Experience with OVM-Based Mixed-Signal Verification of the Impedance Calibration Block for a DDR Interface

Harry Wang
Microsemi Corp.

Wessam El-Naji
Mentor Graphics

Kenneth Bakalar
Mentor Graphics
Here’s the Story

• Microsemi
• The design under test
• What’s wrong with traditional mixed-signal verification
• The new verification methodology
 – Construction of a verification plan
 – Enhancements to OVM
• The results
• What we have learned
The Context

- Microsemi mixed-signal FPGAs
 - Complex
 - Highly programmable
 - Many potential operating modes
- → Complex verification requirements!
- ∴ Explore new strategies for verification
- Start with a small but typical case to prove the concept
The Design Under Test
What are the Drawbacks of Tradition?

- Analog engineers must master
 - novel language (VHDL, Verilog, SystemVerilog)
 - novel concepts (process, signal, event)
- Overwhelmed with complex timing and sequencing
- How do I gauge quality and coverage?
- How do I reuse this for the next rev?
Assembling the Puzzle...

- Test vectors coded in-line
- Complex control protocol
- Synchronizing automated test of analog results
- Big effort to add a single new test
- How do we integrate block level tests?
The Verification Plan

1. TOOLS
2. LIBRARIES
3. PLATFORM
4. RESOURCES
 4.1 PEOPLE
 4.2 DOCUMENTS
 4.3 SOFTWARE LICENSES
5. DESIGN REQUIREMENTS
6. VERIFICATION REQUIREMENTS
 6.1 CHECKING VERIFICATION REQUIREMENTS
 6.2 GENERATION VERIFICATION REQUIREMENTS
7. VERIFICATION INFRASTRUCTURE
 7.1 BLOCK DIAGRAM
 7.2 REUSE
 7.3 VERIFICATION LAYERS
 7.4 TABLE OF VERIFICATION COMPONENTS
 7.5 DIRECTORY STRUCTURE
8. PHASES AND TIMING
 8.1 PHASES
 8.2 TASK DISTRIBUTION PROPOSALS
Extensions to the OVM Environment
Sources and Probes

Driver

O-SRC

amplitude
frequency
phase
offset

O-SRC

DUT

from sequencer

to scoreboard

DUT

O-PRB

Monitor

O-PRB
OSRC/ OPRB Library

• O-PRBs
 – Peak, gain compression, 3rd order intercept, rise and fall time, frequency, phase shift, jitter…

• O-SRCs
 – DC, exponential, pulse, bit pattern, PWL, sine, FM, AM, VC voltage and current sources, programmable loads…

• User-defined
 – Variants
 – Novel applications
O-PRB (DUT wrapper)

```verilog
module load_curr_oprb (  
curr_measure_out, volt_measure_out,  
probe, hsup, lsup, term_rl  
);

...

// Generate half VDD supply  
V(half_vdd) <+ 0.5*(V(hsup)+V(lsup));
// Terminate the probe  
V(probe, half_vdd) <+ term_rl*I(probe, half_vdd);
// Extract current  
V(curr_measure_out) <+ I(probe, half_vdd);
V(volt_measure_out) <+ V(probe);

endmodule // load_curr_oprb
```
class thevenin_equivalent;

 static function real get_imp(real prb, cur, hsup, lsup);
 if (cur > 0) // Pad is sourcing current
 return ((hsup - prb) / cur);
 else if (cur < 0) // Pad is sinking current
 return ((lsup - prb) / cur);
 else
 return 1e9;
 endfunction // get_imp

endclass
task run();

 ovma_transaction ovma_item
 ovma_transaction ovma_item_clone;
 ovma_item = ovma_transaction::type_id::create("ovma_item");
 @posedge top_v_if.calib_if.iocalibrst_b;
 forever @posedge top_v_if.calib_if.clk_50m) begin
 while (top_v_if.calib_if.iocalib_intrpt != 1'b1)
 @posedge top_v_if.calib_if.clk_50m);
 @posedge top_v_if.calib_if.clk_50m);

