
Experiences in Migrating a Chip-Level Verification
Environment from UVM EA to UVM 1.1

LSI Technologies
RSD HW Verification

Ashish Kumar Ashish.kumar@lsi.com
Dave Stang Dave.Stang@lsi.com

Dudyala Sasidhar Dudyala.Sasidhar@lsi.com
S, Manikandan Manikandan.S@lsi.com

Thirumalai Srishan Srishan.Thirumalai@lsi.com

Abstract— This paper outlines the challenges we faced in
migrating a UVM EA based multi-million gate SOC
verification environment to UVM 1.1, and the approaches we
followed to address these challenges. The SOC has a variety of
blocks like DDR, SAS, PCIe, and many general purpose
peripherals like USB, Ethernet and Flash.

Since UVM EA is very similar from OVM 2.1.x, this paper would
be relevant from the perspective of porting OVM 2.1.x
environments to UVM 1.1. Following are the topics we plan to
address:

1. Backward compatibility of components developed in UVM
EA.
2. Migrating UVM EA configuration to resource manager.
3. Synchronization between UVM EA and UVM 1.0 phases
4. Migrating to UVM 1.0 sequences and sequence-libraries.
5. Taking advantage of the command line processor &
resource/config db.
6. Taking advantage of the sequence library.
This paper also discusses the challenges and the different
approaches used to solve the problems at the SOC.

Keywords: OVM,UVMEA, UVM1.0, Migration, Verification
Methodology.

I. INTRODUCTION
The decision to move all the verification environments from
various methodologies both home grown ones and standard
methodologies like OVM, VMM to UVM was based on the
following considerations.

1. Developed and maintained by Accellera and is a
standard verification methodology

2. The methodology should be tool independent and
open source.

3. Should be able to address verification challenges
across generations of chips with no major changes

4. Explore the possiblity of using testbench from a core
to a chip(handled across teams).

5. Availablity of 3rdParty IP’s and support.
6. And the obvious advantage of reduced ramp up time

of new engineers.
Existing verification methodologies like VMM, OVM were
explored. Although at the stage when the company was

deciding which methodology to be followed, VMM and OVM
methodology were not completely tool independent(Some of
the constructs were not supported by the eda tools), one was
not sure of the future of these methodologies given the fact
that UVM was picking up. Unlike other methodologies, UVM
is a collective development effort standardized by Accellera.
Developed from inputs from both EDA and non-EDA
companies, UVM was released only after it has been tested
with all the three eda-vendors, unlike OVM or VMM.

II. MOTIVE FOR MOVING FROM UVM-EA TO UVM 1.1
The primary motive for moving UVM-EA to UVM 1.1 is to
adopting new features such as phases, sequence library,
objections, config db and command line processor, which help
both in reducing the effort and maintainability.

At the time when the team decided to move to UVM,
development had just started on UVM1.0 and UVM-EA was
pretty much OVM2.1.1. Taking above factors into account the
decision was made to start the development in UVM-EA at the
earliest and subsequently address any changes which would be
required from moving UVM-EA to UVM1.1

III. OVERVIEW OF THE DESIGN
It is a complex design with 20m plus gate count. It has on-chip
buses like PLB and has SAS/SATA/DDR/PCIe interfaces.
There are roughly around 100 directed tests and over 800
complex random threads targeting multiple cores at chip. The
random threads use constrained random and coverage driven
approaches.

IV. MOVING FROM UVM EA TO UVM1.X
This paper classifies the changes required from moving UVM-
EA to UVM-1.X into two categories.

1. Automated changes(or structural changes).
2. Manual or non automated changes.

A. Automated changes:
As the team started listing down the changes required to move
to newer version of the UVM, it soon became obvious that
most of the changes are repetitive and could be automated.

mailto:Ashish.kumar@lsi.com
mailto:Dave.Stang@lsi.com
mailto:Dudyala.Sasidhar@lsi.com
mailto:Manikandan.S@lsi.com
mailto:Srishan.Thirumalai@lsi.com

There were deprecated features like `uvm_sequence_utils had
to be replaced with other macros. Then there were some
changes which were optional, for example, one could still use
build() and not switch to build_phase(). However it was
deemed better to move in such cases thinking they may get
deprecated over -time.
Following are the list of changes which have been automated.
Actual code is never deleted, instead the script identifies the
piece of code, comments it and adds a new line of code. This
helped us to easily identify the code which has been modified.
The script, albeit easy to write, helped in automating more
than 90 % of the required changes.

