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ABSTRACT  
The checker construct is a new feature defined in IEEE 1800-2009; it 

is intended to facilitate the definition and usage of libraries of 

assertions and to delineate verification code from RTL. In this paper, 

we describe our experience in using checkers for the evaluation of a 

cache controller design.  The goal was to evaluate how easy it is to 

define and then utilize the checkers in a variety of configurations.  

Checkers were defined to include static concurrent assertions, 

procedural concurrent assertions, immediate and deferred immediate 

assertions. The checkers were then instantiated statically and 

procedurally in the design module.  We also experimented with 

where the checkers are defined and how formal arguments were 

used. Simulation was used to confirm our results, with both pass and 

fail assertion results expected.  

 

We start with a brief description of the design in evaluation and the 

verification environment, including a list of the checkers that were 

defined. We then provide an overview of some of the key aspects of 

the testing, including 1) how static and procedural assertions inside a 

checker are treated when the checker is instantiated statically or 

procedurally in the design; 2) use of deferred assertions to prevent 

transient errors; 3) argument passing; and 4) configuration checks 

(e.g., elaboration time checks).  These are all areas where the 2009 

release of the standard professes to have improved usability. We then 

show the checker definitions and instantiations and discuss our 

personal experiences in the use of checkers.  

 

Categories and Subject Descriptors  
IEEE 1800-2009 SystemVerilog checkers and assertions.  

 

General Terms  
Verification.  

 

Keywords  
IEEE 1800-2009, checker, SystemVerilog Assertions, verification. 

deferred immediate assertion, concurrent assertion, static assertion, 

procedural assertion, static checker instantiation, procedural checker 

instantiation.  

 

1. INTRODUCTION  
The checker construct provides an encapsulation of all assertion and 

coverage related code for use in RTL / behavioral designs and in 

verification environments. In this paper, we share our experience in 

creating checkers for the verification of a cache controller design. 

Section 2 defines the design and verification environment, including 

an overview of the checkers that were created. Section 3 provides an 

overview of the important concepts that were the focus of our 

analysis.  These are the features that distinguish checkers from their 

predecessor module-based libraries.  Section 4 shows the checkers 

that were created. Finally, Section 5 summarizes our impressions 

after creating and using checkers to evaluate our design.  The 

presentation and the SystemVerilog code used on this project are 

available for download.[7] 

 

2.0 DESIGN AND  

      VERIFICATION ENVIRONMENT 
This section defines the cache controller model and the key 

requirements that will be tested.  The design requirements were 

intended to be very simplistic so as not to overly complicate the 

analysis. The verification strategy, including the overview of 

checkers to be defined, is also described.  

 

2.1 Cache Controller Model  
Many systems have a cache for storage of temporary data that is 

likely to be used again. The advantage of the cache is that access is 

typically much faster than accessing that data in main memory or 

external memory via a network. A cache controller is used to access 

its internal cache and to control what data is contained in the cache.  

An address/data pair and entry status (valid/invalid) is referred to as 

a cache line. The cache is implemented using three cache memories 

to emulate the cache entries; these consist of cache_entry, 

cache_mem_addr, and cache_mem_data.  To quickly determine that 

an entry is valid (i.e., the "exists" function), a large 1-bit wide 

memory (cache_valid) with depth identical to the main memory is 

used.  Figure 2.1-1 represents an overview of the cache memory 

model.  

 
 

Figure 2.1-1 Cache Memory Overview 
 

Cache reads will either result in a hit (i.e., cache_exists, the desired 

addressed data was found in the cache) or a miss (i.e., the desired 

addressed data is not available in the cache).  A miss is defined in the 

model as the invert of cache_exists.  When a miss occurs, the cache 
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controller will retrieve the data from main memory and then add the 

data to the cache.  

 

For a read or a write transaction, if the cache is full and the cache 

does not contain the data, the oldest address/data in the cache is 

replaced.  The oldest address/data algorithm for this design uses a 

first-in first-out (FIFO) to implement the oldest address/data 

replacement because it is simple.  The addresses are stored in a 

FIFO.  Address/data in the cache is replaced by popping the oldest 

address from the FIFO, and adding the new data and address to the 

cache, and the address to the FIFO. 

 

The cache controller also controls what data is written to the cache 

memory. Data written by the user is always copied to the cache and 

to the main memory, i.e., a write-through cache. When data is written 

to the cache, the cache is checked to see if there already exists data in 

the cache at that address. If so, the data is updated.  If not, a new 

cache line is added, i.e., the data is added to the cache and the 

associated address is added to the FIFO. 

  

The cache controller has a user interface and a main memory 

interface, as shown in Figure 2.1-2.  The cache memory is internal. 

