
© Accellera Systems Initiative

Memory subsystem is essential part of any SOC, traditional verification doesn’t
guarantee of catching design corners scenarios.
Usage of formal verification for a complex memory subsystem design is not an easy
task because of its huge state space of the design.
Solving the problems of subsystem verification in structured approach.
Filling the gap of dynamic simulation using formal simulation.
Usage of advance approaches to verify a memory subsystem.
Faster approach for early design bring up.

INTRODUCTION

VERIFICATION FLOW

OBJECTIVES
To do formal verification Memory Subsystem

RESULTS

INTEL

Sujeet Kumar,Vandana Goel,Hrushikesh Vaidya,
Ronak Sarikhada

Experience of using Formal Verification
for a Complex Memory Subsystem Design

Thanks Ketki Gosavi who helped on the resolving tool issues from Cadence

CONCLUSIONS

REFERENCES

[1] Erik Seligman, M Achutha KiranKumar, and Tom Schubert, “Formal Verification- An
Essential Tool kit for the modern VLSI Design,” Elsevier Publications.
[2] C. Jacobi ; K. Weber ; V. Paruthi ; J. Baumgartner ,“Automatic formal verification
of fused-multiply-add FPUs”,IEEE

 Though Formal was applied late in the project, but we got significant results.
 9 issues were found in Architecture, Performance, Register and IP Design.
 Automation helped us to reduce verification time.
 Faster verification for design bring up.
 We got 6x ROI with respect to functional verification

Memory subsystem consists of five IPs. The role of these IPs is to ensure the data transfers
from the processor to different flavors of SRAMs.

 Performance: We found a performance, which we would not have found through
functional integration verification.

 Connectivity: Four issues were found through connectivity verification early in the
project.

FORMAL METHODS USED FOR VERIFICATION

SPLIT BASED APPROACH

FV task can be subdivided for complexity through case splitting. The problem
can be defined as
𝑓𝑓(𝑥𝑥,𝑦𝑦,𝑧𝑧…)=𝑎𝑎_𝑥𝑥+𝑏𝑏_𝑦𝑦+𝑐𝑐_(𝑧𝑧….)
Function is dependent on its variables.
Splitting is done in such a way that the range of x is kept random when y and z
are constant and vice versa. By doing this the problem complexity is minimized

 Property Check
 Connectivity Check
 Register Check
 Sequence Equivalence Check
 ABVIP Based Verification
 Split based approach to solve the formal properties

 IP Verif: Two crucial issues were found in the IP implementation. Same were later
found in functional verification when scenarios were developed to test the
features.

 Reg Verif : One issue found.

BUGS FOUND

	Slide Number 1

