

Exhaustive Latch Flow-through Verification with Formal Methods

Baosheng Wang, Sean Ater, Baris Piyade, Brian McMinn, and Borhan Roohipour

Advanced Micro Devices, Inc., 1 AMD Place, Sunnyvale CA 94088, USA

 {FirstName.LastName}@amd.com

Antonio Celso Caldeira Junior, Bill Au, and Rajeev Ranjan

Jasper Design Automation, 707 California Street, Mountain View CA 94041, USA
{caldeira, bau, rajeev}@jasper-da.com

Abstract

One advantage of level-sensitive latches is their ability to
enable implementation of timing-adjustment tricks such as
time borrowing. However, extensive use of clock gating
techniques to save power may introduce data race
conditions in latch-based designs. These data race
conditions (i.e., latch flow-through problems) do not exist
in purely flop-based designs. To ensure data integrity and
avoid yield loss due to random scan values during
manufacturing test, intensive verification on those latch
flow-through conditions is crucial and required.

In this paper, we present an exhaustive RTL-level
verification technique to validate those latch flow-through
problems with several formal methods. By utilizing the
fan-in/fan-out logic cone reporting capability of
equivalency checking tools plus extra homegrown scripts,
all potential data racing conditions, in terms of
assertions, and their related latches at the
source/middle/destination locations are reported. Those
assertions are fed into formal tools to ensure that clocks
for corresponding latches are never on at same cycle.
Notably, “data-blocking” cases, in which data feeding
through the destination latch can be blocked when data
racing conditions happen, will result in false negative
failures. To automatically filter these false negatives, we
utilize the multi-cycle-path (MCP) analysis technology
from Jasper Design Automation to identify real design
issues. Compared with other vector-based verification
techniques, the proposed technique is proven fast and
exhaustive. This has been successfully demonstrated
through multiple experiments in this paper and proven to
catch real silicon bugs timely at AMD.

Keywords: Latches, Clock Gating, Latch Flow-Through,
Formal, Multiple Cycle Path Analysis.

1. Introduction

A latch [1] is a very popular storage element for high-
performance designs [2-4] because of its implementation

advantages on timing, power, and area over a flip-flop [5].
For example, the well-known time-borrowing or cycle-
stealing technique [6] can be easily implemented in a
latch-based design.

Due to ever-increasing performance requirements, clock
gating emerges as the dominant approach for dynamic
power reduction [7-8]. As a result, when such an effective
power-reduction method is applied in a latch-based
design, both timing and power goals can be easily
achieved. Unfortunately, with extensive utilization of
clock gating logic, we also introduce data race conditions
or the latch flow-through problem.

In a latch-based design, the latch flow-through problem
occurs when three or more of the logically adjacent latches
are transparent in the same cycle. This is usually due to the
fine clock controls for those three latches being not
correlated with each other, so a random value combination
can easily turn them on at the same time. We named those
three latches “source,” “middle,” and “destination”
latches. Obviously, the latch flow-through problem can
cause severe data integrity issues that lead to a functional
design failure. In addition, the latch flow-through problem
can contribute to “overkill” scenarios during
manufacturing test and thus reduce yield. This is mainly
due to random scan data created for maximizing the test
coverage [9].

Exhaustively validating the latch flow-through problem in
a timely manner is very challenging:

1. It is difficult to identify all potential latch flow-
through problems with any given stimulus because
simulation-based methods can never be exhaustive.

2. Verification of all potential latch flow-through
problems takes a long time because the majority of
those problems occur at higher levels of a design,
which is relatively larger.

The only related work publically reported to cover the
latch flow-through problem is through automatic test

pattern generation (ATPG) stimulus and ATPG simulation
in [9]. However, such methods -- in addition to being late
in the design cycle -- fail to exercise all potential latch
flow-through paths and usually take a long time to
complete.

In this paper, we propose an exhaustive RTL-level
verification technique to cover latch flow-through issues
via several formal methods. The contributions of this
paper are mainly in three aspects:

1. By coupling the logic cone trace capability of
equivalence-checking tools and extra homegrown
scripts, all potential latch flow-through scenarios are
reported in terms of assertions at latch local clocks.