The user interface consists of the following signals:  

  

Signal Function 

data_vld 

 

If 1’b1 then rd_data to user interface is valid 

busy  

 

Instructs user interface to stop sending new read / writes 

rd Read command from user interface. If 1’b1 then read 

wr Write command from user interface. If 1’b1 then write 

addr Address from user interface 

rd_data Read data to user interface from cache or main memory  

wr_data Data to write from user interface to main memory 

clk System clock 

rst_n System reset 

 

The main memory interface consists of the following signals: 

Signal Function 

mem_rd  Read command to main memory. If 1’b1 then read     

mem_wr Write command to main memory. If 1’b1 then write 

mem_addr Address to main memory  

mem_rd_data Read memory data  from main memory 

mem_wr_data Write data to main memory 

 

 
Figure 2.1-2  Cache Controller Overview 

2.2  High level Requirements  
This section provides a summary of the requirements. It does not 

necessarily define all the needed properties, nor does it define the 

implementation, as that could be a risk if the requirements impose an 

implementation.   

 

General requirements: 

1. Main memory: The main memory is slow, and requires 3 or more 

cycles to read or to write.  The size and latency of the main memory 

are parameterized.  The data is latched on the falling edge of the 

write signal and is driven on the rising edge of the read signal.   

 

2. Cache: The cache accesses are very fast, minimally 1 clock cycle. 

The cache size is parameterized. This cache is a write-through cache, 

thus the write to memory always proceeds.  Cache lines are either 

updated or created on writes. They are also created on cache read 

misses.  

 

3. User interface write: If a write from the user interface occurs, then 

the write must be forwarded to main memory and to the cache.  If 

there is a write cache hit, meaning that a cache entry already exists, 

then the cache line must be updated because we are doing a write.  In 

addition, a write through to the main memory must also occur.  User 

interface writes are always one cycle, and the cache controller is 

responsible for the timing to the main memory.   That timing is a 

minimum of three rising clock edges, but could be more cycles as 

defined by a parameter; this latency allows time to update the main 

memory.  See Figure 2.2-1 for the timing of a user interface write. 

 

4. Cache full: If the cache is full and a new value must be written 

into the cache, then the oldest entry must be replaced.  

  

5. User interface read, data in cache:  If a read from the user interface 

is requested and the data is in the cache, then on the next rising edge 

of the clock, data_vld will be asserted, and the data will be supplied 

to the user interface on the rd_data bus.  Figure  2.2-2 demonstrates 

the timing for a read request with data already in the cache.  

 

6. User interface read, data not in cache:  If a read from the user 

interface is requested and the data is NOT in the cache, then on the 

next rising edge of the clock data will be fetched from the main 

memory.  At the last cycle of the data fetch from the main memory 

the main memory data is stored into the cache, and is available to the 

user (with data_vld==1’b1).  See Figure 2.2-3 for the timing of a 

main memory read with a cache miss, assuming a main memory 

access time of 3 cycles. 

 

7. User interface busy: The cache controller shall assert a busy signal 

to the user interface to instruct it to stop sending read or write 

commands.   

 

 
Figure 2.2-1 User Interface Write 
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Figure  2.2-2 Timing for a Read with data in Cache 

 

 
Figure 2.2-3 Main Memory Read with Cache Miss 

 

2.3 Cache Controller Architecture   
The architecture of the cache controller consists of five main 

elements, as shown below.   

cache_mem A cache memory instantiation  

LRU_fifo Instantiation of a FIFO emulating the 

least reusable algorithm  

filling_cache_invalidates Provides controls to the LRU_fifo and 

the cache memory (e.g., invalidate, 

push, pop)  

main_mem_valid Controls the main memory  

Conditional  Select data item rd_data 

 

Figure 2.3 represents a high level view of the model implementation.  

 

 
Figure 2.3 Cache Controller Architecture 

2.3 Verification Environment 
A simple testbench was written to provide stimulus to the design 

under test. Synopsys’s VCS provided early access to a simulator that 

supports many of the new features in the 2009 release of the 

standard.  A thorough evaluation of checkers should ideally include 

formal analysis as well, but the availability of tools is still limited at 

this time.  

 

Since the purpose of the cache controller design is evaluating the 

new checker construct, we wanted to rely completely on the 

assertions in the checkers to verify the design. The checkers to be 

developed shall perform the following types of functions:  

 

User writes:  This checker checks that the main memory and the 

cache are updated for every user write; it also checks that the 

minimum access requirements are met. Since the memory is 

parameterized, elaboration time checks are used to confirm that the 

parameter value has integrity.  

 

User reads:   This checker checks that when a read miss occurs, the 

data is fetched from the main memory; it is then provided back to the 

user, and the read data is added to the cache.  The data_vld signal is 

asserted n rising clocks after the rd signal is asserted, where n is the 

main memory access time.  The checker also checks that when a hit 

(!miss) occurs the proper data is returned to the user and that the 

main memory is not accessed.  The data_vld signal is asserted on the 

next rising edge of the clk.  