 ovma_item.x_ext_res_rl = top_v_if.stim_if.x_ext_res;
 ovma_item.x_vddi_rl = top_v_if.stim_if.x_vddi_rl;
 ovma_item.x_vssi_rl = top_v_if.stim_if.x_vssi_rl;
 ovma_item.padn_voltage = top_v_if.stim_if.padn_volt_mrl;
 ovma_item.padn_current = top_v_if.stim_if.padn_curr_mrl;
 ovma_item.padn_imp_rl = thevenin_equivalent::get_imp(
 ovma_item.padn_voltage,
 ovma_item.padn_current,
 ovma_item.x_vddi_rl,
 ovma_item.x_vssi_rl
);
 end
 $cast(ovma_item_clone, ovma_item_clone());
 ovma_stim_mon_ap.write(ovma_item_clone);
end
endtask
The DUT Wrapper

```verilog
module ddrio_calib_ams_top(
    // Outputs
    padp_curr_mrl, padn_curr_mrl, padp_volt_mrl, padn_volt_mrl, ...
    // Inouts
    x_padn, x_padp, ...
    // Inputs
    ... , x_ext_res);
...
G4M_DDRIO_CALIB IG4M_DDRIO_CALIB (.clk_50m(clk_50m), ...);
vdc_rl v_x_vref (.vdd(x_vref), .vdd_rl(x_vref_rl));
vdc_rl v_x_vssi (.vdd(x_vssi), .vdd_rl(x_vssi_rl));
vdc_rl v_x_vddi (.vdd(x_vddi), .vdd_rl(x_vddi_rl));
wire padp_curr_mrl, padn_curr_mrl, padn_volt_mrl, padp_volt_mrl;
load_curr_oprb padn_curr_oprb (  
    .probe(x_padn), .hsup(x_vddi), .lsup(x_vssi), .term_rl(x_ext_res),  
    .curr_measure_out(padn_curr_mrl), .volt_measure_out(padn_volt_mrl));
load_curr_oprb padp_curr_oprb (  
    .probe(x_padp), .hsup(x_vddi), .lsup(x_vssi), .term_rl(x_ext_res),  
    .curr_measure_out(padp_curr_mrl), .volt_measure_out(padp_volt_mrl));
// External Precision Resistor
res_rl x_refp_res(.p(x_refp), .n(x_vssi), .rl(x_ext_res));
endmodule
```
A Sample Sequence

class ovma_stim_sequence extends ovm_sequence #(ovma_transaction);
`ovm_object_utils(ovma_stim_sequence)
function new (string name="ovma_stim_sequence");
 super.new(name);
endfunction
ovma_transaction req;
...
task body();
 req = ovma_transaction::type_id::create("req");
 repeat (no_reqs) begin
 start_item(req);
 assert(req.randomize());
 req.x_vddi_rl = 3.3;
 req.x_vssi_rl = 0.0;
 req.x_vref_rl = 1.65;
 req.clk_dly_num = 5;
 finish_item(req);
 end
 `ovm_info("OVMA Sequence", $sformatf("Stim set to: VDDI =%0f, ...")
endtask
endclass
class ddrio_calib_test extends ddrio_calib_base_test;
`ovm_component_utils(ddrio_calib_test)
calibration_sequence test_seq;
ovma_stim_sequence ovma_seq;
shared_pd_sequence pd_seq;
ddrio_sequence ddrio_seq;
rand int num_tests=5;
function new(... function void build() ...
task run;
 test_seq = calibration_sequence::type_id::create("test_seq");
 ovma_seq = ovma_stim_sequence::type_id::create("ovma_seq");
 pd_seq = shared_pd_sequence::type_id::create("pd_seq");
 ddrio_seq = ddrio_sequence::type_id::create("ddrio_seq");
repeat (num_tests) begin
 ovma_seq.start(env0.ovma_stim_agnt.ovma_stim_sequencer);
 pd_seq.start(env0.shrdpd_agnt.shrdpd_sequencer);
 ddrio_seq.start(env0.ddrio_agnt.ddrio_sequencer);
 test_seq.start(env0.calib_agnt.calib_sequencer);
end
#1000
global_stop_request();
endtask
endclass
Errors!

--- OVM Report Summary ---
** Report counts by severity
OVM_INFO : 46
OVM_WARNING : 0
OVM_ERROR : 10
OVM_FATAL : 0
Nailing the Error

OVM_INFO ...@ 16353000000:
....ovma_stim_mon [ovma_stim_monitor]
OVMA Transfer collected by monitor:
vssi 0.000000
vddi 3.300000
ext_res 200.000000
padn_current 0.000000
padp_current 0.000000
padn_voltage 1.650000
padp_voltage 1.650000
padn_impedance 1000000000.000000
padp_impedance 1000000000.000000

OVM_ERROR @ 16353000000:
...scoreboard [Impedance Mismatch]
Ext res is 200.000000 Ohms,
but output Imp on N is
1000000000.000000 Ohms
Success

OVM_INFO …OVMA Transfer collected by monitor :
vssi 0.000000
vddi 3.300000
ext_res 200.000000
padn_current -0.004133
padp_current -0.004133
padn_voltage 0.823450
padp_voltage 0.823450
padn_impedance 199.250003
padp_impedance 199.250003

...

--- OVM Report Summary ---
** Report counts by severity
OVM_INFO : 56
OVM_WARNING : 0
OVM_ERROR : 0
OVM_FATAL : 0
Evaluation by Microsemi

• The calibration trial case is a relatively simple design
 - Costly overhead in first creating OVM components
 - No immediate, significant advantages
• We will be able to leverage this overhead cost for larger, more complex mixed-signal designs
 - Reusing testbench components
 - Reusing methodology
 - Reusing block-level tests at system level
 - Simple to add test scenarios
• Additional advantages will accrue as we become more sophisticated
 - Coverage metrics
 - Verification progress metrics