1) Configuration uvm_config_db#:
UVM configuration provides a simpler mechanism of sharing
resources compared to UVM-EA. For example,
uvm_config_db is a parameterized class and can accept any
data type including virtual interfaces. Also, the type specific
methods get_config_<type> are replaced with a common
set/get method. In this section we list the changes which are
required for configuration management.

UVM-EA UVM-1.X

get_config_int uvm_config_db#(int)::get

get_config_string uvm_config_db#(string)::get

get_config_object uvm_config_db#(uvm_object)::get

set_config_int uvm_config_db#(int)::set

set_config_string uvm_config_db#(string)::set

set_config_object uvm_config_db#(uvm_object)::get

Additional manual intervention was required in couple of
cases.

a) get_config_int:
In UVM-EA, irrespective of the data type being int/bit,
get_config_int works well. In UVM 1.X the parameter used
with uvm_config_db should match the defined type. Hence,
care needed to be taken if the data type was bit or bit vector.
Since the script was used in converting get/set_config_int to
uvm_config_db, we had to re-visit the code and change bit or
bit_vector to uvm_bitstream_t. Same is true for set_config_int.
Below is an Example code, that explains the above issue

UVM-EA UVM-1.X
bit enable;

get_config_int(“my_comp

”, enable);

bit enable;

uvm_config_db#(uvm_bitstre
am_t)(“my_comp”, enable);

b) get_config_object:

In UVM–EA the return type of get_config_object was
uvm_object, so one has to type cast it back to the required
class type.
In UVM 1.X using config_db get mechanism, objects of the
required type are directly set and get, so typecasting is no

longer needed. This was not taken care of by the script, and
hence required our manual intervention. The table below
shows an example of this.

UVM-EA UVM-1.X

cfg_class cfg0;

function build();
 uvm_object tmp0;
 cfg0
=cfg_class::type_id::cr
eate(“cfg0”);

if(get_config_object(ge
t_name(), “cfg0”,
tmp0)) begin
 $cast(cfg0, tmp0);
end
endfunction

OUTPUT FROM SCRIPT:

cfg_class cfg0;

function
build_phase(uvm_phase
phase);
 uvm_object tmp0;
 cfg0
=cfg_class::type_id::crea
te(“cfg0”);

if(uvm_config_db#(uvm_obj
ect)(get_name(), “cfg0”,
tmp0)) begin
 $cast(cfg0, tmp0);
end
endfunction

AFTER MANUAL CHANGES:
function
build_phase(uvm_phase
phase);
 cfg_class cfg0;

if(uvm_config_db#(cfg_cla
ss)(get_name(), “cfg0”,
cfg0)) begin
end
endfunction

c) set_config_string

As a rule, the script changes set_config_string to
uvm_config_db#(string). The usage of “default_sequence”,
however is an exception. In UVM-1.X uvm_sequence have
changed from name based to type based. For this case, the
script changes set_config_string(“default_sequence”…) to
uvm_config_db#(uvm_object).
Example code, explaining the above change:

UVM-EA UVM-1.X
set_config_string(“plb_

sequencer”,
“default_sequence”,
“plb_random_seq”);

uvm_config_db#(uvm_object_
wrapper)::set(this,

“plb_sequencer.main_phase”
,

“default_sequence”,
plb_random_seq::type_id::g

et());

2) Phases

UVM-1.X provides a standard way of synchronization
between components during the run phase. In order to
facilitate run time synchronization between phases, a new
class uvm_phase has been introduced in UVM 1.X. Due to this
all the standard methods have been redefined with _phase and
has an extra argument _phase.

Following are the list of changes which had to be done to
comply with the new phasing mechanism.
Note: The table below lists the difference between the build
method implementation in UVM-EA and UVM-1.X but is also
applicable to other standard phases such as connect,
start_of_simulation, end_of_elaboration, run, extract, check
and report.

UVM-EA UVM-1.X
function void
build()

function void
build_phase(uvm_phase phase)

function void
class::build()

class::build_phase(uvm_phase
phase)

endfunction: build endfunction: build_phase
super.build() super.build_phase(phase)
task run() task main_phase(uvm_phase

phase);
phase.raise_objection
(this,”main_phase));

Note:
1. build is not part of deprecated code.(ie. not part of `ifndef

UVM_NO_DEPRECATED).
2. The script changes run() to run_phase() everywhere

except in testcases. In testcases, the run() method has been
changed to main_phase(uvm_phase phase). This is
explained under Section:B Non Automated.