 

Cache invalidate: When the cache is full and more data needs to be 

added, this checker checks that the oldest address is invalidated and 

then overwritten.   

 

Data integrity: This checker checks that reads and writes to the 

various memories do not collide, and that control and data signals are 

never X or Z values.  

 

In addition to the verification checks, cover statements will be added 

to the checkers. 

 

3.0 CHECKER CONCEPTS 
[2]

  

 
The 2009 release of the standard professes to have improved the 

usability of assertion libraries with the checker construct. In this 

section, we describe what we believe are the key features that 

distinguish checkers from their predecessor module-based libraries. 

These features form the criteria for our evaluation.  

 

Checkers group related assertions, coverage, and supporting code 

into individual verification units.  They are designed to be able to be 

placed anywhere in the code; thus, they can be placed in close 

proximity to the code that is being evaluated. Checkers can contain 

static or procedural assertions, and they can be instantiated statically 

or procedurally. It is important to understand these classifications in 

order to understand how the assertions in the checker will operate.  

 

Another new feature of the standard, not specific to checkers but 

allowed in checkers, are deferred immediate assertions. Deferred 

assertions help to prevent transient errors. Argument passing and 

elaboration time configuration checks make the use of libraries 

simpler and more reusable.  
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3.1 Classification of Checker Assertions  
Understanding how assertions in a checker are processed requires the 

understanding of their classifications. Assertion statements inside a 

checker are classified as follows, and are shown in Figure 3.1:  

1) Static concurrent assertions: Those are concurrent assertion 

statements that appear outside procedural code. 

2) Procedural concurrent assertions. A procedural concurrent 

assertion is one that is in a procedural block, such an always, initial, 
or final procedure.    

3) Immediate assertions.  The immediate and deferred immediate 

assertion statements test that an expression holds.  The test is 

performed when the statement is executed in the procedural code.  

   

 
Figure 3.1 Classification of checkers assertion statements 

 

3.2 Classification of checker Instances  
A checker can then be instantiated in various units, such as modules, 

interfaces or programs. They can be instanced outside of procedural 

statements (i.e., always, initial or final blocks), and are called static 

checker instances.  Checkers can also be instanced inside procedural 

statements, and are called procedural checker instances.  As 

previously stated, the significance of this classification comes into 

play because it impacts how assertions defined in the checkers are 

processed by SystemVerilog. Figure 3.2 demonstrates the 

classification of checker instances.  

 

 
Figure 3.2 Classification of checkers instances 

 

3.2.1 Static checker Instantiation 
Checker static instances behave as instantiated code in module.  

When a checker is instantiated as a static checker instance, all of its 

code behaves as if it were instantiated directly (or in-block) in the 

module after the proper argument associations are made.  That code 

includes the static concurrent assertions and the procedural 

concurrent assertions.  Using the checker shown in Figure 3.1, the 

equivalent emulation of the static checker instance in a module is 

shown in Figure 3.2.1.  Notice that in this case, the code of the 

checker is directly instanced in the module, in a manner similar to an 

instantiation of a module.  

  

 
Figure 3.2.1 Emulation of Static checker instance (chk1) in a 

module 

3.2.2 Procedural checker Instantiation 
If a checker is instantiated in a module procedurally, then the 

checker’s behavior depends on the type of concurrent assertions the 

checker includes: procedural concurrent assertions or static 

concurrent assertions.  The rules are as follows:  

Checker’s static concurrent assertions are impacted by the 

procedural code in a module 

If a module’s procedural code instantiates a checker that includes 

static concurrent assertions, then those static concurrent assertions 

behave as if they were inserted inline at the point of insertion of the 

checker.  Thus, the checker’s static concurrent assertions are affected 

by the conditions imposed within the module’s always/initial/final 
statements.  For example, the static concurrent assertions within the 

checker will be impacted by an if or case conditions of the always 

procedure in the module that instantiates the checker.  

 

Checker procedural concurrent and immediate assertions ignore 

procedural code in a module  
[1] Procedural concurrent assertion statements in a checker shall be 

treated just like other procedural assertion statements.  Thus, a 

procedural concurrent assertion in a checker behaves as a standalone 

procedural concurrent assertion, and does not inherit aspects of its 

enclosing checker’s instantiation.  The checker’s procedural 

concurrent assertions behave as if they were directly inserted within 

the module, as procedure statements, and are not sensitive to the 

procedural code in the module in which the checker is instantiated.  

However, the checker’s procedural assertions will be impacted by 

their procedural definitions.  For example: 

  checker chk_test(..);  
    always @ (posedge clk1)  
      ap1: assert property( 
               @ (posedge clk2) req |=> @ (posedge clk3) ack); 
  endchecker : chk_test 

 

In the above procedural concurrent assertion, regardless of how the 

checker is instantiated, ap1 must first wait for the clocking event 

(posedge clk1) before putting the assertion into the procedural 

assertion queue. The assertion is insensitive to any condition (if or 

case) under which that checker is instantiated (e.g., in a module, 

always @ (posedge clk) if(condition) chk_test chk_test_1(…); ) 
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Figure 3.2.2-1 highlights a checker declaration that includes a static 

concurrent assertion and several procedural concurrent assertions.  