2. By utilizing several techniques to overcome the
processing capacity issues, the assertions above are
successfully fed into formal verification tools at
higher design levels and all latch flow-through
instances are exhausitively examined.

3. A special type of data-racing scenarios (see details in
Section 2) cannot be easily described with assertions
since it involes data paths. As a result, lots of false
negatives will be reported by formal tools during
prove process. In this paper, we apply the Multiple-
Cycle-Path (MCP) analysis technology [10] from
Jasper to filter those false negatives, which
significantly increases our verification producitivy.

In the rest of this paper, Section 2 explains fundamentals
of the latch flow-through issues. Section 3 presents the
proposed formal-based latch flow-through verification
method, including its flow chart and implementation
details. In Section 4, several experiments demonstrate the
cost-effectiveness of the proposal.

2. The Latch Flow-through Problem

In a typical synchronous design (including both latch-
based and flop-based designs), logic data moves
sequentially from one cycle to another. When two or more
operations in a synchronous design are performed in the
same cycle instead of being executed sequentially, the
potential of data racing hazards exists.

Consider a series of three latches, named “source latch”
L1, “middle latch” L2, and “destination latch” L3, as
shown in Figure 1. Of these, L1 and L3 are scan latches
and L2 is not scannable. Fine-gating signals are F1, F2,
and F3. The data launched by scan latch L1 may be
captured by scan latch L3 in the same cycle if the fine-
gating signals assume values {F1, F2, F3} = {1, 0, 1}.

Fixing this latch flow-through problem in Figure 1 is
rather obvious: do not let L2 be transparent when CLK is
high. This can be implemented by F1 and F2 sharing the
same driver signal, F2 and F3 sharing the same driver
signal, F2 being always tied as high, or creating an
assertion to ensure {F1, F2, F3} never being {1, 0, 1}.

Figure 1. A Typical Latch Flow-through Case

In AMD’s next-generation microprocessor core designs
[11], there is a unique but valid latch flow-through
scenario (named as data-blocking case internally at AMD)
in which most of the assertion verification tools are not
capable of filtering it out. In Figure 2, the “source latch,”
“middle latch”, and “destination latch” have their own fine
control on their clocks (i.e., the signals “FineGater1”,
“FineGater2”, and “FineGater3”, respectively). Since
those fine controls are driven by different scannable flops,
it is easy to create a counter example with {FineGater1,
FineGater2, FineGater3} = {1, 0, 1}, which will lead to a
latch flow-through condition.

However, when the “middle latch” is transparent and the
signal “FineGater2” = 1’b0, the output data from the
“middle latch” is blocked by this “FineGater2” signal. In
other words, when all three latches are transparent in this
scenario, the potential racing data from the “source latch”
will not flow through the “middle latch” into the
“destination latch”. Instead, at this moment, the data
feeding into the “destination latch” will be either constant
values (as shown in Figure 2) or data from other sources.

Figure 2. Data-Blocking Scenario

It is worth mentioning that the data-blocking mechanism
could be an AND, OR, or MUX gate, or even equations
expressed in assertions.

This is a smart implementation to fix latch flow-through
problems when a corresponding clock logic change is
impossible. However, this introduces a verification
challenge because it is so difficult to specify for targeted
verification techniques. Luckily, the MCP technology
from Jasper provides a unique capability to filter those

false negatives produced by traditional assertion-based
verification tools.

Lastly, there might be data racing conditions that involve
two active low latches and one active high latch. However,
such a design is very rare in practice. Hence, in this paper,
we will focus only on the scenarios shown in Figure 1 for
discussions.

3. The Proposed Verification Technique

The proposed verification technique consists of three
steps:

1. Report all potential latch flow-through cases as
assertions on local clock gaters.

2. Prove all assertions generated in step 1.

3. Filter failures produced in step 2 using MCP
technology from Jasper.

These steps are elaborated in this section below. The
overall proposed flowchart is shown in Figure 3.

RTL Dummy RTL

Equivalence Checking Tool
RTL Lib for

Active Low Latch

Logic Cone Map

Database

Post-processing based on low-

effective latch instances

Potential Flow-through Latch Database

Active Low Latch

Instance List

Latch Flow-through Property Prove

Prove?

