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Abstract 

Traditionally reset design and verification are done by design engineers’ and they are expected to follow some standard 
reset architecture guidelines to avoid any potential meta-stability issues. However, with the advent of complex power 
management design flows and due to the increase in reset signaling complexity with the emergence of multiple reset 
domains, reset domain crossing verification becomes an absolute need to ensure glitch free reset assertions during 
various power states. Also, client SOC designs contain a high level of complexity in the reset distribution and 
synchronization circuitry and verifying that a design can be correctly reset under all modes of operation presents a 
significant challenge that can’t be addressed in RTL simulations. Therefore, there is a tangible need to provide 
automated, exhaustive structural and functional reset signaling checks. This paper details about exhaustive reset 
verification in the PCIE Subsystem and provides a detailed coverage of all the metastability and reconvergence issues, 
reset domain crossing issues that could lead to silicon bugs while improving the quality of handoff to the backend team 
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I. INTRODUCTION 

The purpose of this paper is to describe the methodology with a detailed step by step approach to handle common reset 
verification challenges, and to discuss how the problems can be identified through a variety of different techniques using 
exhaustive reset verification. Below is the comparison of reset coverage in the existing Client methodology with respect to the 
proposed Reset Verification Tool 

In the section, we highlight some of the common problems and challenges identified in PCIE subsystem related to reset 

verification. We will separate it into two main categories: 

 Issues related reset distribution tree  

 Issues related to the reset usages. In the reset tree section, we focus on whether the reset tree was implemented 

correctly or not. In the reset usage section we focus on once reset is correct, whether the usage is correct or not 

A. Reset Distribution Tree  

The first category of reset problems in design is whether reset was implemented incorrectly. The problem usually shows 

in the reset tree. Figure below shows an example reset tree. If the reset tree is incorrect, then all the other checking will be 

incorrect, and the chip will not function properly.  There is a long list of potential problems that we have seen, and we highlight 

2 common problems here.   



 

 

III. RDC PROBLEM 

The asynchronous assertion of the reset in the launch flop can occur close to the clock edge of the both the 
flops, the launch flop will any way enter into reset assert condition but the problem is with the capture flop which 
enters into metastability due to sampling asynchronous data change due to asynchronous reset. 

 

A. Reset recovery and reset removal  

Async reset DE-ASSERTION must be timed – recovery/removal checks w.r.t clock pin of the async reset 
flop. Recovery constraint specifies the minimum time that an asynchronous control input pin must be held stable 
after being de-asserted before the next clock (active-edge) transition. Removal constraint specifies the minimum 
time that an asynchronous control input pin must be held stable before being de-asserted after the previous clock 
(active-edge) transition. 

Recovery time is like the setup check, in that this is the time the asynchronous input should be stable before 
the arrival of the clock. Similarly removal is the equivalent of hold check, in that the asynchronous input should be 
held after the clock edge. In the below figure Tr is the reset recovery time, and the Tm is the reset removal time. 

 

 

B. Resets used with mixed (asynchronous/synchronous) types  
 

In general reset can only defined as asynchronous or synchronous to a clock. Sometimes, it’s being used as 
synchronous reset for clock1, and asynchronous for clock2.  This usually indicates a misunderstanding of the reset in 
the system. The following RTL illustrates a clock being used as an asynchronous reset on register q1 and a 
synchronous reset on register q2. 
 
C. Flip-flops with overlapping set and reset.  
 



 

It is generally not a good idea to allow both asynchronous reset and set exist in a flip flop and is not common in 
synchronous designs. In fact, many technology libraries do not provide a flip flop that has both asynchronous reset 
and set. This problem is usually only a simulation problem and not synthesis issue. The RTL below may not simulate 
correctly because of the behavior of the simulation model. When both set and reset are both active asynchronously, 
the verilog always block may miss one of the reset or set states leading to race condition and there will be a mismatch 
between simulation and synthesis.  An RTL example of overlapping set and reset is shown below.  

 
If set_n and rst_n are asserted together, there is a race condition. The resulting behavior of this register will 

depend on the physical implementation of this cell. One solution to avoid set and reset race conditions is to convert 
one of the asynchronous set or reset signals into a synchronous signal.  The following RTL avoids a race condition by 
using an asynchronous reset and a synchronous set.  

 

IV. RESET USAGE 

In the category, the application of reset and its related issues are discussed. To understand it we need to first 
define the terms reset domain and clock domains.  A reset domain is characterized by the following attributes – 
a) Type – synchronous or asynchronous b) Polarity – active low or active high c) Value – set for 1 and reset for 
0 and d) the top resetting signal  

In a design with multiple reset domains and clock domains, it is important to make sure resets are used 
properly. The reset tree annotates the sequential elements in the design with the reset domain information. With 
every register in the design having a clock domain and reset domain – the usage of the resets in a particular clock 
domain can be determined. With this information, we can then identify asynchronous reset crossings across 
sequential elements in the same clock domain, as well as identify crossings between asynchronous and 
synchronous resets across registers in the same clock domain. These paths between resets are called Reset Domain 
Crossing (RDC) paths 

A. Missing synchronizer for asynchronous reset 

All asynchronous reset signals should be synchronized to the target clock domains before used. The problem 
is not the assertion of reset but with the de-assertion (release) of the reset. If the reset is de-asserted close to the 
next clock edge – it may violate the reset recovery time leading to metastability. When an asynchronous reset 
violates the setup and hold requirements for a register, this violation is likely to happen simultaneously on multiple 
registers and the register metastability will result in a random delayed release of reset on the metastable registers.  

