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Abstract 

One advantage of level-sensitive latches is their ability to 
enable implementation of timing-adjustment tricks such as 
time borrowing. However, extensive use of clock gating 
techniques to save power may introduce data race 
conditions in latch-based designs. These data race 
conditions (i.e., latch flow-through problems) do not exist 
in purely flop-based designs. To ensure data integrity and 
avoid yield loss due to random scan values during 
manufacturing test, intensive verification on those latch 
flow-through conditions is crucial and required. 

In this paper, we present an exhaustive RTL-level 
verification technique to validate those latch flow-through 
problems with several formal methods. By utilizing the 
fan-in/fan-out logic cone reporting capability of 
equivalency checking tools plus extra homegrown scripts, 
all potential data racing conditions, in terms of 
assertions, and their related latches at the 
source/middle/destination locations are reported. Those 
assertions are fed into formal tools to ensure that clocks 
for corresponding latches are never on at same cycle. 
Notably, “data-blocking” cases, in which data feeding 
through the destination latch can be blocked when data 
racing conditions happen, will result in false negative 
failures. To automatically filter these false negatives, we 
utilize the multi-cycle-path (MCP) analysis technology 
from Jasper Design Automation to identify real design 
issues. Compared with other vector-based verification 
techniques, the proposed technique is proven fast and 
exhaustive. This has been successfully demonstrated 
through multiple experiments in this paper and proven to 
catch real silicon bugs timely at AMD. 

Keywords:  Latches, Clock Gating, Latch Flow-Through, 
Formal, Multiple Cycle Path Analysis. 

1. Introduction 

A latch [1] is a very popular storage element for high-
performance designs [2-4] because of its implementation 

advantages on timing, power, and area over a flip-flop [5]. 
For example, the well-known time-borrowing or cycle-
stealing technique [6] can be easily implemented in a 
latch-based design. 

Due to ever-increasing performance requirements, clock 
gating emerges as the dominant approach for dynamic 
power reduction [7-8]. As a result, when such an effective 
power-reduction method is applied in a latch-based 
design, both timing and power goals can be easily 
achieved. Unfortunately, with extensive utilization of 
clock gating logic, we also introduce data race conditions 
or the latch flow-through problem. 

In a latch-based design, the latch flow-through problem 
occurs when three or more of the logically adjacent latches 
are transparent in the same cycle. This is usually due to the 
fine clock controls for those three latches being not 
correlated with each other, so a random value combination 
can easily turn them on at the same time. We named those 
three latches “source,” “middle,” and “destination” 
latches. Obviously, the latch flow-through problem can 
cause severe data integrity issues that lead to a functional 
design failure. In addition, the latch flow-through problem 
can contribute to “overkill” scenarios during 
manufacturing test and thus reduce yield. This is mainly 
due to random scan data created for maximizing the test 
coverage [9]. 

Exhaustively validating the latch flow-through problem in 
a timely manner is very challenging: 

1. It is difficult to identify all potential latch flow-
through problems with any given stimulus because 
simulation-based methods can never be exhaustive. 

2. Verification of all potential latch flow-through 
problems takes a long time because the majority of 
those problems occur at higher levels of a design, 
which is relatively larger. 

The only related work publically reported to cover the 
latch flow-through problem is through automatic test 



 

 

pattern generation (ATPG) stimulus and ATPG simulation 
in [9]. However, such methods -- in addition to being late 
in the design cycle -- fail to exercise all potential latch 
flow-through paths and usually take a long time to 
complete. 

In this paper, we propose an exhaustive RTL-level 
verification technique to cover latch flow-through issues 
via several formal methods. The contributions of this 
paper are mainly in three aspects: 

1. By coupling the logic cone trace capability of 
equivalence-checking tools and extra homegrown 
scripts, all potential latch flow-through scenarios are 
reported in terms of assertions at latch local clocks. 

2. By utilizing several techniques to overcome the 
processing capacity issues, the assertions above are 
successfully fed into formal verification tools at 
higher design levels and all latch flow-through 
instances are exhausitively examined. 

3. A special type of data-racing scenarios (see details in 
Section 2 ) cannot be easily described with assertions 
since it involes data paths. As a result, lots of false 
negatives will be reported by formal tools during 
prove process. In this paper, we apply the Multiple-
Cycle-Path (MCP) analysis technology [10] from 
Jasper to filter those false negatives, which 
significantly increases our verification producitivy. 