Y

Filter with MCP technology

List of failing assertions and/or MCPs

N

deliverables

Database

Process

Legend

Convert Assertions into MCPs

Figure 3. The Proposed Verification Technique

3.1 Identification

Unlike other stimulus-based methods that rely on “good”
vectors to exercise the flow-through latch cases, the

proposed technique explicitly locates all those potential
verification targets. In other words, the proposal does not
depend on any vectors and its identification process is
exhaustive. The detailed steps of such a process are:

1. Create a dummy RTL file without contents so we can
feed both the RTL under verification and this dummy
RTL into equivalence-checking tools [12] to create
the design database through synthesis.

2. Based on naming conventions for a active low latch
library in RTL, all the instances of those active low
latches are listed into a file through commands of the
equivalence-checking tool. Meanwhile, the logic cone
map database, which states a particular storage
element and its fan-in/fan-out states, is created and
stored into a text file.

3. By checking each latch instance from the active low
latch instance list within the logic cone map database,
both its fan-in/fan-out logic states can be looked up
and reported as a latch sequence, where their
respective clock gaters are formed into an OVL
assertion [13]. An example of such a latch sequence is
as follows:

assert_never #(.msg("ABA gaters open at the same time")) AssertABA1
(.reset_n(1'b1), .clk(~CLK), .test_expr ((foo.foo2.I_foo3.G) &
~(boo.boo2.I_boo3.G) & (poo.poo2.I_poo3.G)));

// Source latch gater = /foo/foo2/I_foo3

// Middle latch gater = /boo/boo2/I_boo3

// Destination latch gater = /poo/poo2/I_poo3

// Latch Sequences:

// /foo/foo2/I_src1 /boo/boo2/I_mid1 /poo/poo2/I_dest1

// /foo/foo2/I_src1 /boo/boo2/I_mid2 /poo/poo2/I_dest2

// /foo/foo2/I_src1 /boo/boo2/I_mid2 /poo/poo2/I_dest3

… … …

assert_never #(.msg("ABA gaters open at the same time")) AssertABA2
… …

The latch sequence file not only includes all
corresponding latches but also groups those related latches
together if they share the same clock gaters respectively.
By doing so, the number of latch scequences to be
examined can be significantly reduced, greatly
accelerating the assertion analysis time.

3.2 Assertion Prove

By following traditional assertion-based verification
(ABV) methodology, the assertions generated through
steps described in Section 3.1 are fed into formal
verification tools, e.g., the JasperGold tool from Jasper
Design Automation Inc., for examining those assertions
exhaustively. As is the case with typical formal-based
ABV tools, the capacity issue remains the main challenge
due to design size, the related state explosion as well
large number of assertions associated with this flow. With

thorough analysis on latch flow-through problems,
fortunately, we are able to overcome this challenge by
adopting following techniques:

1. Divide the total assertions into multiple groups based
on productivity requirements. For example, if
empirical data reflects that in a 3 hour proof run time
1000 assertions can be verified, then the grouping
mechanism can be implemented using the “ifdef”
method, i.e., letting muitple formal engines work on
different groups of assertions simultaneously.

2. Blackbox scannable flops which are not targets of
latch flow-through instances. There are a couple of
reasons why this method is effective in improving the
tool processing capacity and the resulting run time
efficiency:

a. Scannable flops produces random data so
that maximum manufacturing test coverage
can be obtained. In other words, all
scannable flops during latch flow-through
verification must produce random values.
This verification requirement happens to be
consistent with the effect of blackboxing
those flops.

b. Purely-latching-based designs are very
costly. In reality, latches are only utilized in
timing-critical blocks and most of the storage
elements in a typical high-performance
design are still flip-flops. As a result, the
assocated scanable flops interfacing with
latches are with very low percentage.

It is important to note that the scannable flops which are
part of latch flow-through instances can not be
blackboxed. This is to avoid unnecessary false negatives
since formal tools needs to analyze the functionality of
those in-target scannable flops during proof process.