That checker is instantiated as a procedural checker instance within a 

module.  

 

The equivalent emulation of the procedural checker instance in a 

module is shown in Figure 3.2.2-2.  Notice that in this case, the 

checker’s procedural concurrent assertions are directly instanced 

(i.e., in-block) in the module in a manner similar to module 

instantiation.  However, the checker’s static concurrent assertion is 

located at the point of insertion of the checker’s instance (i.e., inline).  

 

 
Figure 3.2.2-1 Procedural checker instance in a module 

 

 
Figure 3.2.2-2 Emulation of procedural checker instance in 

module 

 

 

 

 

3.3 Deferred Assertions 
Deferred assertions are not unique to checkers; however, because 

they are new to the standard and they enable the creation of 

combinatorial library elements that were previously not possible. 

Deferred assertions delay the reporting of failures to later in the time 

step after transitioning signals have settled, and all but the last failure 

are filtered out.  This avoids unnecessary noise in simulation reports.  

 

For example, suppose we have an immediate assertion that checks 

that the rd and wr signals are never both active at the same time.  
 

checker cache_integrity; 
… 
// read and write cannot both be active 
never_rd_wr:  assert #0 ( not(rd && wr)) 
   $error("Simultaneous read and write are illegal”); 
… 
endchecker : cache_integrity 

  

If back to back reads and writes were legal, it is possible that the read 

write signals will transition from “10” -> “11” -> “01”.  Because the 

assertion reporting is delayed, the “11” value will not cause a false 

report.  In effect, each transition flushes the previous transition so 

that only the stable ending value is actually evaluated. 

 

3.4 Passing Formal Arguments 
Some significant advantages exist in the way formal arguments are 

passed to checkers versus modules. IEEE 1800-2009 SystemVerilog: 

Assertion-based Checker Libraries[3,4,5] described this in detail. 

Unlike modules, the new checker construct allows for passing 

arguments like properties, sequences, and events. Also, defaults can 

be assigned to any port, including configuration parameters that are 

passed as part of the port list.  

 

Inferred value system functions, $inferred_clock and 

$inferred_disable, exist that can be used to set the default value of a 

clock or a reset.  The inferred value is derived from the context in 

which the checker is instantiated. The inferred clock is derived from 

procedural code first, then from a default clock specification. The 

inferred disable is derived from a new default disable iff construct if 

it exists; otherwise the inferred value is 1’b0. 

 

While passing formal arguments has been simplified, it is also 

possible to take advantage of the checker construct without having to 

define any port list. Signals in a checker that are not local and not a 

formal parameter will resolve to the signal in the scope in which the 

checker is declared. So if you define the checker in the module in 

which it is used, it can be instantiated without formal arguments. 

However, as of this date, no commercials simulator seems to support 

nested declarations.  

 

3.5 Configuration Checks 
Configuration checks are not specific to checkers versus modules but 

it is new to the standard and is especially useful for library elements.  

A configuration check can exist anywhere that is outside of a 

procedural code. For example: 

checker cache_integrity 
// check that user did override the default 
if (mem_size == 0)   
   $error("User must configure the memory to 

      a valid size.  The default value of 0  is not legal”); 
… 
endchecker : cache_integrity 
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These types of configuration checks are identified by procedural 

code outside of the always block.  They are checked at elaboration 

time so that configuration errors are flagged early on, before 

simulation even starts. 

 

4.0 CHECKERS AND DESIGN EXPERIENCE 
 

4.1 Checker Experience
 [7]

 
The ports and anticipated local signals of the cache controller were 

first declared.  Because the requirements were loosely defined and 

needed further clarifications, the designer started to translate some of 

the requirements into assertions defined in a single checker.  The use 

of checkers allowed separating assertions and supporting verification 

logic from the controller design.  This is a very important feature of 

the checkers. 

 

These assertions clarified enough details to start the controller model.  

