduce the size of the RTL

code because the verification code is external in checkers. That

allows the separate detailed reviews of the assertions within the

checkers. They can also be easily linked to the usage locations within

the RTL code; we took advantage of the notation for checker named

prefixed with “chk_” and used the Unix grep command to locate the

files that used checkers (i.e., grep chk_ *.sv > file.txt).

Writing basic checkers of assertions is fairly straightforward because

checkers bear similarities to modules. However, checkers are not

identical to modules, and do have rules that must be understood.

We like the capability to group related assertions and supporting

code in individual checkers, and we appreciated the capability to

instantiate checkers anywhere inline with the RTL code.

Elaboration time configuration checks are very useful in catching

usage errors up front, before time is spent with the simulator.

We recommend the use of checkers. The main hurdle, as of today, is

tool support. However, we believe that the checker construct will be

widely supported in the future.

7.0 REFERENCES
[1] IEEE Standard for SystemVerilog Unified Hardware
Design, Specification, and Verification Language, IEEE

1800-2009.

[2] Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari, and Lisa Piper

c. 2010 SystemVerilog Assertions Handbook, 2nd edition

for Dynamic and Formal Verification, ISBN 878-0-9705394-8-7
http://SystemVerilog.us/

 [3] E. Cerny, S. Dudani, and D. Korchemny, IEEE 1800-2009

SystemVerilog: Assertion-based Checker Libraries, Design Verification

Conference (DVCon) 2010.

[4] E. Cerny, D. Korchemny, L. Piper, E. Seligman,

S. Dudani, Verification case studies: evolution from
SVA 2005 to SVA 2009, Proc. Design Verification

Conference (DVCon) 2009.

[5] Accellera Standard Open Verification Library (OVL),

Version V2.4, Accellera, 2009.

[6] SystemVerilog Snippets for Emacs

http://tinyurl.com/ygtg8cw

[7] Slides and code can be downloaded from
http://SystemVerilog.us/DvCon2010/

8. 0. ACKNOWLEDGMENTS

We thank Synopsys for providing us access to their VCS platform

that supports many of the SystemVerilog IEEE 1800-2009 features,

including the checker construct.

We thank Mentor Graphics for granting us licenses of QuestaSim.

Since the authors are located in different places (California, Florida,

and Bangalore, India), having access to this simulator helped us in

the early compilations and debugging of the code with inline

assertions (instead of checkers).