In the rest of this paper, Section 2 explains fundamentals 
of the latch flow-through issues. Section 3 presents the 
proposed formal-based latch flow-through verification 
method, including its flow chart and implementation 
details. In Section 4, several experiments demonstrate the 
cost-effectiveness of the proposal.  

2. The Latch Flow-through Problem 

In a typical synchronous design (including both latch-
based and flop-based designs), logic data moves 
sequentially from one cycle to another. When two or more 
operations in a synchronous design are performed in the 
same cycle instead of being executed sequentially, the 
potential of data racing hazards exists. 

Consider a series of three latches, named “source latch” 
L1, “middle latch” L2, and “destination latch” L3, as 
shown in Figure 1. Of these, L1 and L3 are scan latches 
and L2 is not scannable. Fine-gating signals are F1, F2, 
and F3. The data launched by scan latch L1 may be 
captured by scan latch L3 in the same cycle if the fine-
gating signals assume values {F1, F2, F3} = {1, 0, 1}. 

Fixing this latch flow-through problem in Figure 1 is 
rather obvious: do not let L2 be transparent when CLK is 
high. This can be implemented by F1 and F2 sharing the 
same driver signal, F2 and F3 sharing the same driver 
signal, F2 being always tied as high, or creating an 
assertion to ensure {F1, F2, F3} never being {1, 0, 1}. 

 

Figure 1. A Typical Latch Flow-through Case 

In AMD’s next-generation microprocessor core designs 
[11], there is a unique but valid latch flow-through 
scenario (named as data-blocking case internally at AMD) 
in which most of the assertion verification tools are not 
capable of filtering it out. In Figure 2, the “source latch,” 
“middle latch”, and “destination latch” have their own fine 
control on their clocks (i.e., the signals “FineGater1”, 
“FineGater2”, and “FineGater3”, respectively). Since 
those fine controls are driven by different scannable flops, 
it is easy to create a counter example with {FineGater1, 
FineGater2, FineGater3} = {1, 0, 1}, which will lead to a 
latch flow-through condition. 

However, when the “middle latch” is transparent and the 
signal “FineGater2” = 1’b0, the output data from the 
“middle latch” is blocked by this “FineGater2” signal. In 
other words, when all three latches are transparent in this 
scenario, the potential racing data from the “source latch” 
will not flow through the “middle latch” into the 
“destination latch”. Instead, at this moment, the data 
feeding into the “destination latch” will be either constant 
values (as shown in Figure 2) or data from other sources. 

 

Figure 2. Data-Blocking Scenario 

It is worth mentioning that the data-blocking mechanism 
could be an AND, OR, or MUX gate, or even equations 
expressed in assertions.  

This is a smart implementation to fix latch flow-through 
problems when a corresponding clock logic change is 
impossible. However, this introduces a verification 
challenge because it is so difficult to specify for targeted 
verification techniques. Luckily, the MCP technology 
from Jasper provides a unique capability to filter those 



 

 

false negatives produced by traditional assertion-based 
verification tools. 

Lastly, there might be data racing conditions that involve 
two active low latches and one active high latch. However, 
such a design is very rare in practice. Hence, in this paper, 
we will focus only on the scenarios shown in Figure 1 for 
discussions. 

3. The Proposed Verification Technique 

The proposed verification technique consists of three 
steps: 

1. Report all potential latch flow-through cases as 
assertions on local clock gaters. 

2. Prove all assertions generated in step 1. 

3. Filter failures produced in step 2 using MCP 
technology from Jasper. 

These steps are elaborated in this section below. The 
overall proposed flowchart is shown in Figure 3. 
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Figure 3. The Proposed Verification Technique 

3.1 Identification 

Unlike other stimulus-based methods that rely on “good” 
vectors to exercise the flow-through latch cases, the 

proposed technique explicitly locates all those potential 
verification targets. In other words, the proposal does not 
depend on any vectors and its identification process is 
exhaustive. The detailed steps of such a process are: 

1. Create a dummy RTL file without contents so we can 
feed both the RTL under verification and this dummy 
RTL into equivalence-checking tools [12] to create 
the design database through synthesis. 

2. Based on naming conventions for a active low latch 
library in RTL, all the instances of those active low 
latches are listed into a file through commands of the 
equivalence-checking tool. Meanwhile, the logic cone 
map database, which states a particular storage 
element and its fan-in/fan-out states, is created and 
stored into a text file. 