3.3 Data Blocking Filtering

As stated in Section 2, data-blocking is a very popular
mechanism to fix latch flow-through problem without
requiring to modify the existing latch clocking scenario.
However, if the assertions formed in Section 3.1 are
utilized to express this type of clock and data structure,
many assertions might fail without the violation of
underlying latch flow-through scenario (essentially false
negatives). This is because of its unique data blocking
mechanism where data from “source/middle” latch will
NOT be propagated to “destination” latch when all latches
are transparent. Manual analysis of all assertion failures to
eliminate false negatives will be extremely prohibitive and
verification productivity will be heavily impacted.

One possible way to resolve this productivity issue is to
re-write the assertions by incorporating data path
components for each instance. Not only this solution is
difficult to implement with much higher complexity of

identification process, it will also result in explosion of
assertion count. A more practical solution is to develop a
post-processing mechanism to automatically filter those
false negatives. This is achieved through Multi-Cycle-Path
analysis, a solution available in the JasperGold product
from Jasper Design Automation Inc.

An introduction to MCP can be found at:
http://ece.gmu.edu/coursewebpages/ECE/ECE645/S09/res
ources/Multi-Cycle_Path_Tutorial.pdf. Essentially, MCP
analysis checks that three end points of a path requires at
least N cycles for value propagation. The typical syntax of
such an MCP command exampled with latch flow-through
instance is as follows:

assert –mcp –from “source” latch instance –through “middle” latch
instance –to “destination” latch instance –cycle 2 –name ABA_mcp1

If the underlying formal engine in MCP technology is able
to identify a counter example where the data can be
propagated from “source” latch, through “middle” latch, to
“destination” latch, within 2 evaluation cycles, such a
failure reported from the assertion prove process in Step
3.2 could be a real data-racing incidence. This is because
the formal engine could not find the tight correlation
between the clock and data paths for this latch sequence.
On the other hand, once such a MCP property is proven,
these three latches instances successfully form a data-
blocking scenario.

During MCP proof process, we encountered couple of
tool capacity issues: (i) large run times due to large
number of MCPs (ii) getting bounded proof results on
MCP assertions instead of the full proof. We resolve the
first issue by re-grouping those bit-blasted instances into a
vector scenario so that the number of MCP formulations is
equal to the failing assertion count, which is relatively
small in practice. We resolved the second issue by starting
the MCP analysis with completely uninitialized state
elements. With such a general starting point, the bounded
proof of depth 2 is sufficient to get the necessary
confidence (since the path is of length 2).

4. Experiments

The experiments conducted in this paper are mainly for
two purposes:

1. We use two block-level modules (BLMs) in [14] to
prove the effectiveness of our method. Both a data
blocking case and a real data-racing scenario are
reported in this experiment which substantiate the
capabilities of the flow.

2. We demonstrate that our flow is capable of processing
large components in [14] with reasonable run time.

In the first experiment, two BLMs, BLM1 and BLM2, are
selected as test cases. To identify latch-dominant design
structures that are deemed as critical-area for this flow-
through problem, BLM1 is a block without memory arrays

while BLM2 is a block with memory arrays. The details of
the report after running our program are shown in Table 1.

Table 1. Latch Flow-through Verification Results of BLMs

BLMs # (Latch
Sequences)

(assertions)

(data
blocking

cases)

(real latch
flow-through

scenarios)

BLM1 588 11 78 0

BLM2 10,730 638 530 16

From Table 1, it can be seen that more latch sequences are
found in a BLM with macros. This is easily
understandable because macros are the building blocks of
microprocessor core design. The second observation is
that our flow has successfully differentiated the real data-
racing scenarios from the data-blocking cases. For
example, for BLM2, we identify 16 latch scenarios that
are causing a latch flow-through problem (confirmed later
by designers). An example of such a violation can be
shown in Figure 4:

Figure 4. A Latch Flow-through Violation Found in BLM2

In this example, the data-blocking mechanism should
come from the “middle latch’s” fine control while it is
designed with the “destination latch’s” fine control.

In the second experiment, we run the proposed program
on all components in [14] to ensure that a daily latch flow-
through verification regression at the component level is
possible. Table 2 lists the flow run results for 3 typical
components:

Table 2. Latch Flow-through Verification Results of 3

Components

Component C0 C1 C2

Computing Memory 10G 26G 26G

Latch Sequences 456k 2.04m 1.893m

assertions 201 1324 18014

scannable flops 15k 107k 89k

% scannable flops blackboxed 98.9 95.8 92.1

Assertion generation time (hours) 0.7 3.0 5.7

Assertion+MCP prove time (hours) 3.0 3.3 3.7

Total run time (hours) 3.7 6.3 9.4

From Table 2, compared with the latch flow-through
verification at BLM level, the latch sequences reported at
the component increase dramatically. This clearly shows
latch flow-through verification at a high design level is

essential because there are more latches across BLMs in
this microprocessor core.