This process of assertion writing and design expansion was iterated a 

few times until the single checker became too complex, and harder to 

follow.  That single checker encompassed elements dealing with 

READS, WRITES, and CACHE accesses.  It became obvious that a 

split of the single checker into smaller checkers, each addressing a 

specific functional target, is not only a better organization but also is 

easier to follow and maintain.  Those checkers include the following:   

Checker  

chk_immd.  

chk_rd_cntrl.  

chk_rd_wr_cntlr 

chk_wr_cntrl. 

chk_reset. 

chk_fifo  

chk_invalidate 

Function 

Inline assertions, instantiated  procedurally  

Read miss/hit,  instantiated statically  

RD/WR miscellaneous, instantiated statically  

Write through and cache,  instantiated statically 

Reset, instantiated statically 

LRU Fifo assertions, instantiated statically  

Cache invalidates, instantiated  procedurally 

 

1. The chk_rd_cntrl checker addresses the verification with 

assertions of the read transactions.  Those transactions include 

the read from cache on a hit, the read from main memory on a 

miss, and the invalidation of the oldest cache entry when the 

cache is full.  The chk_rd_cntrl checker  also includes the 

validation of a cache new entry upon a miss with the verification 

of the timing specifications for the read from a user interface and 

the read of the main memory.   

 

2. The chk_wr_cntrl checker addresses the verification with 

assertions of the write transactions.  Those transactions include 

the write to the cache and the main memory, and the possible 

invalidation and rewrite of the cache entries, per the 

requirements. The chk_wr_cntrl checker also includes the 

verification of the timing specifications for the write from the 

main memory. 

 

3. The chk_rd_wr_cntlr addresses the verification of items that 

incorporate the read and write controls, and thus does not really 

belong to either of the other checkers.  For example, there is a 

need to verify that there is never a simultaneous read and write 

into the memory.  Another example is the verification that data 

written to the main memory at a specific address is correctly read 

later from that same address, regardless if that data was cached or 

not.  

 

4. The chk_invalidate verifies that upon a cache write and the cache 

is not full, the cache line is filled.  Figure 4.1-1 is the declaration 

of the chk_invalidate.  Figure 4.1-2 is an example of the checker 

instantiated procedurally 

 

5. The chk_fifo represents a move of the assertions previously 

written into the FIFO model into a checker.  

 

 

 
Figure 4.1-1 Declaration of the chk_invalidate 

 

. 

 
Figure 4.1-2 Example of a checker instantiated procedurally 

 

This splitting of the original common one checker into multiple 

checkers, each targeted to a specific aspect of the design, helped in 

further understanding the design, and facilitated the coding of the 
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RTL.   The designer then used several emacs editor frames to display 

the design and the checkers respectively.[6]. Having separate 

checkers, each addressing a specific aspect of the assertions, allows 

the designer to freely add supporting code without being concerned 

about interference or confusion with the RTL. Supporting code 

consisted of items such as signal declarations, generation of 

registered signals, function declarations, and the declaration of the let 
statements 

 

As the design was being refined, more assertions were added into the 

checkers and additional checkers were added.  The checkers were 

statically and procedurally instantiated into the cache controller. As 

the requirements were being further reviewed along with the 

assertions, several other issues were brought up.  In particular:  

- The lack of chip select, as most memory interfaces have such a 

signal.  

- The real purpose of the busy signal,  

 

Those comments were addressed with elaboration time checks, the 

let constructs, and the assume assertion statement.  Specifically:  

Lack of chip select: The design represents a partition of the whole 

subsystem.  The rd/wr signals are inputs, and chip select (cs) is 

outside the DUT. It is the responsibility of the external logic to 

enable the rd/wr signals based on some external chip select.  To 

clarify this point, we added the following IEEE 1800-2009 

statements to the chk_rd_wr_cntlr chk:  

  let cs = rd || wr;  // demonstrates the equivalency of this signal 
  always @ (posedge clk) mp_no_simultaneous_rd_wr: assume property ( 
                                                                                                 not (rd && wr));  

 

Role of the busy signal: 
The role of the busy signal is to put the burden of stopping read/write 

transactions when the main memory is being accessed.  Since this 

stopping action.is outside the boundaries of the DUT, an assume 
property  is used to clarify its intent.  That assume statement was 

added into the  chk_rd_wr_cntlr chk checker:  

   always @ (posedge clk) mp_busy_no_rd_wr: assume property ( 
                                                                                     busy |-> !rd && !wr); 

 

As key sets of assertions within the checkers were written, RTL code 

was then defined.  The review process of the checkers with the code 

brought up errors in the code.  For example, a reviewer questioned 

why the push was not in the RTL on a cache miss.  That assertion 

was later replace in the chk_rd_cntrl checker with:  

   always @ (posedge clk) ap_fifo_push_on_miss: assert property( 

                                                                                 rd && miss |=> push); 

 
The review process also brought up the point that an FSM with a 

fixed set of states was used to count the main memory access time. 

The FSM was replaced with separate read and a write cycle timers 

(rd_cycle_timer; wr_cycle_timer) to allow for the parameterization of 

the main memory access time for reads and writes.   The chk_imm 

checker (discussed later on) was used inline in the cache_controller 

to verify that the proper conditions of the timer were correct upon a 

read.   

if(rd && miss) begin : rd_from_main 
    chk_immd chk_immd_rd_cycle_timer_not_zero(  // checker instantiation  
             .the_what(rd_cycle_timer==0), 
             .msg("wr signal when memory counter !=0"), 
             .clk(clk)); 
… 

 
As partitions of the RTL design and the checkers were completed 

and integrated, the design was verified using a simple testbench that 

generated random transactions.  The simulation helped in debugging 

errors in both the design and the checkers.  However, even errors in 

the checkers helped the designer in further understanding the 

intended operations of the targeted machine.   