3. By checking each latch instance from the active low 
latch instance list within the logic cone map database, 
both its fan-in/fan-out logic states can be looked up 
and reported as a latch sequence, where their 
respective clock gaters are formed into an OVL 
assertion [13]. An example of such a latch sequence is 
as follows: 

assert_never #(.msg("ABA gaters open at the same time")) AssertABA1 
(.reset_n(1'b1), .clk(~CLK), .test_expr ((foo.foo2.I_foo3.G) & 
~(boo.boo2.I_boo3.G) & (poo.poo2.I_poo3.G))); 

// Source latch gater = /foo/foo2/I_foo3 

// Middle latch gater = /boo/boo2/I_boo3 

// Destination latch gater = /poo/poo2/I_poo3 

// Latch Sequences: 

// /foo/foo2/I_src1 /boo/boo2/I_mid1 /poo/poo2/I_dest1 

// /foo/foo2/I_src1 /boo/boo2/I_mid2 /poo/poo2/I_dest2 

// /foo/foo2/I_src1 /boo/boo2/I_mid2 /poo/poo2/I_dest3 

… … … 

assert_never #(.msg("ABA gaters open at the same time")) AssertABA2 
… … 

The latch sequence file not only includes all 
corresponding latches but also groups those related latches 
together if they share the same clock gaters respectively. 
By doing so, the number of latch scequences to be 
examined can be significantly reduced, greatly 
accelerating the assertion analysis time. 

3.2 Assertion Prove 

By following traditional assertion-based verification 
(ABV) methodology, the assertions generated through 
steps described in Section 3.1 are fed into formal 
verification tools, e.g., the JasperGold tool from Jasper 
Design Automation Inc., for examining those assertions 
exhaustively. As is the case with typical formal-based 
ABV tools, the capacity issue remains the main challenge 
due to design size,  the related state explosion as well 
large number of assertions associated with this flow. With 



 

 

thorough analysis on latch flow-through problems, 
fortunately, we are able to overcome this challenge by 
adopting following techniques: 

1. Divide the total assertions into multiple groups based 
on productivity requirements. For example, if 
empirical data reflects that in a 3 hour proof run time 
1000 assertions can be verified, then the grouping 
mechanism can be implemented using the “ifdef” 
method, i.e., letting muitple formal engines work on  
different groups of assertions simultaneously. 

2. Blackbox scannable flops which are not targets of 
latch flow-through instances. There are a couple of 
reasons why this method is effective in improving the 
tool processing capacity and the resulting run time 
efficiency: 

a. Scannable flops produces random data so 
that maximum manufacturing test coverage 
can be obtained. In other words, all 
scannable flops during latch flow-through 
verification must produce random values. 
This verification requirement happens to be 
consistent with the effect of blackboxing 
those flops. 

b. Purely-latching-based designs are very 
costly. In reality, latches are only utilized in 
timing-critical blocks and most of the storage 
elements in a typical high-performance 
design are still flip-flops. As a result, the 
assocated scanable flops interfacing with 
latches are with very low percentage.  

It is important to note that the scannable flops which are 
part of latch flow-through instances can not be 
blackboxed. This is to avoid unnecessary false negatives 
since formal tools needs to analyze the functionality of 
those in-target scannable flops during proof process. 

3.3 Data Blocking Filtering 

As stated in Section 2, data-blocking is a very popular 
mechanism to fix latch flow-through problem without 
requiring to modify the existing latch clocking scenario. 
However, if the assertions formed in Section 3.1 are 
utilized to express this type of clock and data structure, 
many assertions might fail without the violation of 
underlying latch flow-through scenario (essentially false 
negatives). This is because of its unique data blocking 
mechanism where data from “source/middle” latch will 
NOT be propagated to “destination” latch when all latches 
are transparent. Manual analysis of all assertion failures to 
eliminate false negatives will be extremely prohibitive and 
verification productivity will be heavily impacted. 

One possible way to resolve this productivity issue is to  
re-write the assertions by incorporating data path 
components for each instance. Not only this solution is 
difficult to implement with much higher complexity of 

identification process, it will also result in explosion of 
assertion count.  A more practical solution is to develop a 
post-processing mechanism to automatically filter those 
false negatives. This is achieved through Multi-Cycle-Path 
analysis, a solution available in the JasperGold product 
from Jasper Design Automation Inc.  