Run time on large components of our proposal is very
reasonable, e.g., below 10 hours in total, which fits well
with the daily-regression system. Blackboxing the non-
target scannable flops and grouping large number of
assertions account for the major productivity
improvements.

5. Conclusion

Latch flow-through problems become more and more
serious for high-performance latch-based designs,
especially when their dynamic power budget on clock
gaters is limited. Extensive validation of such design
violations is unavoidable. With reasonable runtime, the
proposed verification technique is effective and exhaustive
in identifying and/or catching such design failures, even at
an early design stage because it can operate on RTL
description. Experiments performed in this paper
demonstrate that the proposed flow is capable of
identifying those design violations and can exhaustively
verify such problems in a reasonable run time on large
designs.

6. Acknowledgements

We thank anonymous reviewers for their insightful
comments and suggestions on this work.

7. References

[1] A. Chandrakasan, W. Bowhill, F. Fox, Design of High-
Performance Microprocessor Circuits. New York, NY:
Wiley-IEEE Press, 2001.

[2] M. Butler, “Bulldozer – a new approach to multi-thread
compute performance,” The IEEE 22nd HotChips
conference – a symposium on high performance chips,
Session 7.2, August 22-24, 2010.

[3] T. Wood, “Test and debug features of the AMD-K7TM
microprocessor,” in Proceedings of IEEE International
Test Conference (ITC), 1999, pp. 130-136.

[4] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos,
D. Wu, M. Braganza, S. Meyers, E. Fang, R. Kumar, “An
Integrated Quad-Core Opteron Processor,” The IEEE
International Solid-State Circuits Conference (ISSCC),
2007, pp. 102-103.

[5] Electronics Bus, Latch Vs Flip-Flop Registers in Digital

Design, http://electronicsbus.com/latch-vs-flip-flop

[6] S. Lee, S. Paik, Y. Shin, “Retiming and time borrowing:
Optimizing high-performance pulsed-latch-based circuits,”
The IEEE/ACM International Conference on Computer-
Aided Design - Digest of Technical Papers, pp. 375-380,
2009.

[7] D.R. Sulaiman, “Using clock gating technique for energy
reduction in portable computers,” The International
Conference on Computer and Communication
Engineering, pp. 839-842, 2008.

[8] M. Kunes, et al., “Reducing Power Consumption of an
Embedded DSP Platform through the Clock-Gating
Technique,” The International Conference on Field
Programmable Logic and Applications (FPL), pp. 336-
339, 2010.

[9] M. Yilmaz, et al., “The scan-DFT features of AMD’s next-
generation microprocessor core,” in Proceedings of IEEE
International Test Conference (ITC), 2010, pp. 2.1.1-
2.1.10.

[10] Jasper Design Automation, JasperGold Verificaton System
and JasperCore Command Reference Manual, Version 7.3,
August 2011

[11] S. Arekapudi, E. Busta, C. Dietz, T. Fischer, M. Golden,
S. Hilker, A. Horiuchi, K. Hurd, D. Johnson, H. McIntyre,
S. Naffziger, J. Vinh, J. White, K. Wilcox, “Design
Solutions for the Bulldozer 32nm SOI 2-Core Processor

Module in an 8-Core CPU,” to appear in IEEE
International Solid-State Circuits Conference (ISSCC),
Feb. 20-24, 2011.

[12] Cadence. Encounter Conformal Equivalence Checking
User Guide, Product Version 8.1, June 2009.

[13] E. Clarke, Jr., O. Grumberg, D. Peled, Model Checking.
MIT Press, 1999.

[14] B. Roohipour, et al.,, “Exhaustive Equivalence Checking
on AMD’s Next-generation Microprocessor Core,” to
appear in Design & Verification Conference & Exhibition
(DVCON), March 2011

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5690273
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5690273