3) Sequence Utils:

UVM–EA sequence library has been deprecated and new
sequence library is introduced which extends from sequence.
Hence UVM-EA sequence utils macros are deprecated.
The table below lists the changes done by the script.

UVM-EA UVM -1.X
`uvm_sequence_utils(seq,
sequencer)

`uvm_declare_p_sequen
cer(sequencer);
`uvm_object_utils(seq
)

`uvm_sequence_utils_begin(se
q, sequencer)

`uvm_declare_p_sequen
cer(sequencer)
`uvm_object_utils_beg
in(seq)

`uvm_sequence_utils_end `uvm_object_utils_end
`uvm_sequence_param_utils

`uvm_object_param_uti
ls(seq)

`uvm_declare_p_sequen
cer(sequencer);

4) Sequencer Utils:

The UVM EA sequence library is deprecated. The new UVM
sequence library is type based instead of name based, so it
does not need any of sequence or sequencer macros.

UVM-EA UVM-1.X
`uvm_sequencer_utils `uvm_component_utils
`uvm_sequencer_utils_(begin|
end)

`uvm_component_utils_
(begin|end)

5) Deprecated Code:

Script was automated to identify the deprecated code and
comment. The table below lists the changes done by the script.

UVM-EA UVM-1.X
`uvm_update_sequence_lib_and_
item

//ea_to_10
Commented

`uvm_update_sequence_lib // ea_to_10

Commented
global_stop_request // ea_to_10

Commented
set_global_timeout // ea_to_10

Commented
set_global_stop_timeout // ea_to_10

Commented

6) Delays:

In UVM EA there was no standard way of waiting till all the
assignments are over in Non Blocking Region on event queue.
Typically #0 was used in the testbenches to postpone the event
execution. In UVM1.x there is the standard method
uvm_wait_for_nba_region() which can be used to achieve
this.

UVM-EA UVM1.0
#0 uvm_wait_for_nba_region();

7) Miscellaneous:
In addition to above mentioned changes, a few other
constructs were changed, either for better performance or for
consistency.

Display/Reporter:

UVM-EA UVM-1.X
uvm_report_info/error/fata
l/warning

`uvm_info/error/fatal/
warning

$psprintf `sformatf
$display `uvm_info
p_sequencer.uvm_report_inf
o

`uvm_info

B. Non-Automated
1) Virtual Interface container:

To pass virtual interfaces, in UVM-EA, we used the
commonly used method of wrapping the virtual interface with
a container class and pushing this object into the factory using
the set config method. In UVM 1-X we used the
uvm_config_db, which supports parameter of any type, to pass
virtual interfaces.

UVM-EA UVM-1.X
container class:

class vif_wrapper #(type
virt_interface_type=int)
extends uvm_object;

virt_interface_type
virt_interface_inst;

 function new(string
name="",virt_interface_type
intf);
 virt_interface_inst =
intf;
endfunction

endclass

Setting virtual interface
in config space:
vif_wrapper #(virtual
system_if)
vif_wrapper_system_if =
new("vif_wrapper_system_if"
,system_if0);

set_config_object("*","vif_
wrapper_system_if",vif_wrap
per_system_if,0);

Setting virtual
interface in config
space:
uvm_config_db
#(virtual
system_if)::set(null
, "*" , "system_if0"
, system_if0);

Getting virtual interface
from config space :

if(!uvm_top.get_config_obje
ct("vif_wrapper_system_if",
temp_getcfg_obj,0))

uvm_report_error(get_name()
,"get_config_object on
vif_wrapper_system_if
failed");
 else

assert($cast(vif_wrapper_sy
stem_if_h,temp_getcfg_obj))
;
system_if=
vif_wrapper_system_if_h.
virt_interface_inst;

Getting virtual
interface from config
space :

if(!uvm_config_db#(vi
rtual
system_if)::get(this,
"", “system_if0”
,system_if0))

2) Tests:

A separate switch was added to script ea_to_10.pl to identify
the file which needed modification as a test case.

a) Test Flow in UVMEA:
Before we get into the changes, it would be appropriate to
explain the flow of our testcases in existing UVM-EA
environment.