An introduction to MCP can be found at: 
http://ece.gmu.edu/coursewebpages/ECE/ECE645/S09/res
ources/Multi-Cycle_Path_Tutorial.pdf. Essentially, MCP 
analysis checks that three end points of a path requires at 
least N cycles for value propagation. The typical syntax of 
such an MCP command exampled with latch flow-through 
instance is as follows: 

assert –mcp –from “source” latch instance –through “middle” latch 
instance –to “destination” latch instance –cycle 2 –name ABA_mcp1 

If the underlying formal engine in MCP technology is able 
to identify a counter example where the data can be 
propagated from “source” latch, through “middle” latch, to 
“destination” latch, within 2 evaluation cycles, such a 
failure reported from the assertion prove process in Step 
3.2 could be a real data-racing incidence. This is because 
the formal engine could not find the tight correlation 
between the clock and data paths for this latch sequence. 
On the other hand, once such a MCP property is proven, 
these three latches instances successfully form a data-
blocking scenario. 

During MCP proof process, we encountered couple of  
tool capacity issues: (i) large run times due to large 
number of MCPs (ii) getting bounded proof results on 
MCP assertions instead of the full proof. We resolve the 
first issue by re-grouping those bit-blasted instances into a 
vector scenario so that the number of MCP formulations is 
equal to the failing assertion count, which is relatively 
small in practice. We resolved the second issue by starting 
the MCP analysis with completely uninitialized state 
elements. With such a general starting point, the bounded 
proof of depth 2 is sufficient to get the necessary 
confidence (since the path is of length 2). 

4. Experiments 

The experiments conducted in this paper are mainly for 
two purposes: 

1. We use two block-level modules (BLMs) in [14] to 
prove the effectiveness of our method. Both a data 
blocking case and a real data-racing scenario are 
reported in this experiment which substantiate the 
capabilities of the flow. 

2. We demonstrate that our flow is capable of processing 
large components in [14] with reasonable run time. 

In the first experiment, two BLMs, BLM1 and BLM2, are 
selected as test cases. To identify latch-dominant design 
structures that are deemed as critical-area for this flow-
through problem, BLM1 is a block without memory arrays 



 

 

while BLM2 is a block with memory arrays. The details of 
the report after running our program are shown in Table 1. 

Table 1. Latch Flow-through Verification Results of BLMs 

BLMs # (Latch 
Sequences) 

# 
(assertions) 

# (data 
blocking 

cases) 

# (real latch 
flow-through 

scenarios) 

BLM1 588 11 78 0 

BLM2 10,730 638 530 16 

From Table 1, it can be seen that more latch sequences are 
found in a BLM with macros. This is easily 
understandable because macros are the building blocks of 
microprocessor core design. The second observation is 
that our flow has successfully differentiated the real data-
racing scenarios from the data-blocking cases. For 
example, for BLM2, we identify 16 latch scenarios that 
are causing a latch flow-through problem (confirmed later 
by designers). An example of such a violation can be 
shown in Figure 4: 

 

Figure 4. A Latch Flow-through Violation Found in BLM2 

In this example, the data-blocking mechanism should 
come from the “middle latch’s” fine control while it is 
designed with the “destination latch’s” fine control. 

In the second experiment, we run the proposed program 
on all components in [14] to ensure that a daily latch flow-
through verification regression at the component level is 
possible. Table 2 lists the flow run results for 3 typical 
components: 

Table 2. Latch Flow-through Verification Results of 3 

Components 

Component C0 C1 C2 

Computing Memory 10G 26G 26G 

# Latch Sequences 456k 2.04m 1.893m 

# assertions 201 1324 18014 

# scannable flops 15k 107k 89k 

% scannable flops blackboxed 98.9 95.8 92.1 

Assertion generation time (hours) 0.7 3.0 5.7 

Assertion+MCP prove time (hours) 3.0 3.3 3.7 

Total run time (hours) 3.7 6.3 9.4 

From Table 2, compared with the latch flow-through 
verification at BLM level, the latch sequences reported at 
the component increase dramatically. This clearly shows 
latch flow-through verification at a high design level is 

essential because there are more latches across BLMs in 
this microprocessor core. 

Run time on large components of our proposal is very 
reasonable, e.g., below 10 hours in total, which fits well 
with the daily-regression system. Blackboxing the non-
target scannable flops and grouping large number of 
assertions account for the major productivity 
improvements. 

5. Conclusion 

Latch flow-through problems become more and more 
serious for high-performance latch-based designs, 
especially when their dynamic power budget on clock 
gaters is limited. Extensive validation of such design 
violations is unavoidable. With reasonable runtime, the 
proposed verification technique is effective and exhaustive 
in identifying and/or catching such design failures, even at 
an early design stage because it can operate on RTL 
description. Experiments performed in this paper 
demonstrate that the proposed flow is capable of 
identifying those design violations and can exhaustively 
verify such problems in a reasonable run time on large 
designs. 
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