 

4.2 Debugging the Design  
 

We experienced tool issues in that not all tools currently support the 

checker construct, as it is part of IEEE 1800-2009 that was just 

approved in late December 2009.  Because of the tight schedule, one 

designer used QuestaSim to start the debug process; however, that 

tool does not yet support the checker construct.  Thus, the debugging 

process relied on assertions added directly into the various modules, 

instead of using checker instantiations.  These were later converted 

to checkers in the VCS environment and the results compared.  

 

Some of the most helpful assertions were the immediate assertions 

injected directly into procedures at various locations within the 

conditional if statements.  For example, in the cache memory 

module:  

if (invalidate) begin : if1   
  …  
  ap_nothing2invalidate:  
     assert(found_existing_entry) else $error("nothing to invalidate"); 
 
if (wr_cache) begin : wr_cache_updates 
  … 
  ap_no_cache_line_found_4write:  
    assert(found_empty_line || found_existing_entry) else  
      $error("attempt to write a cache line into non existent space %t", $time); 

 
A better methodology that we adopted with the checkers is to create 

a checker that handles immediate assertions that are instantiated 

procedurally. This would allow consistency in code style, and the 

capability to add additional coverage or assertions if needed with 

little modifications to the RTL.  We thus wrote the following checker 

that includes a static concurrent assertion.  The checker can be 

instantiated wherever immediate assertions are needed.  Note that an 

immediate assertion in a checker behaves as a procedural assertion 

because it has an implied always_comb associated with it.  Thus, if a 

checker has immediate assertions, they will be instantiated in-block, 

regardless of how the checker is instantiated (statically or 

procedurally). An immediate static assertion is needed to enable 

inline behavior. 

checker chk_immd(logic the_what, string msg, logic clk); 
  // static concurrent assertion 
  ap_test_now: assert property(@ (posedge clk) the_what) else  
           $error("msg, the_what=%b at %t", the_what, $time); 
endchecker : chk_immd  
//----------------------------------------------------------------------------------------- 
// cache_controller 
always @ (posedge clk) begin : main_mem_accesses  
      … 
  else  begin : else1_mt4wr// find an empty line 
        … 
       chk_immd chk_immd_no_cache_line( // checker instantiation 
          .the_what(found_empty_line || found_existing_entry), 
          .msg("L111 attempt to write a cache line into non-existent space"), 
          .clk(clk));… 

 

       end : else1_mt4wr 

     end : wr_cache_updates 

  end : cache_mem_handling 
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As design errors were corrected, the test engineer reached a point 

where the design appeared to work correctly.  However, to ensure 

that data written into the memory is correctly read, the following 

assertion was written.  

 

sequence q_wr_wr; 
   int v_addr; 
   @ (posedge clk) ($rose(wr), v_addr=addr) ##[1:$] wr && addr==v_addr; 
  endsequence : q_wr_wr 
 
  property p_wr_rd; 
    int v_addr, v_data; 
     disable iff(q_wr_wr.triggered) 
  ($rose(wr), v_addr=addr, v_data=wr_data) |->  
      ##[1:$] rd && addr==v_addr ##[1:3] rd_data==v_data; 
  endproperty : p_wr_rd 
  always @ (posedge clk)ap_wr_rd : assert property (p_wr_rd); 

 
After a review, it was determined that the above assertion is 

incorrect, even though at first glance, it seems to just ignore two 

write transactions to the same address.  It actually ignores after the 

first write, all writes to the same address because of the disable iff 
condition. Thus, even though the model worked with no violations, 

this poorly written assertion gave a false sense of security. The point: 

ASSERTIONS NEED TO BE WELL EXAMINED AND 

BLESSED FOR ACCURACY.  Having all the assertions 

collocated in checkers help in the review process of assertions.  

The above assertion was correctly rewritten as:  

 
 

That assertion also led to the need of another related assertion to 

verify that if data is written to the main memory, then the data read 

from the main memory at that address should not change. The 

assertion takes into account that the memory model can be peaked.  

 

  property p_wr_rd_memory; 
    int v_addr, v_data; 
      first_match(($rose(wr), v_addr=addr, v_data=wr_data) ##1  
      !(wr && addr==v_addr)[*1:$] ##1 rd && addr==v_addr) |-> 
                                   main_mem[addr] ==v_data; 
  endproperty : p_wr_rd_memory 
  always @ (posedge clk) ap_wr_rd_memory : assert property( 
                                                                                     p_wr_rd_memory); 

 

Those two assertions helped in the detection of the source of errors 

when the ap_wr_rd assertion failed at different time slots.  The issue 

was the code that selected the source of data to the user interface 

from either the cache or from the main memory.  Below is copy of 

the erroneous code and the corrected code.  

 

// Erroneous code:  
// assign rd_data = miss? mem_rd_data :  // If miss, return memory data 
//                 cache_data; // If !miss, return cache data 
//-------------------------------------------------------------------- 
 
 

// Corrected code, after assertion pointed to region of the error:  
  always @ (posedge clk) begin : rd_data_output 
     if (rd && miss) begin : rd_miss_data_from_mem 
            data_from_mem <= 1'b1; 
     end :rd_miss_data_from_mem 
     else if (rd && cache_exists) begin : rd_hit 
             data_from_mem <= 1'b0;  
      end : rd_hit 
    end : rd_data_output 
 
  assign rd_data = data_from_mem && data_vld ? mem_rd_data :   
                                                              // If miss, return memory data 
               cache_data; // cache[addr];   // If hit, return cache data 

 

Once this correction was done, the design seemed to be fully 

functional.  Since we worked as a team, we needed to verify the 

model with the checkers and the remaining assertions.  The model 

was then transferred to a test facility where we had access to 

Synopsys VCS and simulation with the checkers.  

 

5.0 CHECKER IMPRESSIONS 

 
The use of the checker provided several benefits during the design 

and verification of the cache controller. The following lists the set of 

observations:  

1. Benefits: The most beneficial use of the checkers is that they 

provide a clear demarcation between the RTL design and the 

verification code.   

a. The code within the RTL is reduced in size because the 

verification code (assertions and supporting code) is 

separately encapsulated.  In the cache controller model, we 

experienced a 75% ratio of assertion lines of code (LOC) to 

DUT lines of code.  However, when the assertions are 

embedded in checkers, the ratio of checker instantiation 

LOC to DUT LOC was less than 3%.   These statistics are 

shown below.  

 
 

b. There is no concern about interference or confusion between 

the verification code and the RTL. This separation relieves 

concerns that verification code can be synthesized 

inadvertently.  Of course, there are other ways to prevent the 

synthesis of code, such as the use of pragmas, but the use of 

checkers is much clearer and less error prone.   

 

c. The checker provides an organized and structured solution 

that is amenable to building small to medium verification 

units.  

 

2. Instantiation impact: Checkers can be instantiated statically or 

procedurally within RTL.  This allows the insertions of checkers 

in locations within the RTL where they make more sense.  

Checkers allow for the definition of static or procedural 

concurrent assertions. If a checker is instantiated procedurally, 

INCORRECT  

ASSERTION 
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the static concurrent assertions inside the checker get affected 

by the conditions under which the checker is procedurally 

instantiated. However, regardless of the instantiation method, 

assertions inside of a checker’s procedural code are not affected 

by the conditions under which the checker is instantiated.  This 

demarcation in use model maybe confusing for a first-time user; 

however, it has value because a checker is a conglomeration of 

several assertions, and there are cases where it is desired that the 

instantiation method does not impact the behavior of some 

assertions (i.e., the assertions are not affected by a case or if 

condition in the instantiation of the checker).  That feature is a 

flexibility offered to the users. However, caution must be used 

in the construction of the assertions within a checker.      

  

3. Multiple checkers: Having separate checkers with each 

addressing a grouping of the assertions targeted to specific 

functions allowed for a more organized and structured solution; 

this is amenable to the building of small to medium verification 

units instead of a large set in the RTL or in modules bound to 

the design.  For the case of the cache controller, we wrote 

checkers that addressed the read, write, the read with a cache 

hit, the invalidate, and generic violation rules functions,  

 

4. Arguments with default values using inferred functions: 

IEEE 1800-2009 allows the use of optional arguments.  For 

example:  

  default disable iff rst; 
  default clocking default_clk @(posedge clk1); endclocking 
  property pReqAck(request, acknowledge,  
    reset = $inferred_disable, clk1 = $inferred_clock); 
     @clk disable iff (reset) 
         request |=> @ (posedge clk2) acknowledge; 
   endproperty : pReqAck 

   always @ (posedge clk) begin : reqack 
      // with defaulted clock and resets 
     apReqAck_ck1 : assert property(pReqAck(req, ack));  
     // with specific clock, and defaulted reset 
    apReqAck_ck2 : assert property(pReqAck(req, ack,,clk2)); 
   end : reqack 

We did not make use of inferred signals as arguments. We did 

not have multiple clocks and we relied on the defaults for resets 

and clocks.  