Test:

task run();
 super.run();

 begin

run_seq.start
(sequencer_db
);
 end

endtask

Base Test:

reset_seq.start(sequ
encer_db)

cfg_system_dcr_seq.s
tart(sequencer_db);

cfg_system_plb_seq.s
tart(sequencer_db)

Tests run method calls super.run and this in turn executes top
reset sequence and top configuration sequences on their
corresponding sequences sequentially. Top level configuration
sequence in-turn spawns different core configuration
sequences either in random cyclic manner or all the threads are
forked out.

b) Changes to testcases and base test
There were two options of changing the test cases explored.

1. Change run to run_phase and synchronize the end of

main_phase with run phase and the test sequence would
remain a part of run_phase.

2. Change the run() to main_phase() and move the reset and
configuration sequences under reset_phase() and
config_phase() respectively. This would not require any
further synchronization between phases.
As there are builtin UVM-1.X phases for reset and
configuration so Option 2 made sense since there was no
need of further user defined synchronization and is taken
care by the UVM methodology.

c) Changes:

1. Add a new reset_phase in base test. Move the reset
sequences to reset_phase

2. Add two new sequence library (cfg_dcr_seq_lib &
cfg_plb_seq_lib) which extends from
uvm_sequence_library. All the core initilization
sequences have been added to above sequence
library.

3. Instead of starting the cfg_dcr_seq, cfg_dcr_seq_lib
was started.

UVM-EA UVM-1.X
Base Test:

task run();
reset_seq.start
(sequencer_db)

cfg_system_dcr_seq.start
(sequencer_db);

cfg_system_plb_seq.start
(sequencer_db)

endtask

Base Test:

task
reset_phase(uvm_phase
phase);
phase.raise_objection
(this,“reset_phase“);

reset_seq_lib.start(s
equencer_db)
phase.drop_objection(
this,“reset_phase“);
endtask

task
config_phase(uvm_phas
e phase);
phase.raise_objection
(this,“config_phase“)
;
cfg_system_dcr_seq_li
b.start(sequencer_db)
phase.drop_objection(
this,“config_phase“);

endtask

UVM-EA UVM-1.X
TestCase:

task run();
 super.run();
 begin

run_seq.start(sequencer_db
);
 end
endtask

TestCase:

task
main_phase(uvm_phase
phase)
phase.raise_objection(
this,“main_phase“);

run_seq.start(sequence
r_db);
phase.drop_objectectio
n(this,“main_phase“);

endtask

d) Drivers:

Apart from automated changes the initial reset values being
driven during the reset phase was pushed into reset_phase of
the driver. One assumption is that there is no need to jump
phases and the other assumption is that there would not be any
transaction queued until reset is de-asserted.
Example:

UVM-EA UVM-1.X
Run Task:

task run();
begin
 drv_reset_signal();
 wait_for_reset();
 forever begin
 get_and_drive();
 end
end

Changes:

task reset_phase(uvm_phase
phase);

phase.raise_objection(this,
„“reset_phase“);
 drv_reset_signal();
 wait_for_reset();
phase.drop_objection(this,
„“reset_phase“);

endtask

task run_phase(uvm_phase
phase);
 forever begin
 get_and_drive();
 end
endtask

3) UVM Objections:

In UVM EA the test was terminated using
global_stop_request. In UVM 1.x since there is more than one
phase which can consume time, the new mechanism of
phasing control and test termination is added.
Objections should be raised and dropped from every
component in its phases so that they are not terminated
prematurely. Typical usage is to raise an objection before
starting the sequence and drop it after the sequence is
completed. The raising and dropping of objections is
hierarchical in nature and it traverses up to top with help of
counters.

UVM-EA UVM-1.X
task run();

my_seq.start(sequencer_d
b);
 global_stop_request();

endtask

task
run_phase(uvm_phase
phase);
phase.raise_objection(t
his);
my_seq.start(sequencer_
db);
phase.drop_objection(th
is);
endtask

In some components like scoreboards which don’t want to
raise and drop objections for very transaction there may be a
need to delay the phase termination after all the objections to
that phase are dropped then those components should raise an
objection in phase_ready_to_end method

Caution:
 It is necessary to raise and drop objection. Avoiding to do
so would result in any thread started in the phase being killed
and there is no error/warning message printed.