 

 

B. Polarity Correctness and Reset Constant Propagation 

It is important to check the reset correctness with the design intent. Two common problems are that resets 
are used with wrong polarity or clock. Figure 5a shows that the downstream register using reset synchronizer is 
clocked in a different clock (CLK2) from reset synchronizer (CLK). CDC analysis [5] will detect a CDC crossing 
and the problem would be identified during CDC verification. Figure 5b shows that the register reset by the 



 

synchronizer is using active high reset, while the synchronizer is an active-low reset. Since this is not a CDC 
crossing, it will not be caught by CDC tool, and cannot be caught easily.  Figure 5c shows that the constant is 
being propagated and making the reset always asserted. 

 
C. Reset Domain Crossing   

This crossing of reset signals from one reset domain to another reset domains cause metastability risk. If 
RST1 is asserted while RST2 is not asserted, DFF2 can sample asynchronous data. If the data transition is within 
the setup and hold window, then the DFF2 output will become metastable. Below pictures shows two different 
kinds of crossing. First case is set to reset crossing and second being reset to reset crossing. 

 

 
 

D. Reset Convergence 
Another aspects of reset application is reset convergence wherein reset signals splits into paths that converge at a 
signal that gets used as async reset as shown in the picture below 

 

V. RESET VERIFICATION FLOW 

Flow of process of RDC Verification 

 



 

 
 

VI. RESET ANALYSIS 
A. Reset crossing reported 

There are more than 20 reset groups and there are essentially 10+ reset domain crossing which leads to 
10000+ reset crossings. It is very essential to provide the reset to define the reset ordering in order to 
assertion and desertion sequences. 

B. Reset assertion order 
Many of the RDC crossings can be resolved, by knowing the reset sequence of assertion. In the RDC  
crossings if the DFF2 (Rx sampling Flop) is asserted well before the assertion of the DFF1 (Tx Flop), then 
the asynchronous changes in the data will not be sampled by the Rx Flop as it is in reset assertion state. 

C. Reset Ordering from High Level Architecture Definition 

From the architecture specifications (HAS) and the FSDB load of the simulation in the Verdi has helped us in finding 
the Reset assertion sequence. Below is the architecture specifications of the reset signals in the subsystem, from this 
many of the resets are asserted before power up.  

 



 

D. Mapping of Pciess resets with SOC 
Below is the Pciess reset signals and its driver signals in the soc. All the Pciess EP reset signals are mainly 
driven from the Punit at Soc level. The mapping between the Punit signals and the Pciess EP reset signals is 
shown in the below table. 

Pciess Resets Soc Resets 
R1 SoC R1_1 
R2 SOC R2_1 
R3 SOC R3_1 
R4 SOC R4_1 
R5 SOC R5_1 
R6 SOC R6_1 
R7 SOC R7_1 

Below is the FSDB dump of the signals of pciess resets at SOC level with their driver resets signals from Punit. 

 

By looking at the order in which the resets got asserted, first is the assertion of early_boot_side_reset_b followed by 
prim_rst_b and side_rst_b, sapma_side_rst_b are asserting at the same time, and then the pcuIOPwrGoodXnnnH got 
asserted and lastly the pep_rst_n. 

 

So any crossing reported with Pep_rst_n as the TX reset and any of the above signals as Rx reset, the crossing is safe 
as the Pep_rst_n is the last one to assert and any other reset (resetting the Rx Flop) will already be in reset assertion 
state and blocks the asynchronous changes 

E. Mapping of Pciess resets with SOC 

Below is the loaded FSDB of pciess Ep Subsystem in the Verdi. Here are the waveforms of the all the primary resets 
signals with the assertions and de-assertions shown. 

 



 

 

If we consider the above RDC crossings, all the Rx resets from the FSDB dump of both Subsystem and Soc and HAS 
are being asserted before the power up. The TX reset punit_pma_pwrgood_rst_b from the waveform is being asserted 
after the assertion of the all the above RX resets, there by avoid metastability to propagate to the RX Flop. 

F. Reset Order in RDC Tool 

In Reset check tool, the assertion order of these resets can be given by the following directive. 

resetcheck order assert -from R1 -to R2  

resetcheck order assert -from R3 -to R4  

G. Clock gating 

The other solution to RDC is to gate the clock. By shutting of the clock for a few cycles when there could be a meta-
stability due to resets being asserted, we can avoid meta-stability issues. This technique is very elegant, but comes 
with many side effects. This is not always possible and is generally not used at a large scale level 

VII. RESULTS 

We ran exhaustive reset verification using Reset Verification Tool on PCIE End Point Subsystem consisting of 5 
IPs of varying complexity including a functional controller, PHY block, side band router, DFT block etc. Each of the 
designs show different interactions between the generated clock domains and the inferred reset domains leading to 
domain crossing issues.  In general, users can customize the analysis by assigning explicit values to the control signals, 
or by grouping the clock and reset signals explicitly with directives. PCIE End Point Subsystem Design has 24 reset 
domains and 20 different clock domains. 

 
There were many design issues as mentioned below that got uncovered by enabling exhaustive reset verification.  

 User specified resets were unused 
 Mismatches between architectural specification and reset usage 
 Combinational logic before asynchronous reset synchronizer 
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