     
5. Checkers in design process: The assertions within the checkers 

helped in the understanding of the requirements and the definition of 

the RTL.  During simulation, the checkers pointed to various 

errors, most of them attributed to design errors, but a few to 

errors in the assertions within the checkers.  Even though 

checker errors may sound like an overhead because the design 

was correct, they were not an overhead; they demonstrated a 

misunderstanding in the requirements between the actual design 

and the verification code. Resolution of those issues helped in 

better solidifying the design and requirements.  

 

6. Checker restrictions: In the definition of the checkers, the use 

of static concurrent assertions felt more natural than the use of 

procedural concurrent assertions, perhaps from previous 

experiences with assertions.  Procedural concurrent assertions 

were only used when it was important that the assertions are not 

impacted by where the checkers were to be instantiated. 

However, there are restrictions in the use of checkers. Those 

illegal constructs include the inclusion of:   

  a) Parameter, localparam and specparam  

  b) Module, interface, program, class  

  c) Task, void functions, blocking assignments, 

  d) Functions with side effects   

  e) if, for, while, case  statements (in always, and initial  
      procedures) 

  f) All hierarchical referencing, into or out of a checker, is  

     disallowed  

 

Even though those illegal constructs sound like an impactful 

deficiency in the use of checkers, we did not experience those 

limitations as road blockers.  For example, instead of applying 

the if, case, or loop statements within the always procedures, 

functions can be used in a procedural concurrent assertions to 

produce the computational results of an expression.  Other 

options include the use of those conditional statements from 

within the assertions.  Specifically, a property statement is 

specified as follows:  

property_statement ::=  
  property_expr ;  
  | case ( expression_or_dist ) property_case_item  
    { property_case_item } endcase  
  | if ( expression_or_dist ) property_expr  

[ else property_expr ]  
 

It is important though to understand where these limitations 

exist. Final blocks in a checker are no different than final blocks 

in RTL code, and the same goes for assertion action blocks; 

however, an action block may not call a task, as tasks are 

disallowed in checkers. However, an action block may assign a 

value to a signal. The limitations apply only to the checker 

body. For example, the following is legal:  

ap1: assert property(@ (posedge clk) a |=> b) else  
    begin  
         c<= 1’b1;  
         $info (“expected b==1”) 
     end  ) ; 
 

Another restriction in the use of the checkers is where they can 

be instantiated. A checker may be instantiated wherever a 

concurrent assertion may appear. However, it is illegal to 

instantiate checkers in fork...join, fork...join_any, or 

fork...join_none blocks.  This was not an impactful restriction 

in the use of the checkers.   

 

Figure 5.1 is an example of legal and illegal code extracted from 

the chk_rdhit checker (not used in the model).  

 

 
Figure 5.1 Legal and illegal code in a checker declaration  
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7. Elaboration  time check: Those checks are part of IEEE 

1800-2009;  they were used within the checkers to ensure 

that the parameters did not exceed intended limits.  For 

example,  

if (CACHE_SIZE > 1024) $error(“cache size is too large”);  
Those elaboration  time checks serve as good 

documentation, and as verification prior to simulation.  

 

8. Instantiation of undefined checkers during RTL 

design: Checkers are intended to be totally passive, and do 

not in any way impact the environment in which they are 

used.  For example, checkers can be instantiated during the 

design definition of the RTL when one really does not yet 

know what is in the checker, but feel that there should be 

something.  Thus, the marking of such a checker helps in 

the initiation of verification code to be done at a later time. 

For example,  
  module dut(..);  
     ... 
    always @ (posedge clk) begin  
      if (..) begin  
         some_code;  

         chk_rd_mode_fast  chk_rd_mode_fast_1 (.*);  

     ...  

In the above example, one may not know what is 

in chk_rd_mode, but the designer feels that some checks 

are needed.  In addition, that checker may in time evolve, 

and be changed, as the requirements may change.    
      

6.0 SUMMARY 

 
Our overall impression is that the checker construct does provide 

many advantages over the module-based library elements or simple 

assertions inserted directly into the design module.  Checkers enable 

the grouping of related code and assertions into entities that can be 

instantiated inline with RTL.  They also reduce the size of the RTL 

code because the verification code is external in checkers. That 

allows the separate detailed reviews of the assertions within the 

checkers. They can also be easily linked to the usage locations within 

the RTL code; we took advantage of the notation for checker named 

prefixed with “chk_” and used the Unix grep command to locate the 

files that used checkers  (i.e., grep chk_ *.sv > file.txt). 
 

Writing basic checkers of assertions is fairly straightforward because 

checkers bear similarities to modules.  However, checkers are not 

identical to modules, and do have rules that must be understood.    

 

We like the capability to group related assertions and supporting 

code in individual checkers, and we appreciated the capability to 

instantiate checkers anywhere inline with the RTL code.   

Elaboration time configuration checks are very useful in catching 

usage errors up front, before time is spent with the simulator.  

 

We recommend the use of checkers.  The main hurdle, as of today, is 

tool support.  However, we believe that the checker construct will be 

widely supported in the future.   
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