V. RECOMMENDATION:
1. For users moving from OVM2.1.X to UVM: It is

recommended that they convert OVM to UVM-EA first
with scripts available in public domain and then move to
UVM1.X

2. For consistency, avoid wild cards in the scope argument
of uvm_config_db.

3. One must raise objection in each time-consuming phase a
component uses. Otherwise, its threads would be killed
without any error message when all other components
have dropped their objections for this phase.

4. Though most of the features are backward compatible,
run simulation with +define+UVM_NO_DEPRECATED

to identify all the deprecated features and any
compatibility issues.

5. It is recommended to print the UVM version in the log
file to avoid any confusion, using builtin macro
`UVM_VERSION_STRING

6. For performance reason, do not raise and drop objection
for every transaction received in monitor, driver or
scoreboard.

7. UVM provides an automated way of setting the variable
from command line. This is useful but needs to be used
with care. Please see VI.4 below.

8. To set parameters of a component from the command
line, use uvm_config_db. It’s better to avoid embedding
field automation macros which would add huge amount of
extra code to copy, clone, print etc.

9. Always pass unique string while raising and dropping
objections. This will aid in debug.

VI. ENHANCEMENT REQUESTS TO ACCELLERA

1. User Guide: Need an example showing what care needs to
be taken to achieve block to sub-system to full-chip reuse.

2. User Guide: Need guidelines on collection and reuse of
functional coverage UVM environments.

3. Common base library: In tests, set_config are used to
apply a variety of configurations. In case one or more are
not applied due to some errors, no UVM errors are
reported. Unsuccessful set_configs done by tests should
report UVM errors.

4. Common base library: UVM needs to flash an error
message if command line argument is set, but is not used
or the said hierarchy does not exist.

5. Sequence library should be enhanced to support parallel
thread execution.

VII. CONCLUSION
The effort required to develop the automation script was
minimal and helped us convert more than 90% of the code to
UVM1.1 with ease. The move was justified by the many new
features of UVM1.1 which were beneficial in improving the
quality of our testbench. During the process of migration we
filed a few incremental enhancement requests on UVM.
In our experience, the eco-space around UVM has taken off
very well based on the availability of VIPs and EDA tool
support. With this, plus the simulator independence which
came with UVM-EA, and the new features of UVM1.x, we
believe we have a long-term stable baseline to develop our
testbenches and utilities going forward.

VIII. ACKNOWLEDGEMENTS:
The authors are indebted to the continuous guidance and
feedback they received from Ashish Kumar of LSI
Technologies. The authors also thank Amit Sharma from
Synopsys for his valuable inputs.

IX. REFERENCES:
[1] "IEEE Standard for SystemVerilog- Unified Hardware

Design, Specification, and Verification Language," IEEE
Std 1800-2009, 2009

[2] OVM User Manual, ovmworld.org.
[3] OVM 2.1.1 Reference, ovmworld.org
[4] Accellera Verfication IP Technical SubCommittee (UVM

Development Website);
http://www.accellera.org/

[5] UVM Class Reference, http://www.accellera.org/activities/vip
[6] Verification Intellectual Property (VIP) Recommended Practices

(http://www.accellera.org/activities/vip/VIP_1.0.pdf).
[7] Universal Verification Methodology (UVM) draft 1.0 User’s Guide
[8] On-line resources from http://www.uvmworld.org
[9] On-line resources from http://www.verificationacademy.com/

http://www.accellera.org/activities/vip
http://www.accellera.org/activities/vip/VIP_1.0.pdf
http://www.uvmworld.org/
http://www.verificationacademy.com/

	I. Introduction
	II. Motive for moving from uvm-ea to uvm 1.1
	III. Overview of The design
	IV. Moving from UVM EA TO UVM1.x
	A. Automated changes:
	1) Configuration uvm_config_db#:
	a) get_config_int:
	b) get_config_object:
	c) set_config_string

	2) Phases
	3) Sequence Utils:
	4) Sequencer Utils:
	5) Deprecated Code:
	6) Delays:In UVM EA there was no standard way of waiting till all the assignments are over in Non Blocking Region on event queue. Typically #0 was used in the testbenches to postpone the event execution. In UVM1.x there is the standard method uvm_wait_for_nba_region() which can be used to achieve this.

	B. Non-Automated
	1) Virtual Interface container:
	2) Tests:
	b) Changes to testcases and base test
	c) Changes:
	d) Drivers:

	3) UVM Objections:

	V. Recommendation:
	VI. Enhancement Requests to Accellera
	VII. ConClusion
	VIII. Acknowledgements:
	IX. References:

